EP0558358B1 - Dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression commandé par le levier de charge du moteur - Google Patents

Dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression commandé par le levier de charge du moteur Download PDF

Info

Publication number
EP0558358B1
EP0558358B1 EP93400143A EP93400143A EP0558358B1 EP 0558358 B1 EP0558358 B1 EP 0558358B1 EP 93400143 A EP93400143 A EP 93400143A EP 93400143 A EP93400143 A EP 93400143A EP 0558358 B1 EP0558358 B1 EP 0558358B1
Authority
EP
European Patent Office
Prior art keywords
engine
load
recirculation
solenoid valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400143A
Other languages
German (de)
English (en)
Other versions
EP0558358A1 (fr
Inventor
Luc Follain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automobiles Peugeot SA
Automobiles Citroen SA
Original Assignee
Automobiles Peugeot SA
Automobiles Citroen SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automobiles Peugeot SA, Automobiles Citroen SA filed Critical Automobiles Peugeot SA
Publication of EP0558358A1 publication Critical patent/EP0558358A1/fr
Application granted granted Critical
Publication of EP0558358B1 publication Critical patent/EP0558358B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/68Closing members; Valve seats; Flow passages

Definitions

  • the invention relates to a device for recirculating exhaust gas from a compression-ignition engine controlled by all-or-nothing valves.
  • the recirculation of the exhaust gases makes it possible to reduce the emissions of polluting gases such as nitrogen oxides, on the one hand due to the reduction in the flow rate of the exhaust gases, part of which is reintroduced into the engine with the gases.
  • polluting gases such as nitrogen oxides
  • the fact that the introduction of exhaust gases, and therefore of important specific heat molecules such as triatomic molecules of carbon dioxide or water, into the intake manifold of the engine causes a reduction in the maximum combustion temperature and therefore the quantity of nitrogen oxide formed which is all the more important the higher the combustion temperature.
  • the exhaust gases likely to contain the polluting substances are therefore less abundant and the proportion of polluting substances in these gases is also reduced, when a certain recirculation of the exhaust gases is carried out.
  • Recirculation is carried out via a conduit ensuring the connection between an exhaust manifold or manifold and an intake manifold or manifold of the engine, on which is disposed. a valve making it possible to control the recirculation of the exhaust gases, as a function of the operating parameters of the engine and in particular as a function of the power level requested from the engine.
  • Such a valve generally called an EGR valve
  • EGR valve (corresponding to the designation in English Exhaust gas recirculation) has a relatively complex structure and operation, insofar as it is necessary to carry out exhaust gas recirculation only in certain engine operating phases.
  • the EGR valve comprises a shutter which is associated with control means allowing, by displacement of the shutter, the opening or the closing of the valve, so as to ensure or, on the contrary, to prohibit the recirculation of the gases of exhaust, depending on the engine operating phases.
  • the shutter of the EGR valve must be placed in a closed position, so as to prevent gas recycling, especially when the engine is at full load.
  • the recirculation devices currently used on vehicles with a diesel engine include vacuum-operated EGR valves.
  • the shutter of the valve is connected to a membrane which constitutes one of the walls of a chamber of the valve connected to a vacuum pump, by means of a solenoid valve with progressive opening or of all or nothing type.
  • the shutter consisting of a valve is held in abutment by return means on a valve seat of the valve closing the passage of gases in the recirculation duct.
  • the valve can be opened by lifting the valve above the valve seat, creating a deeper vacuum in the chamber through the vacuum pump.
  • the communication between the vacuum pump and the chamber is ensured by opening the solenoid valve which is controlled by an electronic control unit, depending on parameters such as engine speed, air pressure at l intake and temperature of the cooling water and / or by a control unit depending on the engine load level.
  • a pneumatic converter is used, for example, connected to the load lever of the fuel injection pump using a linkage. This progressive converter provides a vacuum proportional to the position of the load lever. This vacuum is modulated by a solenoid valve controlled by an electronic unit which takes into account parameters such as engine speed and temperature.
  • compression ignition engines that are currently manufactured and that have benefited from certain technical improvements produce much less polluting emissions than engines using an older technique.
  • complex recirculation devices such as those which have been described above may prove to be superfluous and it may be desirable to use simpler devices and consequently much less expensive.
  • US-A-4,349,004 describes a device for recirculating the exhaust gas of a diesel engine which includes an EGR valve controlled by a vacuum source.
  • An electromagnetic valve is used to control the communication of the vacuum source with the EGR valve or the isolation of the EGR valve, depending on the load level of the engine.
  • a fuel injection pump control lever cooperates with contactors to close the EGR valve.
  • Such a device has the disadvantage of not taking into account the temperature of the engine so that the recirculation device is likely to operate when the engine is cold.
  • US-A-4,157,081 describes a recirculation device in which a recirculation duct opens into an engine intake pipe downstream of the intake adjustment butterfly.
  • An electromagnetic valve arranged on the recirculation duct can be controlled by a thermal contactor to close the recirculation duct, when the engine is cold.
  • Such a device does not include an EGR valve for controlling the operation of the recirculation as a function of the engine load and requires the use of an independent additional valve for controlling the recirculation as a function of the engine temperature.
  • the object of the invention is therefore to propose a device for recirculating the exhaust gas of a compression-ignition engine comprising a recirculation duct connected, at one of its ends, to a means for recovering gases from exhaust of the engine and, at its other end, to a means for admitting fresh gas into the motor and an all-or-nothing recirculation valve, interposed on the recirculation duct and controlled, for its opening and closing, by a vacuum source connected to the recirculation valve by means of an all-or-one solenoid valve nothing associated with control means actuated by a member for adjusting the power of the engine, the member for adjusting the power of the engine being constituted by a load lever and the means for controlling the solenoid valve by at least one contactor electric disposed at the end of a displacement zone of the load lever and placed on a supply circuit of the solenoid valve, so that the load lever cooperates with the contactor to ensure the closing of the solenoid valve and of the recirculation valve, when the engine load
  • it includes a probe for measuring the temperature of the motor electrically connected to the electrical contactor actuated by the load lever, so as to prevent the opening of the solenoid valve, when the temperature of the motor is below a predetermined limit.
  • Figure 1 is a schematic view of a diesel engine having an exhaust gas recirculation device according to the invention.
  • FIG. 2 is a view in elevation and in partial section of the recirculation valve of the device shown in FIG. 1.
  • Figure 3 is an engine operating diagram showing the limits of the load zones involved in adjusting the recirculation device.
  • Figure 4 is a view similar to that of Figure 1, of a diesel engine having a throttle valve at the intake.
  • FIG 1 we see a compression engine 1 having an exhaust manifold 2 and an intake manifold 3.
  • a turbo-compressor 4 is placed on the exhaust line 5, so as to be driven by the gases exhaust.
  • a recirculation duct in two parts 7, 8 is connected, at one of its ends, to the exhaust manifold 2 and, at its other end, to the inlet distributor 3.
  • a recirculation valve or EGR valve 10 is interposed between the two parts 7 and 8 of the recirculation duct.
  • the EGR valve 10 can be controlled by vacuum, by means of a vacuum pump 20 and a conduit 22 for connection between the vacuum pump and the EGR valve, on which a solenoid valve 21 is arranged.
  • the EGR valve 10 comprises a valve body 11 connected by its inlet end 11a to the part 7 of the recirculation duct connected to the exhaust manifold 2 and by its outlet end 11b, to part 8 of the recirculation duct connected to the inlet distributor 3.
  • the body of the valve 11 therefore delimits a chamber which is placed in communication, via the end 11a of the body 11 with the part 7 of the duct engine recirculation valve connected to the exhaust manifold and, via the end 11b of the body 11, to the part 8 of the engine recirculation pipe connected to the intake distributor 3.
  • the valve 10 comprises a shutter 12 formed in the form of a valve coming to rest in the closed position, as shown in solid lines in FIG. 2, on a valve seat 11c machined in the internal surface of the body 11 of the valve.
  • the seat 11c is flared, in the direction of circulation of the exhaust gases and the shutter 12 has a frustoconical bearing of corresponding shape.
  • the part of the shutter 12 engaged in the terminal part of the inlet end 11a of the valve body, of diameter ⁇ 1 has a diameter ⁇ 2 ⁇ 1 so that the opening of the valve is obtained when the shutter 12 is raised above the seat 11c and has its part of diameter ⁇ 2 opposite the part with diameter ⁇ 1 of the conduit 11.
  • the valve 10 comprises, fixed by screws to the upper part of the body 11, a control unit 13 whose internal volume is separated into two superimposed chambers 14 and 15, by a flexible deformable membrane 16 disposed transversely inside the housing 13 and ensuring a tight closure of the chamber 14 which is completely isolated from the chamber 15.
  • the chamber 15 is subjected to atmospheric pressure and the chamber 14 to a partial vacuum.
  • the pipe 22 connecting the vacuum pump 20 to the EGR valve 10 opens into the chamber 14, so that the chamber 14 can be placed under vacuum relative to the chamber 15, by opening the solenoid valve 21.
  • the valve 12 is connected to the membrane 16 by means of a rod 17 the upper part of which is fixed to a part 18 in which the membrane 16 is engaged and fixed.
  • the rod 17 is slidably mounted in a guide piece ensuring the closure of the chamber of the body 11 of the valve at its upper part.
  • the valve 12 integral with the rod 17 can be moved between its fully closed position shown in solid lines in Figure 2 in which the valve 12 rests on the seat 11c of the body 11 and a full open position 12 'shown in dotted lines in FIG. 2, in which the valve is located above the seat 11c and frees the passage delimited by the seat 11c.
  • the EGR valve 10 therefore operates on an all-or-nothing basis.
  • the permeability of the valve, in its open position, and therefore the circulation of the exhaust gases through the valve does not depend on the amplitude of the lifting of the shutter but only on the difference in diameter ⁇ 1 - ⁇ 2, so that dispersion effects due to differences in the characteristics of the valves obtained in a manufacturing process are avoided.
  • the engine then operates without recirculation of exhaust gases.
  • the operation of the engine with exhaust gas recirculation can be obtained by establishing a higher level of vacuum and depression in the chamber 14, by opening the solenoid valve 21 so as to put the chamber 14 in communication with the vacuum pump. .
  • the upward movement of the membrane 16 causes, through the rod 17, the movement of the valve 12 from its closed position to its open position 12 '.
  • Part of the burnt gas from the engine coming from the exhaust manifold can then be introduced into the intake manifold, via the recirculation duct on which the valve 10 is inserted.
  • the engine 1 includes an injection pump 25, the load lever 26 of which can be moved from a position 26a corresponding to the released position of the accelerator pedal of the vehicle to a position corresponding to the fully depressed position of the accelerator pedal, passing through an intermediate position 26b.
  • An electrical switch 28 is placed in the zone in which the load lever 26 moves, so as to be actuated by the load lever, when the latter reaches its intermediate position 26b.
  • the contactor 28 is interposed on a circuit 30 for supplying electrical power to the solenoid valve 21.
  • the circuit 30 further comprises an electrical relay 31 interposed between the contactor 28 and the solenoid valve 21.
  • a temperature probe 32 is electrically connected to the electrical contactor 28.
  • the engine 1 also comprises glow plugs electrically connected to a power supply unit 36 itself connected to the circuit 30 and to the probe 32, which makes it possible to control the supply of the glow plugs as a function of the position of the load lever 26 and the engine cooling water temperature measured by probe 32.
  • the glow plugs can be used not only to obtain satisfactory cold starting conditions in all circumstances but also to improve the operation of the engine after starting, with regard to noise, misfires and pollution .
  • the glow plugs are then supplied not only before starting, in a timed manner, but also after starting, for a few minutes and in a timed manner. This provides post-heating after start-up.
  • post-heating should only be used when the engine is cold, that is to say when the temperature identified by the probe 32 is below a limit which can be 48 or 60 ° C.
  • the relay 31 in series with the contactor 28 and the thermal switch 32 ensures the supply and the opening of the solenoid valve, in the case where the temperature to which the thermal switch 32 is subjected is higher than a predetermined limit (48 or 60 ° C.).
  • the EGR valve is open, which allows recirculation of the exhaust gases towards the intake manifold 3.
  • the supply unit 36 of the glow plugs is inactive and the post-heating is not in operation.
  • thermoswitch 32 Conversely, in the case where the temperature to which the thermoswitch 32 is subjected is lower than the predetermined limit, the lever 26 being in zone 33, the EGR valve is closed and the glow plugs are supplied.
  • the load lever In the case where the load lever reaches position 26b, it actuates the contactor 28 so that current no longer reaches relay 31 and the control of housing 36.
  • the EGR valve is closed and the glow plugs do not are not supplied regardless of the temperature identified at the thermal switch 32.
  • Curve 40 corresponds to an engine running at idle (accelerator pedal released).
  • Curve 41 corresponds to an operation of the engine at full load.
  • All of the engine operating points are located between curves 40 and 41 which correspond respectively to a relaxation of the accelerator pedal and to maximum depressing of this pedal.
  • the first position also corresponds to position 26a of the load lever.
  • FIG. 3 also shows a curve 43 corresponding to the fixed position 26b of the load lever in which this lever actuates the contactor 28.
  • the load or power supplied by the motor is then less than the maximum load.
  • This load corresponding to the position 26b of the lever 26 is designated as an average load and constitutes a limit between the operation at low load and the operation at high load of the engine.
  • Curve 43 delimits in the engine operating zone between curves 40 and 41, two domains 46 and 47 corresponding respectively to an operation of the engine at low load and to an operation of the engine at high load.
  • the arrangement of the contactor 28 is such that this contactor is actuated in the opening or closing direction by the load lever, when the engine operating point passes from the domain 47 to the domain 46 or vice versa from the domain 46 to the domain 47.
  • the load lever 26 is in the zone 33, so that the solenoid valve is supplied with electric current.
  • the solenoid valve 21 can be supplied with electric current ensuring its opening only if the probe 32 generally constituted by a thermal switch and connected to the contactor 28 emits a signal authorizing the passage of current.
  • An authorization signal is issued if the engine water temperature is above a certain limit which is generally around 48 ° C. This avoids operating the recirculation device when the engine is cold.
  • the supply and the opening of the solenoid valve 21 are therefore ensured, so that the vacuum pump 20 is put in communication with the vacuum chamber of the EGR valve 10, via the connecting line 22.
  • the authorization signals are reversed as regards the control of the supply of the glow plugs, as explained above.
  • the glow plugs are only supplied when the engine water temperature is below the predetermined limit.
  • the load lever 26 actuates the contactor 28 so as to interrupt the supply of electric current to the solenoid valve 21
  • the solenoid valve 21 closes again, so as to isolate the vacuum pump 20 from the connection pipe 22 of the EGR valve 10.
  • the vacuum chamber of the EGR valve 10 is vented through the connecting line 22, the pressure is restored very quickly in the chamber of the EGR valve which closes very quickly.
  • FIG. 4 shows a motor 1 similar to the motor represented in FIG. 1 and the corresponding elements of a device for adjusting the gas recirculation and the post-heating which bear the same references as the elements represented in the figure 1.
  • the engine 1 is an atmospheric engine. In this case, as is well known to those skilled in the art, the difference in gas pressure, during engine operation, between the intake manifold 3 and the exhaust manifold 2, is very small.
  • a butterfly valve 38 associated with a vacuum actuating device 39 is disposed in a supply conduit opening into the intake manifold.
  • the vacuum device 39 is connected by a pipe 37 to the pipe 22 connecting the EGR valve 10 to the vacuum pump 20.
  • the actuation of the throttle valve 38 by means of the vacuum device 39 which is controlled by the solenoid valve 21 is therefore simultaneous with actuation of the EGR valve.
  • the throttle valve 38 which can be placed in a partially closed position or in a fully open position lowers the pressure in the intake manifold 3, during the operation of the EGR valve. This increases the exhaust gas recirculation rate.
  • the recirculation device according to the invention which is of a simple embodiment and which only uses the engine load lever as an actuating member can be used to equip vehicles comprising a low-polluting diesel engine.
  • the device has the advantage of being of moderate cost and of exhibiting entirely satisfactory operating characteristics.
  • the control of the post-heating using the control means of the EGR valve makes it possible to further improve the operation of the engine.
  • the electrical contactors actuated by the charging lever can be of any type, that the engine temperature sensor can be constituted by a different element from a thermo-contact and that the electrical supply circuit of the 'solenoid valve can be made according to any embodiment adapted and integrated into the vehicle whose propulsion is provided by the engine.
  • the vacuum pump can be a pump driven by an electric motor powered by a vehicle power source or a pump driven directly by the engine.
  • the invention applies in the case of any compression ignition engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

  • L'invention concerne un dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression commandé par des vannes tout ou rien.
  • Dans le cas des moteurs Diesel, il est connu d'assurer la recirculation d'une partie des gaz prélevés sur une tubulure d'échappement du moteur, de manière à réintroduire ces gaz dans une tubulure d'admission de gaz frais dans le moteur. La recirculation de gaz d'échappement permet de diminuer les émissions d'oxyde d'azote et notamment de monoxyde d'azote NO qui est chimiquement instable et qui se transforme en NO₂ au contact de l'air. En présence d'eau, le dioxyde NO₂ se transforme en acide nitrique, de sorte que le monoxyde d'azote NO s'échappant du moteur est susceptible de se transformer en substance polluante dangereuse.
  • La recirculation des gaz d'échappement permet de diminuer les émissions de gaz polluants tels que les oxydes d'azote, d'une part du fait de la diminution du débit des gaz d'échappement dont une partie est réintroduite dans le moteur avec les gaz frais et d'autre part du fait que l'introduction de gaz d'échappement, donc de molécules de chaleur spécifiques importantes telles que des molécules triatomiques de gaz carbonique ou d'eau, dans la tubulure d'admission du moteur entraine une diminution de la température maximale de combustion et donc de la quantité d'oxyde de l'azote formé qui est d'autant plus importante que la température de combustion est plus élevée.
  • Les gaz d'échappement susceptibles de renfermer les substances polluantes sont donc moins abondants et la proportion de substances polluantes dans ces gaz est également réduite, lorsqu'on effectue une certaine recirculation des gaz d'échappement. La recirculation est effectuée par l'intermédiaire d'un conduit assurant la liaison entre une tubulure ou collecteur d'échappement et une tubulure ou collecteur d'admission du moteur, sur lequel est disposée une vanne permettant de commander la recirculation des gaz d'échappement, en fonction des paramètres de fonctionnement du moteur et en particulier en fonction du niveau de puissance demandé au moteur.
  • Une telle vanne, généralement appelée vanne EGR, (correspondant à la désignation en anglais Exhaust gas recirculation) présente une structure et un fonctionnement relativement complexes, dans la mesure où il est nécessaire de ne mettre en oeuvre la recirculation des gaz d'échappement que dans certaines phases de fonctionnement du moteur. La vanne EGR comporte un obturateur qui est associé à des moyens de commande permettant, par déplacement de l'obturateur, l'ouverture ou la fermeture de la vanne, de manière à assurer ou, au contraire, à interdire la recirculation des gaz d'échappement, suivant les phases de fonctionnement du moteur.
  • L'obturateur de la vanne EGR doit être placé dans une position de fermeture, de manière à empêcher le recyclage des gaz, en particulier lorsque le moteur est à pleine charge.
  • En effet, à pleine charge, pour obtenir la puissance demandée et pour préserver les performances du moteur, il est nécessaire d'introduire dans le moteur des gaz frais renfermant une forte proportion d'oxygène et donc d'éviter un mélange de ces gaz frais avec des gaz d'échappement.
  • Les dispositifs de recirculation utilisés actuellement sur les véhicules à moteur Diesel comportent des vannes EGR à commande par dépression. L'obturateur de la vanne est relié à une membrane qui constitue l'une des parois d'une chambre de la vanne reliée à une pompe à vide, par l'intermédiaire d'une électrovanne à ouverture progressive ou de type tout ou rien.
  • Lorsque le niveau de vide et la dépression dans la chambre sont faibles, l'obturateur constitué par une soupape est maintenu en appui par des moyens de rappel sur un siège de soupape de la vanne fermant le passage des gaz dans le conduit de recirculation.
  • La vanne peut être ouverte par soulèvement de la soupape au-dessus du siège de soupape, en créant un vide plus poussé dans la chambre grâce à la pompe à vide.
  • La mise en communication de la pompe à vide et de la chambre est assurée par ouverture de l'électrovanne qui est commandée par une unité de contrôle électronique, en fonction de paramètres tels que le régime du moteur, la pression de l'air à l'admission et la température de l'eau de refroidissement et/ou par un organe de commande en fonction du niveau de charge du moteur.
  • Un tel dispositif est complexe et suppose l'utilisation de circuits de commande électriques ou réalisés partiellement sous forme pneumatique. On utilise par exemple un convertisseur pneumatique relié au levier de charge de la pompe d'injection de combustible à l'aide d'une tringlerie. Ce convertisseur progressif fournit une dépression proportionnelle à la position du levier de charge. Cette dépression est modulée par une électrovanne commandée par un boîtier électronique qui prend en compte les paramètres tels que le régime et la température du moteur.
  • De tels dispositifs complexes, délicats et coûteux peuvent être nécessaires pour réduire les rejets de moteurs polluants à un niveau très faible, de manière à respecter les normes extrêmement sévères telles que celles ayant cours dans certains pays étrangers.
  • En fait, les moteurs à allumage par compression qui sont fabriqués actuellement et qui ont bénéficié de certains perfectionnements techniques produisent des rejets beaucoup moins polluants que les moteurs selon une technique plus ancienne.
  • Dans ce cas, des dispositifs de recirculation complexes tels que ceux qui ont été décrits ci-dessus peuvent s'avérer superflus et il peut être souhaitable d'utiliser des dispositifs plus simples et en conséquence beaucoup moins coûteux.
  • Le US-A-4.349.004 décrit un dispositif de recirculation de gaz d'échappement d'un moteur Diesel qui comporte une vanne EGR commandée par une source de dépression. Une vanne électromagnétique permet de commander la mise en communication de la source de dépression avec la vanne EGR ou l'isolation de la vanne EGR, suivant le niveau de charge du moteur. Un levier de commande de la pompe d'injection de carburant coopère avec des contacteurs pour fermer la vanne EGR. Un tel dispositif présente l'inconvénient de ne pas prendre en compte la température du moteur si bien que le dispositif de recirculation est susceptible de fonctionner, lorsque le moteur est froid.
  • Le US-A-4.157.081 décrit un dispositif de recirculation dans lequel un conduit de recirculation débouche dans une conduite d'admission du moteur en aval du papillon de réglage de l'admission. Une vanne électromagnétique disposée sur le conduit de recirculation peut être commandée par un contacteur thermique pour fermer le conduit de recirculation, lorsque le moteur est froid. Un tel dispositif ne comporte pas de vanne EGR pour commander le fonctionnement de la recirculation en fonction de la charge du moteur et nécessite l'utilisation d'une vanne supplémentaire indépendante pour la commande de la recirculation en fonction de la température du moteur.
  • Le but de l'invention est donc de proposer un dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression comprenant un conduit de recirculation relié, à l'une de ses extrémités, à un moyen de récupération des gaz d'échappement du moteur et, à son autre extrémité, à un moyen d'admission de gaz frais dans le moteur et une vanne de recirculation de type tout ou rien, intercalée sur le conduit de recirculation et commandée, pour son ouverture et sa fermeture, par une source de dépression reliée à la vanne de recirculation par l'intermédiaire d'une électrovanne tout ou rien associée à des moyens de commande actionnés par un organe de réglage de la puissance du moteur, l'organe de réglage de la puissance du moteur étant constitué par un levier de charge et les moyens de commande de l'électrovanne par au moins un contacteur électrique disposé à l'extrémité d'une zone de déplacement du levier de charge et placé sur un circuit d'alimentation de l'électrovanne, de manière que le levier de charge coopère avec le contacteur pour assurer la fermeture de l'électrovanne et de la vanne de recirculation, lorsque la charge du moteur devient supérieure à une valeur correspondant à une charge moyenne intermédiaire entre la charge nulle et la charge maximale du moteur, l'électrovanne et la vanne de recirculation étant ouvertes, lorsque le levier de charge est dans une position située en deçà du contacteur et correspondant à une charge du moteur inférieure à la charge moyenne, ce dispositif étant d'une structure simple et peu coûteuse, utilisable dans le cas de moteurs peu polluants et incluant des moyens de réglage de la recirculation tenant compte du niveau de charge et de la température du moteur.
  • Dans ce but, il comporte une sonde de mesure de la température du moteur reliée électriquement au contacteur électrique actionné par le levier de charge, de manière à interdire l'ouverture de l'électrovanne, lorsque la température du moteur est inférieure à une limite prédéterminée.
  • Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, un mode de réalisation d'un dispositif suivant l'invention.
  • La figure 1 est une vue schématique d'un moteur Diesel comportant un dispositif de recirculation de gaz d'échappement suivant l'invention.
  • La figure 2 est une vue en élévation et en coupe partielle de la vanne de recirculation du dispositif représenté sur la figure 1.
  • La figure 3 est un diagramme de fonctionnement du moteur montrant les limites des zones de charge intervenant dans le réglage du dispositif de recirculation.
  • La figure 4 est une vue analogue à celle de la figure 1, d'un moteur Diesel comportant un papillon à l'admission.
  • Sur la figure 1, on voit un moteur à compression 1 comportant un collecteur d'échappement 2 et un répartiteur d'admission 3. Un turbo-compresseur 4 est placé sur la ligne d'échappement 5, de manière à être entraîné par les gaz d'échappement.
  • Un conduit de recirculation en deux parties 7, 8 est relié, à l'une de ses extrémités, au collecteur d'échappement 2 et, à son autre extrémité, au répartiteur d'admission 3. Une vanne de recirculation ou vanne EGR 10 est intercalée entre les deux parties 7 et 8 du conduit de recirculation.
  • La vanne EGR 10 peut être commandée par dépression, par l'intermédiaire d'une pompe à vide 20 et d'un conduit 22 de liaison entre la pompe à vide et la vanne EGR, sur lequel est disposée une électrovanne 21.
  • Comme il est visible sur la figure 2, la vanne EGR 10 comporte un corps de vanne 11 relié par son extrémité d'entrée 11a à la partie 7 du conduit de recirculation reliée au collecteur d'échappement 2 et par son extrémité de sortie 11b, à la partie 8 du conduit de recirculation relié au répartiteur d'admission 3. Le corps de la vanne 11 délimite donc une chambre qui est mise en communication, par l'intermédiaire de l'extrémité 11a du corps 11 avec la partie 7 du conduit de recirculation du moteur reliée au collecteur d'échappement et, par l'intermédiaire de l'extrémité 11b du corps 11, à la partie 8 du conduit de recirculation du moteur reliée au répartiteur d'admission 3.
  • La vanne 10 comporte un obturateur 12 constitué sous la forme d'une soupape venant reposer en position de fermeture, comme représenté en traits pleins sur la figure 2, sur un siège de soupape 11c usiné dans la surface interne du corps 11 de la vanne. Le siège 11c est évasé, dans le sens de circulation des gaz d'échappement et l'obturateur 12 comporte une portée tronconique de forme correspondante. La partie de l'obturateur 12 engagée dans la partie terminale de l'extrémité d'entrée 11a du corps de vanne, de diamètre ⌀₁, présente un diamètre ⌀₂ < ⌀₁ de sorte que l'ouverture de la vanne est obtenue lorsque l'obturateur 12 est soulevé au-dessus du siège 11c et présente sa partie de diamètre ⌀₂ en face de la partie à diamètre ⌀₁ du conduit 11. La vanne 10 comporte, fixé par des vis à la partie supérieure du corps 11, un boîtier de commande 13 dont le volume intérieur est séparé en deux chambres 14 et 15 superposées, par une membrane souple déformable 16 disposée transversalement à l'intérieur du boîtier 13 et assurant une fermeture étanche de la chambre 14 qui est totalement isolée de la chambre 15. La chambre 15 est soumise à la pression atmosphérique et la chambre 14 à un vide partiel. La conduite 22 de liaison de la pompe à vide 20 à la vanne EGR 10 débouche dans la chambre 14, de sorte que la chambre 14 puisse être mise en dépression par rapport à la chambre 15, par ouverture de l'électrovanne 21.
  • La soupape 12 est reliée à la membrane 16 par l'intermédiaire d'une tige 17 dont la partie supérieure est fixée sur une pièce 18 dans laquelle est engagée et fixée la membrane 16.
  • La tige 17 est montée glissante dans une pièce de guidage assurant la fermeture de la chambre du corps 11 de la vanne à sa partie supérieure.
  • La soupape 12 solidaire de la tige 17 peut être déplacée entre sa position de fermeture complète représentée en traits pleins sur la figure 2 dans laquelle la soupape 12 repose sur le siège 11c du corps 11 et une position d'ouverture complète 12' représentée en pointillés sur la figure 2, dans laquelle la soupape se trouve au-dessus du siège 11c et libère le passage délimité par le siège 11c. La vanne EGR 10 a donc un fonctionnement du type tout ou rien.
  • La perméabilité de la vanne, dans sa position d'ouverture, et donc la circulation des gaz d'échappement à travers la vanne ne dépend pas de l'amplitude de la levée de l'obturateur mais uniquement de la différence de diamètre ⌀₁ - ⌀₂, si bien qu'on évite des effets de dispersion dus à des différences de caractéristiques des vannes obtenues dans une fabrication.
  • Sur la figure 2, on a également représenté en pointillés les positions 16' et 18' de la membrane 16 et de la pièce de serrage 18, respectivement, correspondant à la position d'ouverture 12' de la soupape 12.
  • Lorsque le vide dans la chambre 14 est peu poussé, l'électrovanne 21 étant fermée, la soupape 12 repose sur le siège 11c et assure la fermeture complète du conduit de recirculation.
  • Le moteur fonctionne alors sans recirculation de gaz d'échappement.
  • Le fonctionnement du moteur avec recirculation de gaz d'échappement peut être obtenu en établissant un niveau de vide et une dépression plus importants dans la chambre 14, en ouvrant l'électrovanne 21 de manière à mettre en communication la chambre 14 avec la pompe à vide.
  • Lorsqu'un niveau de vide suffisant est atteint, la membrane 16 se déplace vers le haut depuis sa position représentée en traits pleins sur la figure 2 jusqu'à sa position 16' représentée en pointillés.
  • Le déplacement vers le haut de la membrane 16 entraîne, par l'intermédiaire de la tige 17, le déplacement de la soupape 12 de sa position de fermeture à sa position d'ouverture 12'.
  • Une partie des gaz brûlés du moteur provenant de la tubulure d'échappement peut alors être introduite dans la tubulure d'admission, par l'intermédiaire du conduit de recirculation sur lequel est intercalée la vanne 10.
  • Comme il est visible sur la figure 1, le moteur 1 comporte une pompe d'injection 25 dont le levier de charge 26 peut être déplacé depuis une position 26a correspondant à la position relâchée de la pédale d'accélérateur du véhicule jusqu'à une position correspondant à la position entièrement enfoncée de la pédale d'accélérateur, en passant par une position intermédiaire 26b.
  • Un contacteur électrique 28 est placé dans la zone dans laquelle se déplace le levier de charge 26, de manière à être actionné par le levier de charge, lorsque celui-ci parvient dans sa position intermédiaire 26b.
  • Le contacteur 28 est intercalé sur un circuit 30 d'alimentation électrique de l'électrovanne 21. Le circuit 30 comporte de plus un relais électrique 31 intercalé entre le contacteur 28 et l'électrovanne 21.
  • Une sonde de température 32 est reliée électriquement au contacteur électrique 28.
  • Le moteur 1 comporte de plus des bougies de préchauffage reliées électriquement à un boîtier d'alimentation 36 lui-même relié au circuit 30 et à la sonde 32, ce qui permet de commander l'alimentation des bougies de préchauffage en fonction de la position du levier de charge 26 et de la température de l'eau de refroidissement du moteur mesurée par la sonde 32.
  • En effet, les bougies de préchauffage peuvent être utilisées non seulement pour obtenir des conditions de démarrage à froid satisfaisantes en toute circonstance mais également pour améliorer le fonctionnement du moteur après le démarrage, en ce qui concerne les bruits, les ratés de combustion et la pollution.
  • L'alimentation des bougies de préchauffage est alors assurée non seulement préalablement au démarrage, de manière temporisée, mais encore après le démarrage, pendant quelques minutes et de manière temporisée. On réalise ainsi un post-chauffage ultérieur au démarrage.
  • Il est nécessaire néanmoins, pour éviter la détérioration des bougies de préchauffage, de couper le courant d'alimentation pendant le post-chauffage, lorsque la charge du moteur atteint une valeur limite entre les faibles et les fortes charges ; la position du levier de charge est alors la position 26b.
  • En outre, il ne faut utiliser le post-chauffage que lorsque le moteur est froid, c'est-à-dire lorsque la température repérée par la sonde 32 est inférieure à une limite qui peut être 48 ou 60°C.
  • Après le démarrage du moteur, lorsque le levier de charge 26 se déplace dans la zone 33 comprise entre la position 26a (pédale relâchée) et la position 26b (pédale enfoncée jusqu'à une position de charge moyenne), le relais 31 en série avec le contacteur 28 et le thermocontact 32 assure l'alimentation et l'ouverture de l'électrovanne, dans le cas où la température à laquelle est soumis le thermocontact 32 est supérieure à une limite prédéterminée (48 ou 60°C).
  • La vanne EGR est ouverte, ce qui permet la recirculation des gaz d'échappement en direction du répartiteur d'admission 3.
  • Dans ce cas, le boîtier d'alimentation 36 des bougies de préchauffage est inactif et le post-chauffage n'est pas en fonctionnement.
  • A l'inverse, dans le cas où la température à laquelle est soumis le thermocontact 32 est inférieure à la limite prédéterminée, le levier 26 étant dans la zone 33, la vanne EGR est fermée et les bougies de préchauffage sont alimentées.
  • Dans le cas où le levier de charge parvient dans la position 26b, il actionne le contacteur 28 de telle sorte que le courant ne parvient plus au relais 31 et à la commande du boîtier 36. La vanne EGR est fermée et les bougies de préchauffage ne sont pas alimentées quelle que soit la température repérée au niveau du thermocontact 32.
  • Lorsque le levier 26 revient dans la zone 33 en franchissant la position 26b, il actionne le contacteur 28 de manière à assurer l'alimentation du relais 31 et de la commande du boîtier 36 en fonction de la position du thermocontact 32.
  • Sur la figure 3, on a représenté, sur un diagramme donnant le couple du moteur en fonction du régime (généralement exprimé en tours/minute), différentes courbes correspondant à des positions fixes de la pédale d'accélérateur d'un véhicule équipé d'un moteur Diesel tel que le moteur 1, c'est-à-dire des courbes correspondant à une position fixe du levier de charge 26 du moteur.
  • La courbe 40 correspond à un fonctionnement du moteur au ralenti (pédale d'accélérateur relâchée).
  • La courbe 41 correspond à un fonctionnement du moteur à pleine charge.
  • L'ensemble des points de fonctionnement du moteur se trouve entre les courbes 40 et 41 qui correspondent respectivement à un relâchement de la pédale d'accélération et à un enfoncement maximal de cette pédale.
  • La première position correspond également à la position 26a du levier de charge.
  • On a également représenté sur la figure 3 une courbe 43 correspondant à la position fixe 26b du levier de charge dans laquelle ce levier vient actionner le contacteur 28. La charge ou puissance fournie par le moteur est alors inférieure à la charge maximale. Cette charge correspondant à la position 26b du levier 26 est désignée comme charge moyenne et constitue une limite entre le fonctionnement à faible charge et le fonctionnement à forte charge du moteur.
  • La courbe 43 délimite dans la zone de fonctionnement du moteur comprise entre les courbes 40 et 41, deux domaines 46 et 47 correspondant respectivement à un fonctionnement du moteur à faible charge et à un fonctionnement du moteur à forte charge.
  • La disposition du contacteur 28 est telle que ce contacteur soit actionné dans le sens de l'ouverture ou de la fermeture par le levier de charge, lorsque le point de fonctionnement du moteur passe du domaine 47 au domaine 46 ou inversement du domaine 46 au domaine 47.
  • Dans le cas d'un fonctionnement au ralenti ou à faible charge ou dans le domaine des charges partielles, le levier de charge 26 est dans la zone 33, de sorte que l'électrovanne est alimentée en courant électrique. Cependant, l'électrovanne 21 ne peut être alimentée en courant électrique assurant son ouverture que si la sonde 32 généralement constituée par un thermocontact et reliée au contacteur 28 émet un signal autorisant le passage du courant. Un signal d'autorisation est émis si la température de l'eau du moteur est supérieure à une certaine limite qui est généralement de l'ordre de 48°C. On évite ainsi de faire fonctionner le dispositif de recirculation, lorsque le moteur est froid.
  • Dans le cas où la température du moteur est supérieure à la limite prédéterminée, l'alimentation et l'ouverture de l'électrovanne 21 sont donc assurées, de sorte que la pompe à vide 20 est mise en communication avec la chambre de dépression de la vanne EGR 10, par l'intermédiaire de la conduite de liaison 22.
  • En revanche, les signaux d'autorisation sont inversés en ce qui concerne la commande de l'alimentation des bougies de préchauffage, comme expliqué plus haut. Les bougies de préchauffage ne sont alimentées que lorsque la température de l'eau du moteur est inférieure à la limite prédéterminée.
  • Dans le cas où l'on exerce une accélération faisant passer le point de fonctionnement du moteur du domaine 46 au domaine 47, le levier de charge 26 vient actionner le contacteur 28 de manière à interrompre l'alimentation en courant électrique de l'électrovanne 21. L'électrovanne 21 se referme, de manière à isoler la pompe à vide 20 de la conduite de liaison 22 de la vanne EGR 10. La chambre à dépression de la vanne EGR 10 est mise à l'atmosphère par l'intermédiaire de la conduite de liaison 22, la pression est rétablie de manière très rapide dans la chambre de la vanne EGR qui se referme très rapidement.
  • Dans le cas d'une accélération au voisinage de la pleine charge, on limite ainsi le temps de réponse du turbo-compresseur 4 qui reçoit immédiatement la totalité du débit des gaz d'échappement.
  • Dans le même temps, l'alimentation des bougies de préchauffage reste constamment coupée.
  • Il est bien évident que si l'on relâche la pédale d'accélération pour repasser du domaine 47 au domaine 46, le déplacement du levier de charge 26 permet de relâcher le contacteur 28.
  • Sur la figure 4, on a représenté un moteur 1 analogue au moteur représenté sur la figure 1 et les éléments correspondants d'un dispositif de réglage de la recirculation des gaz et du post-chauffage qui portent les mêmes repères que les éléments représentés sur la figure 1.
  • Le moteur 1 est un moteur atmosphérique. Dans ce cas, comme il est bien connu de l'homme du métier, la différence de pression des gaz, pendant le fonctionnement du moteur, entre le collecteur d'admission 3 et le collecteur d'échappement 2, est très faible.
  • La recirculation des gaz d'échappement se produit difficilement et la quantité de gaz recirculée reste faible.
  • Le dispositif représenté sur la figure 4 permet de remédier à cet inconvénient.
  • Une vanne à papillon 38 associée à un dispositif d'actionnement à dépression 39 est disposée dans un conduit d'alimentation débouchant dans le collecteur d'admission.
  • Le dispositif à dépression 39 est relié par une conduite 37 à la conduite 22 de liaison de la vanne EGR 10 à la pompe à vide 20. L'actionnemnt du papillon 38 par l'intermédiaire du dispositif à dépression 39 qui est commandé par l'électrovanne 21 est donc simultané à l'actionnement de la vanne EGR. Le papillon 38 qui peut être placé dans une position partiellement fermée ou dans une position totalement ouverte abaisse la pression dans le collecteur d'admission 3, pendant le fonctionnement de la vanne EGR. On accroît ainsi le débit de recirculation des gaz d'échappement.
  • Le dispositif de recirculation suivant l'invention qui est d'une réalisation simple et qui ne met en oeuvre que le levier de charge du moteur comme organe d'actionnement peut être utilisé pour équiper des véhicules comportant un moteur Diesel peu polluant. Le dispositif présente l'avantage d'être d'un coût modéré et de présenter des caractéristiques de fonctionnement tout-à-fait satisfaisantes. La commande du post-chauffage en utilisant les moyens de commande de la vanne EGR permet d'améliorer encore le fonctionnement du moteur.
  • L'invention ne se limite pas au mode de réalisation qui a été décrit.
  • C'est ainsi que les contacteurs électriques actionnés par le levier de charge peuvent être de tout type, que la sonde de température du moteur peut être constituée par un élément différent d'un thermo-contact et que le circuit électrique d'alimentation de l'électrovanne peut être réalisé suivant toute forme de réalisation adaptée et intégré au véhicule dont la propulsion est assurée par le moteur.
  • La pompe à vide peut être une pompe entraînée par un moteur électrique alimenté par une source de courant du véhicule ou encore une pompe entraînée directement par le moteur.
  • L'invention s'applique dans le cas de tout moteur à allumage par compression.

Claims (7)

  1. Dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression (1) comprenant un conduit de recirculation (7, 8) relié à l'une de ses extrémités à un moyen de récupération (2) des gaz d'échappement du moteur et, à son autre extrémité, à un moyen d'admission (3) de gaz frais dans le moteur et une vanne de recirculation tout ou rien (10) intercalée sur le conduit de recirculation (7, 8) et commandée pour son ouverture et sa fermeture par une source de dépression (20) reliée à la vanne de recirculation (10) par l'intermédiaire d'une électrovanne tout ou rien (21) associée à des moyens de commande (28) actionnés par un organe de réglage (26) de la puissance du moteur, l'organe de réglage de la puissance du moteur étant constitué par un levier de charge (26) et les moyens de commande (28) de l'électrovanne (21) par au moins un contacteur électrique (28) disposé à l'extrémité d'une zone de déplacement (33) du levier de charge (26) et placé sur un circuit d'alimentation de l'électrovanne (21) de manière que le levier de charge (26) coopère avec le contacteur (28) pour assurer la fermeture de l'électrovanne (21) et de la vanne de recirculation (10), lorsque la charge du moteur (1) devient supérieure à une valeur correspondant à une charge moyenne intermédiaire entre la charge nulle et la charge maximale du moteur, l'électrovanne (21) et la vanne de recirculation (10) étant ouvertes, lorsque le levier de charge (26) est dans une position située en deçà du contacteur (28) correspondant à une charge du moteur inférieure à la charge moyenne, caractérisé par le fait qu'il comporte une sonde (32) de mesure de la température du moteur (1) reliée électriquement au contacteur électrique (28) actionné par le levier de charge (26), de manière à interdire l'ouverture de l'électrovanne (21), lorsque la température du moteur (1) est inférieure à une limite prédéterminée.
  2. Dispositif suivant la revendication 1, caractérisé par le fait que la sonde (32) est constituée par un thermo-contact.
  3. Dispositif suivant l'une quelconque des revendications 1 et 2, caractérisé par le fait que la vanne de recirculation (10) est reliée à la source de dépression (20) par l'intermédiaire d'une conduite de liaison (22) sur laquelle est intercalée l'électrovanne (21).
  4. Dispositif suivant l'une quelconque des revendications 1 à 3, caractérisé par le fait que le circuit électrique de commande de l'électrovanne (21) comporte un relais électrique (31).
  5. Dispositif de recirculation suivant l'une quelconque des revendications 1 à 4, caractérisé par le fait que la source de dépression (20) reliée à la vanne de recirculation (10) est constituée par une pompe à vide.
  6. Dispositif suivant l'une quelconque des revendications 1 à 5, dans le cas d'un moteur (1) comportant un ensemble de bougies de préchauffage (35) associé à des moyens d'alimentation (36) en courant électrique de chauffage pour effectuer un post-chauffage du moteur (1) ultérieur au démarrage caractérisé par le fait que les moyens d'alimentation (36) des bougies de préchauffage sont reliés au contacteur électrique (28) et à la sonde (32), de manière que l'alimentation des bougies de préchauffage (35) soit activée, lorsque le levier de charge (26) se trouve dans une position en deçà du contacteur (28) correspondant à une charge du moteur inférieure à la charge moyenne et que la température détectée par la sonde (32) est inférieure à une limite prédéterminée.
  7. Dispositif suivant l'une quelconque des revendications 1 à 6, caractérisé par le fait que le moteur (1) comporte, dans une conduite reliée au collecteur d'admission (3), un papillon (38) associé à un moyen de commande à dépression (39) relié à la source de dépression (20) par l'intermédiaire de l'électrovanne (21), de manière à être déplacé entre une position d'ouverture totale et une position de fermeture partielle de la conduite reliée au collecteur d'admission (3), en synchronisme avec l'ouverture de la vanne de recirculation (10), pour abaisser la pression des gaz dans le collecteur d'admission (3).
EP93400143A 1992-02-27 1993-01-21 Dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression commandé par le levier de charge du moteur Expired - Lifetime EP0558358B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9202307A FR2688030B1 (fr) 1992-02-27 1992-02-27 Dispositif de recirculation de gaz d'echappement d'un moteur a allumage par compression commande par le levier de charge du moteur.
FR9202307 1992-02-27

Publications (2)

Publication Number Publication Date
EP0558358A1 EP0558358A1 (fr) 1993-09-01
EP0558358B1 true EP0558358B1 (fr) 1995-09-27

Family

ID=9427118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400143A Expired - Lifetime EP0558358B1 (fr) 1992-02-27 1993-01-21 Dispositif de recirculation de gaz d'échappement d'un moteur à allumage par compression commandé par le levier de charge du moteur

Country Status (3)

Country Link
EP (1) EP0558358B1 (fr)
DE (1) DE69300531T2 (fr)
FR (1) FR2688030B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333295A1 (de) * 1993-09-30 1995-06-14 Bosch Gmbh Robert Vorrichtung zur Steuerung von Abgasrückführmengen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390519A (en) * 1977-01-18 1978-08-09 Nissan Diesel Motor Co Ltd Exhaust gas refluxing control device for diesel engine
FR2420659A1 (fr) * 1978-03-22 1979-10-19 Peugeot Dispositif de recyclage des gaz d'echappement pour moteur diesel
US4349004A (en) * 1980-10-22 1982-09-14 Nissan Diesel Kogyo Kabushiki Kaisha Exhaust gas recirculation apparatus for diesel engine
JPS6015946U (ja) * 1983-07-11 1985-02-02 日産自動車株式会社 デイ−ゼルエンジンの振動低減装置
FR2670244B1 (fr) * 1990-12-07 1994-12-09 Peugeot Dispositif de recirculation de gaz d'echappement d'un moteur a allumage par compression commande par des vannes tout ou rien.

Also Published As

Publication number Publication date
DE69300531T2 (de) 1996-05-30
FR2688030B1 (fr) 1995-10-06
FR2688030A1 (fr) 1993-09-03
EP0558358A1 (fr) 1993-09-01
DE69300531D1 (de) 1995-11-02

Similar Documents

Publication Publication Date Title
FR2670245A1 (fr) Electrovalve de commande pour le recyclage de gaz d&#39;echappement.
FR2482198A1 (fr) Systeme de controle de recirculation des gaz d&#39;echappement pour un moteur diesel
FR2569230A1 (fr) Installation de commande d&#39;un moteur a combustion interne et procede de commande des gaz composes d&#39;air et de gaz d&#39;echappement reinjectes, alimentant des chambres de combustion d&#39;un moteur a combustion interne a auto-allumage
FR2476745A1 (fr) Regulateur de pression a membrane
EP2044320B1 (fr) Vanne avec canal derive incorporant un organe de chauffage et circuit d&#39;admission avec prechauffage de l&#39;air pour moteur thermique
FR2473631A1 (fr) Moteur a combustion interne a quatre temps
EP0053376B1 (fr) Dispositif de suralimentation de moteur à combustion interne par turbocompresseur
EP0558358B1 (fr) Dispositif de recirculation de gaz d&#39;échappement d&#39;un moteur à allumage par compression commandé par le levier de charge du moteur
FR2463287A1 (fr) Dispositif et procede de commande du rapport air-combustible pour un carburateur de moteur a combustion interne
EP1118751A1 (fr) Système d&#39;aide à la régénération d&#39;un filtre à particules intégré dans une ligne d&#39;échappement d&#39;un moteur diesel de véhicule automobile
EP1375893B1 (fr) Dispositif de recirculation des gaz d&#39;échappement pour moteur à allumage commandé suralimenté
FR2463288A1 (fr) Dispositif de commande du rapport air-combustible pour un moteur a combustion interne
FR2670244A1 (fr) Dispositif de recirculation de gaz d&#39;echappement d&#39;un moteur a allumage par compression commande par des vannes tout ou rien.
FR2487008A1 (fr) Dispositif de commande du rapport air-combustible pour moteur a combustion interne
FR2787141A1 (fr) Moteur a combustion interne suralimente
FR2520808A1 (fr) Procede pour la formation d&#39;un melange pour moteurs a combustion interne a compression du melange, et installation d&#39;alimentation en carburant pour la mise en oeuvre de ce procede
EP1293658A1 (fr) Procédé et système de réglage du flux d&#39;air dans le collecteur d&#39;admission d&#39;un moteur à combustion interne d&#39;un véhicule automobile
FR2498256A1 (fr) Dispositif de commande du rapport air-combustible pour moteur a combustion interne
FR2847947A1 (fr) Systeme de recirculation de gaz d&#39;echappement pour moteur a combustion interne de vehicule automobile
EP4088012B1 (fr) Procédé de régénération d&#39;un filtre à particules de moteur à combustion interne à allumage commandé, et dispositif associé
FR2660016A1 (fr) Dispositif de recirculation de gaz d&#39;echappement d&#39;un moteur a allumage par compression.
FR2475124A1 (fr) Dispositif de commande du melange combustible pour moteur de vehicule
FR2902832A1 (fr) Procede de pilotage d&#39;un moteur a combustion interne comportant des moyens de filtrage lors d&#39;une phase de regeneration de ces moyens de filtrage et pour un regime au ralenti
FR2497283A1 (fr) Dispositif de commande du rapport air/combustible pour moteur a combustion interne a carburateur a double corps
FR2467295A1 (fr) Moteur a combustion interne a recyclage des gaz d&#39;echappement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 19940803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

REF Corresponds to:

Ref document number: 69300531

Country of ref document: DE

Date of ref document: 19951102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20070115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090129

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090121