EP0559694B1 - Verfahren zur herstellung von verbesserte hypereutektische legierungen und auf diesen basierte verbundwerkstoffe - Google Patents

Verfahren zur herstellung von verbesserte hypereutektische legierungen und auf diesen basierte verbundwerkstoffe Download PDF

Info

Publication number
EP0559694B1
EP0559694B1 EP91920402A EP91920402A EP0559694B1 EP 0559694 B1 EP0559694 B1 EP 0559694B1 EP 91920402 A EP91920402 A EP 91920402A EP 91920402 A EP91920402 A EP 91920402A EP 0559694 B1 EP0559694 B1 EP 0559694B1
Authority
EP
European Patent Office
Prior art keywords
particles
alloy
refractory
eutectic
hyper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91920402A
Other languages
English (en)
French (fr)
Other versions
EP0559694A1 (de
Inventor
David James Lloyd
Iljoon Jin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002030928A external-priority patent/CA2030928A1/en
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Publication of EP0559694A1 publication Critical patent/EP0559694A1/de
Application granted granted Critical
Publication of EP0559694B1 publication Critical patent/EP0559694B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Definitions

  • This invention relates to a method of preparing improved hyper-eutectic alloys and metal matrix composites containing such alloys.
  • Metal matrix composite materials have gained increasing acceptance as structural materials. Such composites typically are composed of reinforcing particles, such as fibres, grit, powder or the like that are embedded within a metallic matrix.
  • the reinforcement imparts strength, stiffness and other desirable properties to the composite, while the matrix protects the fibres and transfers load within the composite.
  • the two components, matrix and reinforcement thus cooperate to achieve results which are improved over what either could provide on its own.
  • a typical composite is an aluminum alloy reinforced with particles of silicon carbide or alumina.
  • a major difficulty in the production of good quality metal matrix composites is segregation of the reinforcing particles.
  • the segregation of particles occurs in the liquid state as well as during solidification.
  • the segregation in the liquid state can be overcome by a proper mixing of the liquid.
  • the particles may still segregate during solidification.
  • the reinforcing particles can be rejected ahead of the solidification interface, and may agglomerate in the interdendritic liquid which solidifies last.
  • reinforcement particles are pushed by the solidification interface or are engulfed is primarily dependent upon the degree of wetting between the particles and the solid surface. If the solid surface wets the particles, they are engulfed by the solid surface. In this case the particle distribution in the solidified material is as uniform as it was in the liquid state. On the other hand, if the solid surface, e.g. aluminum dendrite surface, does not wet the particles, they are pushed away, resulting in interdendritic segregation.
  • intermetallic compounds may precipitate directly from a melt of the alloy. These intermetallic compounds often tend to be coarse, brittle particles, and these particles tend to segregate due to density difference, particularly when the solidification rate is slow.
  • a hypereutectic LM30 Al-Si alloy containing 3 wt.% of graphite particles is analyzed.
  • the LM30 alloy specification defines an alloy composition which contains,among others, from 16 to 18 wt.% Si, from 0.3 to 0.7 wt.% Mg, up to 1.1 wt.% Fe, and up to 0.3 wt.% Mn.
  • Fig. 2 shows a preferential nucleation of primary silicon on the surface of the graphite.
  • non-metallic refractory particles when added to a molten hyper-eutectic Al-Si-Mn alloy can be engulfed durina solidification by an intermetallic phase which solidifies first from the molten hypereutectic alloy during solidification thereof such that the refractory particles are engulfed by the intermetallic phase as it grows during solidification. Because the intermetallics engulf the refractory particles, there is no longer a tendency for the refractory particles to segregate to the interdendritic regions and they remain homogeneously distributed throughout an as-solidified ingot. The presence of excess alloying elements in the hyper-eutectic alloy beyond eutectic amounts is the mechanism for the formation of the desired intermetallic phase and this intermetallic phase forms automatically during cooling provided the alloy being cooled is a hyper-eutectic alloy.
  • One embodiment of the invention is a method for preparing a composite of an aluminum alloy and particles of a non-metallic refractory material, which comprise melting an aluminum alloy; adding particles of non-metallic refractory material to the molten aluminum matrix; mixing together the molten aluminum alloy and the particles of refractory material; and casting the resulting mixture.
  • the aluminum alloy is a hyper-eutectic aluminum alloy comprising, in percentages by weight, 7-16% silicon, 0.5-3.0% manganese, 0-5.0% copper, 0-5.0% nickel, 0-1.0% iron, 0-0.2% titanium and 0.3-2.0% magnesium and the balance of the alloy being aluminum and inevitable impurities and the excess alloying element or elements of the hyper-eutectic molten aluminum alloy solidify first from the molten aluminum matrix during solidification thereof to form intermetallics comprising Mn 3 Si 2 Al 15 which engulf said refractory particles and keep them homogeneously distributed throughout the solidified product.
  • the refractory particles act as a refiner for precipitating intermetallics.
  • the use of unreinforced hyper-eutectic alloys is very restricted because they often form coarse, brittle intermetallic particles on solidification, and the intermetallic particles tend to segregate due to the density difference, particularly when the solidification rate is not rapid.
  • phosphorus additions and fluxing have previously been required to refine the primary silicon to a size suitable for good wear properties.
  • the efficiency of phosphorus to refine primary silicon decreases with increasing holding time of the melt, complicating the casting practice.
  • refractory particles such as silicon carbide particles
  • the addition of refractory particles, such as silicon carbide particles, according to the present invention can nucleate and refine these intermetallics, as well as modify their morphology, so that the deleterious effect of coarse intermetallics is reduced. This is of particular value for alloys that are intended for high temperature use.
  • Such high temperature alloys may be used in casting applications, or as wrought products, such as forgings and extrusions.
  • the alloy composites of this invention in which the refractory particles act as a refiner for precipitating intermetallics have superior high temperature strength, making them useful for applications such as cast brake rotors.
  • the refractory particles may also serve as reinforcing particles in a composite with a hyper-eutectic alloy.
  • they may be used not only to refine a hyper-eutectic alloy, but also to form a composite therewith.
  • the particles are typically used in very small sizes, e.g. less than 1 ⁇ m.
  • they when they are used also for reinforcing the alloy, they may be used in much larger sizes, e.g. up to 20 ⁇ m.
  • For reinforcing they are typically used in sizes in the range of 5-20 ⁇ m and preferably 10-15 ⁇ m.
  • the non-metallic refractory material is preferably a metal oxide, metal nitride, metal carbide or metal silicide.
  • the most preferred refractory material is silicon carbide or aluminum oxide particulate.
  • the procedure of the present invention for making a composite functions best with reinforcing particles which are relatively equi-dimensional, e.g. having an aspect ratio in any direction of no more than 5:1.
  • the reinforcing particles are typically added in amounts of 5-40% by volume, preferably 10-25% by volume. It has been found that silicon carbide reinforcing particles are engulfed by silicon crystals formed during solidification of the composite.
  • the invention also relates to new aluminum alloy products having improved high temperature properties.
  • One of the novel products is a particle reinforced aluminum alloy casting in which the alloy is a hyper-eutectic alloy and the excess alloying element or elements of the hypereutectic alloy have solidified first from the molten metal matrix and have formed intermetallics during solidification which have engulfed the refractory particles and kept them homogeneously distributed throughout the solidified product.
  • Another novel product is a refined aluminum alloy casting in which intermetallics formed during solidification are uniformly dispersed as fine particles because of the refining effect of particles of non-metallic refractory material contained in the alloy.
  • the alloy of the novel products is a hyper-eutectic aluminum alloy containing silicon, magnesium and manganese, preferably in the amounts 7-16 wt% silicon, 0.5-3.0 wt% manganese, 0-5.0 wt% copper, 0-5.0 wt% nickel, 0-1.0 wt% iron, 0-0.2 wt% titanium and 0.3-2.0 wt% magnesium and the balance of the alloy being aluminum and inevitable impurities.
  • the silicon assists fluidity and stabilizes the refractory particles; below 7% silicon the refractory material tends to be unstable while above 16% coarse intermetallics are formed and the composite becomes embrittled.
  • the magnesium improves wetting and provides strengthening; below 0.3% magnesium the wetting is poor, while above 2% there is shrinkage porosity.
  • the manganese forms intermetallics providing uniform refractory particle distribution and improved high temperature strength; below 0.5% manganese there is no improvement in high temperature strength and above 3.0% the casting temperature becomes too high.
  • the alloy also preferably contains up to 5.0 wt% copper. This improves elevated temperature strength with amounts above 5.0% providing poor casting fluidity and embrittlement.
  • Another optional component is nickel which may also be present in amounts up to 5.0 wt%. It also improves elevated temperature strength, although amounts above 5.0% cause coarse intermetallics and embrittlement.
  • a further common optional element is iron which may be present in amounts up to 1.0 wt%. At amounts above 1.0 wt% there is the danger of forming coarse intermetallics which cannot be refined by the refractory particles.
  • the alloy may also contain up to 0.2 wt%, preferably 0.1-0.2 wt%, titanium as a grain refiner.
  • Alloys of particular interest for high temperature applications are those containing substantial amounts of Mn.
  • Such alloys may be produced by adding Mn to traditional high temperature alloy compositions until the hyper-eutectic range is reached. This is mixed with refractory particles, e.g. which refine the intermetallics and distribute the particles uniformly throughout the matrix.
  • intermetallic While a typical intermetallic is a compound formed of at least two metallic components, within the process of this invention, silicon behaves in the manner of an intermetallic in its ability to wet and engulf refractory particles. Accordingly, the term "intermetallic" as used in this invention includes silicon.
  • An aluminum matrix composite was prepared by mixing 15% by volume of silicon carbide particles having sizes in the range of 10-15 ⁇ m with a melt of A356 aluminum alloy containing 6.5 to 7.5% Si and 0.3 to 0.45% Mg. This was cast and solidified to form an ingot having the microstructure shown in Figure 1. It will be seen that the reinforcing particles have been pushed ahead of the solidification interface and are not uniformly dispersed throughout the ingot.
  • Another ingot was prepared from a melt of Al - 16% Si alloy and 15% by volume of silicon carbide particles having particle sizes in the range of 10-15 ⁇ m. These were thoroughly mixed and the mixture was then cast and solidified to form an ingot.
  • the ingot formed had the microstructure shown in Figure 2 and it will be seen that the reinforcing particles are uniformly spaced and are engulfed by silicon crystals.
  • the silicon carbide particles also refined the silicon.
  • Two melts were prepared by heating aluminum containing 16 wt% silicon to a temperature of 750°C.
  • One melt was cast "as is” to form an ingot and a second melt was mixed with 15% by volume of silicon carbide particles having sizes in the range of 10-15 microns and then cast to form an ingot.
  • the ingots were identical in size and were cooled and solidified under identical conditions.
  • Figure 8 shows the microstructure of the ingot without the refractory particles
  • Figure 9 shows the microstructure of the ingot with the refractory particles. The refinement of the silicon is clearly evident.
  • Example 2 To illustrate the effectiveness of the refinement according to this invention, the procedure of Example 2 was repeated using a melt of Al - 7% Si - 2% Mn alloy. One cast ingot was made from the alloy itself and a second cast ingot was made from a composite of the alloy and 15% by volume of silicon carbide particles. Fig. 10 shows the microstructure of the cast alloy and Fig. 11 shows the microstructure of the cast composite. It can be seen that the primary Mn 3 Si 2 Al 15 intermetallic dendrites in the cast alloy are completely refined by the SiC particles.
  • Three aluminum matrix composites were prepared by mixing 15% by volume of silicon carbide particles having sizes in the range of 10-15 ⁇ m with three different aluminum alloy melts.
  • the matrix alloys had the following compositions:
  • the composites so formed were cast and solidified in the form of 12.7 mm diameter as-cast test bars and 57 mm diameter ingots.
  • the as-cast test bars were held for 100 hours at 250°C, and tensile tested at the soak temperature.
  • the 57 mm diameter ingots were extruded at 450°C to 9.5 mm diameter rod.
  • Test bars were machined from the rod, and held at between 200 and 400°C for various times to examine the effect of long time exposure on the high temperature strength. The results are shown in Figure 12-15.
  • High temperature composite alloys may be used in casting applications, or as wrought products such as forgings and extrusions.
  • Figure 12 shows the strength retention of as-cast material after 100 hrs at 250°C, which is relevant for applications such as cast brake rotors. The figure shows that the new alloy composites have superior high temperature strength to the presently used A356-SiC composite. It is also apparent that adding SiC reinforcement to the unreinforced alloys adds to the high temperature performance of these materials.
  • the invention provides techniques for improving hyper-eutectic alloys, which alloys can be used for the manufacture of a variety of industrial products by conventional techniques.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (16)

  1. Verfahren zur Herstellung eines Verbundwerkstoffs aus einer Aluminium-Legierung und Teilchen aus einem nichtmetallischen, feuerfesten Material, umfassend:
    Schmelzen einer Aluminium-Legierung;
    Zugeben von Teilchen aus nicht-metallischem, feuerfestem Material zur geschmolzenen Aluminiummatrix;
    Vermischen der geschmolzenen Aluminium-Legierung und der Teilchen aus feuerfestem Material; und
    Gießen der resultierenden Mischung;
    dadurch gekennzeichnet, daß
    die Aluminium-Legierung eine übereutektische Metall-Legierung ist, die in Gew.-% 7-16 % Silicium, 0,5-3,0 % Mangan, 0-5,0 % Kupfer, 0-5,0 % Nickel, 0-1,0 % Eisen, 0-0,2 % Titan und 0,3-2,0 % Magnesium umfaßt, wobei der Restanteil der Legierung Aluminium und unvermeidbare Verunreinigungen sind, und das überschüssige Legierungselement oder die -elemente der übereutektischen geschmolzenen Aluminium-Legierung zuerst aus der geschmolzenen Aluminiummatrix während deren Festwerdens erstarren, um intermetallische Verbindungen zu bilden, die Mn3Si2Al15 umfassen und die feuerfesten Teilchen einhüllen und sie durch das erstarrte Produkt hindurch homogen verteilt halten.
  2. Verfahren gemäß Anspruch 1,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen ausgewählt sind aus der Gruppe, die aus einem Metalloxid, Metallnitrid, Metallcarbid und Mitallsilicid besteht.
  3. Verfahren gemäß Anspruch 2,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Siliciumcarbid umfassen.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Verstärkungsteilchen sind und Größen von bis zu 20 µm aufweisen.
  5. Verfahren gemäß einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Verstärkungsteilchen mit Größen im Bereich von 10 bis 15 µm sind.
  6. Verfahren gemäß einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Größen von weniger als 1 µm aufweisen.
  7. Verfahren gemäß Anspruch 6,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Kristallkeime bilden und die intermetallischen Verbindungen raffinieren.
  8. Aluminiumlegierungs-Verbundwerkstoff-Gußstück, umfassend eine Matrix aus Aluminium-Legierung mit darin dispergierten Teilchen aus nicht-metallischem, feuerfestem Material,
    dadurch gekennzeichnet, daß
    die Aluminium-Legierung eine übereutektische Al-Si-Mn-Legierung ist, umfassend in Gew.-% 7-16 % Silicium, 0,5-3,0 % Mangan, 0-5,0 % Kupfer, 0-5,0 % Nickel, 0-1,0 % Eisen, 0-0,2 % Titan und 0,3-2,0 % Magnesium, wobei der Restanteil der Legierung Aluminium und unvermeidbare Verunreinigungen sind, worin das überschüssige Legierungselement oder die -elemente der übereutektischen Legierung zuerst aus der geschmolzenen Aluminiummatrix erstarrten und intermetallische Verbindungen, umfassend Mn3Si2Al15, während des Erstarrens bildeten, welche die feuerfesten Teilchen eingehüllt und sie durch das erstarrte Produkt hindurch homogen verteilt gehalten haben.
  9. Gußstück gemäß Anspruch 8,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen ausgewählt sind aus der Gruppe, die aus einem Metalloxid, Metallnitrid, Metallcarbid und Metallsilicid besteht.
  10. Gußstück gemäß Anspruch 8,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Siliciumcarbid umfassen.
  11. Gußstück gemäß einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Größen von bis zu 20 µm aufweisen.
  12. Gußstück gemäß einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Größen im Bereich von 10 bis 15 µm aufweisen.
  13. Gußstück gemäß einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, daß
    die feuerfesten Teilchen Größen von weniger als 1 µm aufweisen.
  14. Gußstück gemäß einem der Ansprüche 8 bis 13,
    dadurch gekennzeichnet, daß
    die Teilchen ein Längenverhältnis in jede Richtung von nicht mehr als 5:1 aufweisen.
  15. Gußstück gemäß einem der Ansprüche 8 bis 14,
    dadurch gekennzeichnet, daß
    die Teilchen in einer Menge von 5 bis 40 Vol.-% vorhanden sind.
  16. Gußstück gemäß einem der Ansprüche 8 bis 15,
    dadurch gekennzeichnet, daß
    Titan in der Legierung in einer Menge von 0,1 bis 0,2 % vorhanden ist.
EP91920402A 1990-11-27 1991-11-27 Verfahren zur herstellung von verbesserte hypereutektische legierungen und auf diesen basierte verbundwerkstoffe Expired - Lifetime EP0559694B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA002030928A CA2030928A1 (en) 1990-11-27 1990-11-27 Method of preparing improved eutectic or hyper-eutectic alloys and composites based thereon
CA2030928 1990-11-27
US77012491A 1991-10-02 1991-10-02
PCT/CA1991/000418 WO1992009711A1 (en) 1990-11-27 1991-11-27 Method of preparing eutectic or hyper-eutectic alloys and composites based thereon
US770124 2001-01-26

Publications (2)

Publication Number Publication Date
EP0559694A1 EP0559694A1 (de) 1993-09-15
EP0559694B1 true EP0559694B1 (de) 1998-09-16

Family

ID=25674383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91920402A Expired - Lifetime EP0559694B1 (de) 1990-11-27 1991-11-27 Verfahren zur herstellung von verbesserte hypereutektische legierungen und auf diesen basierte verbundwerkstoffe

Country Status (4)

Country Link
EP (1) EP0559694B1 (de)
JP (1) JP3492681B2 (de)
DE (1) DE69130227T2 (de)
WO (1) WO1992009711A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use
GB9804599D0 (en) * 1998-03-05 1998-04-29 Aeromet International Plc Cast aluminium-copper alloy
JP3690171B2 (ja) 1999-03-16 2005-08-31 株式会社日立製作所 複合材料とその製造方法及び用途
WO2010013080A1 (en) * 2008-07-29 2010-02-04 Indian Institute Of Science A process for preparation of nano ceramic-metal matrix composites and apparatus thereof
CN101787454B (zh) * 2010-04-12 2011-11-23 中国船舶重工集团公司第十二研究所 一种多组元增强铝基复合材料的制备方法
US9109271B2 (en) * 2013-03-14 2015-08-18 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloy
US9650699B1 (en) 2013-03-14 2017-05-16 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloys
US10370742B2 (en) 2013-03-14 2019-08-06 Brunswick Corporation Hypereutectic aluminum-silicon cast alloys having unique microstructure
KR101964347B1 (ko) * 2017-11-06 2019-04-01 한국생산기술연구원 알루미늄 합금 다이캐스팅재 및 이의 제조방법
CN114210987B (zh) * 2021-12-21 2022-12-09 上海交通大学 一种高体分颗粒增强钛基复合材料粉体及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993478A (en) * 1972-02-09 1976-11-23 Copper Range Company Process for dispersoid strengthening of copper by fusion metallurgy
US3951651A (en) * 1972-08-07 1976-04-20 Massachusetts Institute Of Technology Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions
JPS58110652A (ja) * 1981-12-25 1983-07-01 Nissan Motor Co Ltd 耐摩耗性アルミニウム複合材料およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Aluminum Alloys: Structure and Properties, L.F. Mondolfo, Butterworths, 1976, pp.592-594 *
Fabrication of particulates reinforced metal composites, Materials Park, OH, ASM International, Ed.J.Masounave et al., 1990, pp.47-52 *
Int. Mtrls Rev., 1986, 31(3), pp.115-139 *
Z. Metallkde, 1989, 80(M-6), pp.444-446 *

Also Published As

Publication number Publication date
EP0559694A1 (de) 1993-09-15
JPH06502689A (ja) 1994-03-24
DE69130227T2 (de) 1999-01-21
JP3492681B2 (ja) 2004-02-03
WO1992009711A1 (en) 1992-06-11
DE69130227D1 (de) 1998-10-22

Similar Documents

Publication Publication Date Title
EP0486552B1 (de) Giessen von a1-base modifizierten si-cu-ni-mg-mn-zr-hypereutektischen legierungen
US5523050A (en) Method of preparing improved eutectic or hyper-eutectic alloys and composites based thereon
CA2825253C (en) Aluminium-copper alloy for casting
US4973522A (en) Aluminum alloy composites
CA2094369C (en) Aluminum-base metal matrix composite
US6132532A (en) Aluminum alloys and method for their production
US6036792A (en) Liquid-state-in-situ-formed ceramic particles in metals and alloys
EP0559694B1 (de) Verfahren zur herstellung von verbesserte hypereutektische legierungen und auf diesen basierte verbundwerkstoffe
JP2002535488A (ja) 半固体状態での成形のための過共晶アルミニウム−珪素合金生成物
WO2000071772A1 (en) Aluminum-silicon alloy having improved properties at elevated temperatures
WO2000071767A1 (en) Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom
JP2004256873A (ja) 高温強度に優れた鋳物用アルミニウム合金
Lloyd et al. Properties of shape cast Al-SiC metal matrix composites
US5366691A (en) Hyper-eutectic aluminum-silicon alloy powder and method of preparing the same
EP0897994B1 (de) Gegossene Verbundstoff-Körpern mit Metallmatrix und alumina und Verfahren zu deren Herstellung
US6843865B2 (en) Aluminum alloy product refinement and applications of aluminum alloy product refinement
US5669990A (en) Si-containing magnesium alloy for casting with melt thereof
EP0592665B1 (de) Übereutektisches aluminium-silikon-pulver und dessen herstellung
JP3283550B2 (ja) 初晶シリコンの最大結晶粒径が10μm以下の過共晶アルミニウム−シリコン系合金粉末の製造方法
JPH06306521A (ja) 鋳物用過共晶Al−Si系合金及び鋳造方法
CN111485139A (zh) Al-RE-Y合金及其制备方法
JPH062057A (ja) Al基複合材料
US6398882B1 (en) Uniformly dispersed, finely sized ceramic particles in metals and alloys
CA2257536A1 (en) Strontium-aluminum intermetallic alloy granules
JPH09272944A (ja) 高強度鋳造アルミニウム合金およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19931217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980916

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980916

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980916

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980916

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69130227

Country of ref document: DE

Date of ref document: 19981022

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031119

Year of fee payment: 13

Ref country code: FR

Payment date: 20031119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031231

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127