EP0551555A1 - Transformateur adapté pour montage dans un véhicule - Google Patents

Transformateur adapté pour montage dans un véhicule Download PDF

Info

Publication number
EP0551555A1
EP0551555A1 EP92107435A EP92107435A EP0551555A1 EP 0551555 A1 EP0551555 A1 EP 0551555A1 EP 92107435 A EP92107435 A EP 92107435A EP 92107435 A EP92107435 A EP 92107435A EP 0551555 A1 EP0551555 A1 EP 0551555A1
Authority
EP
European Patent Office
Prior art keywords
magnetic member
iron core
windings
vehicle mounting
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92107435A
Other languages
German (de)
English (en)
Other versions
EP0551555B1 (fr
Inventor
Katsumi c/o Mitsubishi Denki K. K. Konii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP0551555A1 publication Critical patent/EP0551555A1/fr
Application granted granted Critical
Publication of EP0551555B1 publication Critical patent/EP0551555B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores

Definitions

  • This invention relates to a vehicle mounting transformer and, more particularly, to a vehicle mounting transformer for use in a vehicle operating electric system for achieving the power and regenerative running control by means of a power conversion system such as a pulse width modulation control conversion system.
  • Fig. 9 is a schematic diagram illustrating one example of a conventional shell-type vehicle mounting transformer 4 disclosed in Japanese Patent Laid-Open No. 1-133311 and Japanese Patent Laid-Open No. 2-184007.
  • the vehicle mounting transformer 4 comprises a shell-type iron core 5, an input side winding 6 wound on the iron core 5 and a plurality of output side windings 7 disposed in a magnetic inductance relationship with respect to the iron core 5 and the input side winding 6.
  • the vehicle mounting transformer 4 further comprises a magnetic member assembly 17 including a plurality of magnetic elements 13 disposed between the input side winding 6 and the output side windings 7 and arranged in a space surrounded by the iron core 5 with air gaps therebetween and insulating material 14 insulatingly supporting the magnetic elements 13 relative to each other and relative to the iron core 5 and the windings 6 and 7.
  • the magnetic elements 13 are insulatingly supported with air gaps formed by the insulating material 14, so that a magnetic member with air gap is generally constructed.
  • Fig. 10 is a circuit diagram illustrating a vehicular operating electric system using the vehicle mounting transformer illustrated in rig. 9.
  • the electric power is supplied to the input side windings 6 wound on the iron core 5 of the vehicle mounting transformer 4 through an interrupter 3.
  • Four output side windings 7 of the vehicle mounting transformer 4 are related to the magnetic member 13 and directly connected respectively to the inputs of the pulse width modulation (PWM) converter 9.
  • the output of the PWM converter 9 is connected to the input of the VVVF inverter 11 through a capacitor 10.
  • the output of the VVVF inverter 11 is connected to a three-phase induction motor 12 for driving wheels of an electric vehicle.
  • the leakage flux generated during the operation of the vehicle mounting transformer 4 under the load increases since a magnetic member assembly 17 which is a magnetic member with air gap, whereby the leakage impedance increases.
  • the conventional vehicle mounting transformer thus constructed is desirable in that the requisite reactive voltage can be obtained with a light-weight and compact structure.
  • the respective windings divided from the output side windings 7 in view of the load control or the like are magnetically loosely coupled to each other when it is used as a vehicle mounting transformer, it has been difficult to realize a winding arrangement which satisfies the need of the loose coupling between the output side windings.
  • a multi-phase PWM converter control which is a circuit system in which the converter units controlled at the different phases are connected to the output winding of the transformer.
  • the output winding of the transformer is divided into four, each is connected by the converter units, and the GTO thyristor gate control is achieved at the different phases.
  • one converted unit may be subjected to a magnetic interference by the operation of another converter unit whereby the wave form of the converter input current is disturbed, resulting in increase of the noise flow to the trolley line due to the increase in the harmonic current component and the increase of the peak of the current ripples, whereby the current interrupting capacity of the GTO element is exceeded and the GTO will be destroyed.
  • the magnetic coupling between the output windings of the transformer used in the PWM converter control is loose, i.e., the transformer is required to have loose coupling characteristics in which load conditions of one output winding does not magnetically interfere the other output windings.
  • the object of the present invention is to provide a vehicle mounting transformer in which magnetically loose coupling characteristics between each of the output side windings can be stably obtained.
  • the vehicle mounting transformer of the present invention comprises a shell-type iron core, an input side winding wound around the iron core, a plurality output side windings wound around the iron core and disposed in a magnetic induction relationship with respect to the input side winding, and a loose coupling magnetic member assembly including a gap-less magnetic member disposed between the neighboring out of the output side windings and within a space surrounded by the iron core.
  • an air-gap reactor magnetic material assembly may be provided between the input side and the output side windings.
  • Fig. 1 is a schematic diagram illustrating one embodiment of the shell-type vehicle mounting transformer of the present invention.
  • the general arrangement of the iron core 5 and the windings 6 and 7 of the vehicle mounting transformer 4A is similar to that of the conventional vehicle mounting transformer 4 illustrated in Fig. 9. That is, the iron core 5 comprises a main core 5a of a width 2W, legs 5b of width W disposed in parallel at the both sides of the main core 5a and yokes 5c of width W connecting the main core 5a and the legs 5b.
  • the main core 5a has wound thereon, in a space 5d surrounded by the iron core 5, input side windings 6a and 6b, which are spaced in the direction of axis of the windings and connected in parallel to each other.
  • the main core 5a has also wound thereon, in a space 5d surrounded by the iron core 5, four output side windings 7a to 7d, and while the output side windings 7a and 7b are disposed at the both sides of the input side winding 6a to sandwich it in the axial direction, the output side windings 7c and 7d are disposed at the both sides of the input side winding 6b to sandwich it in the axial direction.
  • the vehicle mounting transformer 4A comprises a reactor magnetic member assembly 17 disposed within an axial space between the input side windings 6a and 6b and the output side windings 7a to 7d.
  • the transformer also comprises a loose coupling magnetic member assembly 18 disposed within an axial space between the neighboring output side windings 7b and 7c.
  • the reactor magnetic member assembly 17 comprises, as illustrated in detail in Figs. 2 and 3, a substantially rectangular, suitably rigid insulator 14 having a substantially rectangular central opening 17a for accommodating the main core 5a of the iron core 5 and a plurality of magnetic member elements 13b embedded within the insulator 14 and disposed in parallel with air gaps 13a therebetween so that an air gap magnetic member 13 is constituted within the, space 5d surrounded by the iron core 5.
  • Each magnetic member element 13b is a lamination in which an elongated rectangular magnetic plates are stacked in the same direction as the direction of stack (arrow A of Fig. 1) of the rectangular pancake coils, and this lamination is arranged in parallel to the direction of extension of the coil conductors (arrow B of Fig. 2).
  • the insulator 14 comprises two insulating plates 14b and 14c sandwiching the magnetic member elements 13b therebetween to securely support by means of insulating pins 14a, insulations 14d for filling the spaces defined between the insulating plates 14b and 14c at each end which is not occupied by the magnetic member elements 13b and insulations 14e inserted between the magnetic member elements 13b to define air gaps 13a therebetween, thereby to generally insulatingly support the magnetic member elements 13b with air gaps therebetween relative to each other and to the windings 6 and 7.
  • the loose coupling magnetic member assembly 18 comprises, as shown in detail in Figs. 4 and 5, a substantially rectangular, suitably rigid insulator 16 having a substantially rectangular central opening 18a for accommodating the main core 5a of the iron core 5 and gap-less magnetic member 15 embedded within the insulator 16 and disposed within the space 5d surrounded by the iron core 5.
  • the gap-less magnetic member 15 comprises a plurality of (four in the illustrated embodiment) magnetic member elements 15b which are disposed in the direction perpendicular to the direction of extension of the coil conductors (arrow B) and spaced from each other by insulators 16e in the direction of extension of the coil conductors.
  • Each magnetic member element 15b is also spaced from each other by the insulations 16e made such as of glass epoxy in a manner similar to the magnetic member elements 13b of the reactor magnetic member assembly 17. However, this spaced arrangement of the magnetic member elements 15b is for the purpose of minimizing the eddy losses generated in the magnetic member 15 due to the leakage flux intruding perpendicularly to the surface of the magnetic member 15 and has the orientation different from those in the reactor magnetic member assembly 17, so that the magnetic member 15 may be considered as an air-gap-less magnetic member in a magnetic sense.
  • Each magnetic member element 15b is a lamination in which rectangular magnetic plates are stacked in the direction parallel to the direction of stack (arrow A) of the rectangular pancake coils.
  • the insulator 16 comprises two insulating plates 16b and 16c sandwiching the magnetic member elements 15b therebetween to securely support them by means of insulating pins 16a, insulations 16d for filling the spaces defined between the insulating plates 16b and 16c at each end which is not occupied by the magnetic member elements 15b and insulations 16e inserted between the magnetic member elements 15b, thereby to generally insulatingly support the magnetic member elements 15 relative to the iron core 5 and the windings 6 and 7.
  • the insulating pins 16a are inserted into holes formed in the magnetic member elements 15b as well as the insulating plates 16b and 16c.
  • the loose coupling magnetic member assembly 18 thus assembled is varnish impregnated into a unitary structure.
  • the outer shape of the insulator 16 of the loose coupling magnetic member assembly 18 is similar to that of the insulator 14 of the reactor magnetic member assembly 17 and is adapted to be stacked between the windings 6 and 7 to constitute a coil group to be supported by the iron core 5. Accordingly, in manufacturing the coil group, the loose coupling magnetic member assembly 18 and the reactor magnetic member assembly 17 can be handled and stacked in the same way as the coils, so that the iron core assembly and the coil group assembly can be easily carried out by the same transformer assembling process as that heretofore has been used.
  • each reactor magnetic member assembly 17 is sandwiched and supported between the output side winding 7a and the input side winding 6a, the input side winding 6a and the output side winding 7b, the output side winding 7c and the input side winding 6b and between the input side winding 6b and the output side winding 7d.
  • the magnetic member elements 13b of each assembly 17 are embedded and supported within the rigid insulating plate 14, so that they are electrically insulated relative to the charged portion while they are mechanically supported at places within the iron core 5 by the iron core 5 and the windings 6 and 7.
  • the loose coupling magnetic member assembly 18 is inserted and supported between the output side winding 7b and the neighboring output side winding 7c.
  • the magnetic members 15 of the loose coupling magnetic member assembly 18 are also electrically insulated by the rigid insulator 16 and mechanically supported by the iron core 5 and the windings 6 and 7 at the predetermined position within the iron core 5.
  • the arrangement may be identical to that of the conventional vehicle mounting transformer illustrated in Fig. 9.
  • Fig. 6 is a circuit diagram illustrating the vehicle operating electric system partly in block diagram employing the vehicle mounting transformer of the present invention illustrated in Figs. 1 to 5.
  • the electric power is supplied from the trolley line 1 through a pantograph 2 and is supplied to the input side windings 6 wound on the iron core 5 of the vehicle mounting transformer 4 through an interrupter 3.
  • Four output side windings 7a to 7d of the vehicle mounting transformer 4A are related to the first and the second magnetic members 17 and 18 and directly connected respectively to the inputs of the pulse width modulation (PWM) converter 9.
  • the output of the PWM converter 9 is connected to the input of the VVVF inverter 11 through a capacitor 10.
  • the output of the VVVF inverter 11 is connected to a three-phase induction motor 12 for driving wheels of an electric vehicle.
  • the voltage supplied from the trolley line 1 through the pantograph 2 and the interrupter 3 is inputed into the input side winding 6 of the vehicle mounting transformer 4A and transformed therein to be outputed to the output side windings 7 of the vehicle mounting transformer 4A.
  • the outputs from the output side windings 7 are supplied to the PWM converter 9 through the AC reactor 8, where the single phase AC power is converted into DC power.
  • This DC power after smoothed by the capacitor 10, is supplied to the VVVF inverter 11, where it is converted into three-phase AC power.
  • This three-phase AC power drives the three-phase induction motor 12 to drive the wheels of the vehicle (not shown)
  • the leakage flux generated during the operation under the load of the vehicle mounting transformer 4A is increased by the reactor magnetic member assembly 17 which is an air-gap magnetic member and, as its result, the leakage impedance increases.
  • the reactor magnetic member assembly 17 which is an air-gap magnetic member and, as its result, the leakage impedance increases.
  • the loose coupling magnetic member assembly 18 which is an gap-less iron core disposed between the output side windings 7b and 7c magnetically isolates the output side windings 7b and 7c, whereby the loose coupling suitable for the pulse width modulation control can be realized.
  • Fig. 8 illustrates a vehicle mounting transformer 4C of another embodiment of the present invention in which six output side windings 37a to 37f are provided and two loose coupling magnetic member assemblies 18 are employed.
  • the output side winding is divided into four in the embodiment illustrated in Figs. 1 to 5, it is to be understood that the present invention is equally applicable where the output side winding is divided into more than four windings, and that similar advantageous results can be obtained.
  • a loose coupling magnetic member assembly inserted between the neighboring output side windings and having a magnetic member supported by an insulator is provided, so that magnetic loose coupling characteristics necessary for the pulse width modulation converter control can be electrically and mechanically stably obtained.
  • a reactive voltage necessary for the pulse width modulation control can at the same time be obtained.
  • the loose coupling magnetic member assembly and the reactive magnetic member assembly are both supported by the plate-shaped insulators having the substantially rectangular central opening for accommodating the iron core therein and insulatingly supporting the magnetic members. Therefore, these magnetic member assemblies can be stacked together with the coils in the same assembling process as that heretofore used to constitute coil groups, so that the transformer assembly process can be carried out in the same manner as that heretofore done without the need for any change in assembly equipments and facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)
EP92107435A 1992-01-17 1992-04-30 Transformateur adapté pour montage dans un véhicule Expired - Lifetime EP0551555B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP641092 1992-01-17
JP6410/92 1992-01-17

Publications (2)

Publication Number Publication Date
EP0551555A1 true EP0551555A1 (fr) 1993-07-21
EP0551555B1 EP0551555B1 (fr) 1996-08-14

Family

ID=11637603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92107435A Expired - Lifetime EP0551555B1 (fr) 1992-01-17 1992-04-30 Transformateur adapté pour montage dans un véhicule

Country Status (4)

Country Link
EP (1) EP0551555B1 (fr)
KR (1) KR970000106B1 (fr)
DE (1) DE69212794T2 (fr)
WO (1) WO1993014508A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251878A1 (fr) * 2008-03-04 2010-11-17 Mitsubishi Electric Corporation Transformateur électrique
EP2398025A1 (fr) * 2009-02-13 2011-12-21 Mitsubishi Electric Corporation Transformateur
WO2013061220A1 (fr) 2011-10-25 2013-05-02 Brusa Elektronik Ag Composant inductif et utilisation
WO2020115402A1 (fr) * 2018-12-07 2020-06-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'induction electromagnetique
SE2100103A1 (en) * 2021-06-18 2022-12-19 Saab Ab A transformer arrangement
CN115863015A (zh) * 2023-02-21 2023-03-28 深圳市斯比特技术股份有限公司 一种多线圈连绕电感
EP4131749A4 (fr) * 2020-03-30 2023-09-06 Woo Hee Choi Générateur électrique à courant continu non rotatif

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467047B1 (ko) * 2002-09-17 2005-01-24 전력품질기술주식회사 자기 차폐 공심 리액터
JP4750903B2 (ja) * 2009-12-04 2011-08-17 三菱電機株式会社 変圧装置
EP2509083B1 (fr) 2009-12-04 2019-07-10 Mitsubishi Electric Corporation Transformateur de tension
JP6572541B2 (ja) * 2015-01-09 2019-09-11 レシップホールディングス株式会社 変圧器
CN110062715B (zh) * 2019-01-11 2022-07-15 广东美信科技股份有限公司 一种新能源汽车用车载变压器及新能源汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133311A (ja) * 1987-11-19 1989-05-25 Mitsubishi Electric Corp 車両用変圧器
JPH02184007A (ja) * 1989-01-10 1990-07-18 Mitsubishi Electric Corp 車両用変圧器
EP0406555A1 (fr) * 1989-07-06 1991-01-09 Mitsubishi Denki Kabushiki Kaisha Transformateur de type réacteur à shunt commun

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661109A (en) * 1979-10-24 1981-05-26 Hitachi Ltd Transformer for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133311A (ja) * 1987-11-19 1989-05-25 Mitsubishi Electric Corp 車両用変圧器
JPH02184007A (ja) * 1989-01-10 1990-07-18 Mitsubishi Electric Corp 車両用変圧器
EP0406555A1 (fr) * 1989-07-06 1991-01-09 Mitsubishi Denki Kabushiki Kaisha Transformateur de type réacteur à shunt commun

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251878A1 (fr) * 2008-03-04 2010-11-17 Mitsubishi Electric Corporation Transformateur électrique
EP2251878A4 (fr) * 2008-03-04 2014-03-19 Mitsubishi Electric Corp Transformateur électrique
EP2398025A4 (fr) * 2009-02-13 2014-09-03 Mitsubishi Electric Corp Transformateur
EP2398025A1 (fr) * 2009-02-13 2011-12-21 Mitsubishi Electric Corporation Transformateur
EP2771891B1 (fr) 2011-10-25 2018-09-05 BRUSA Elektronik AG Composant inductif et utilisation
CN104025213A (zh) * 2011-10-25 2014-09-03 布鲁萨电子公司 电感性组件和使用
WO2013061220A1 (fr) 2011-10-25 2013-05-02 Brusa Elektronik Ag Composant inductif et utilisation
WO2020115402A1 (fr) * 2018-12-07 2020-06-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'induction electromagnetique
FR3089676A1 (fr) * 2018-12-07 2020-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d’induction electromagnetique
EP4131749A4 (fr) * 2020-03-30 2023-09-06 Woo Hee Choi Générateur électrique à courant continu non rotatif
SE2100103A1 (en) * 2021-06-18 2022-12-19 Saab Ab A transformer arrangement
EP4113547A1 (fr) * 2021-06-18 2023-01-04 Saab Ab Agencement de transformateur
SE545081C2 (en) * 2021-06-18 2023-03-21 Saab Ab A weight reducing transformer arrangement comprising a shell and a core with three orthogonal axes
CN115863015A (zh) * 2023-02-21 2023-03-28 深圳市斯比特技术股份有限公司 一种多线圈连绕电感
CN115863015B (zh) * 2023-02-21 2023-04-25 深圳市斯比特技术股份有限公司 一种多线圈连绕电感

Also Published As

Publication number Publication date
KR930703692A (ko) 1993-11-30
DE69212794D1 (de) 1996-09-19
WO1993014508A1 (fr) 1993-07-22
DE69212794T2 (de) 1997-02-20
EP0551555B1 (fr) 1996-08-14
KR970000106B1 (ko) 1997-01-04

Similar Documents

Publication Publication Date Title
US8416052B2 (en) Medium / high voltage inductor apparatus and method of use thereof
US7973632B2 (en) Methods and apparatus for electromagnetic component
US7471181B1 (en) Methods and apparatus for electromagnetic components
US8373530B2 (en) Power converter method and apparatus
US8624702B2 (en) Inductor mounting apparatus and method of use thereof
US8089333B2 (en) Inductor mount method and apparatus
US8519813B2 (en) Liquid cooled inductor apparatus and method of use thereof
EP2711944A1 (fr) Dispositif à réacteur et convertisseur de secteur utilisant ledit dispositif
US8203411B2 (en) Potted inductor apparatus and method of use thereof
US8624696B2 (en) Inductor apparatus and method of manufacture thereof
US8130069B1 (en) Distributed gap inductor apparatus and method of use thereof
EP0551555B1 (fr) Transformateur adapté pour montage dans un véhicule
WO2013065095A1 (fr) Réacteur, transformateur et appareil de conversion d'énergie les utilisant
EP1519392B1 (fr) Disposition de bobines d'induction
US20060238061A1 (en) Electric machine with a damping device
US7432791B2 (en) Magnet arrangement for carrying, guiding and/or braking systems in magnetic levitation vehicles
US8947187B2 (en) Inductor apparatus and method of manufacture thereof
CN113795898A (zh) 多相开关调节器
JP6584715B2 (ja) 変圧器および電力変換装置
JPH09306778A (ja) コンデンサおよびコンデンサの接続方法
JP2923053B2 (ja) 車両搭載用変圧器
WO2021250728A1 (fr) Filtre de bruit et dispositif de conversion de courant utilisant ledit filtre de bruit
JPH02184007A (ja) 車両用変圧器
JPH01238451A (ja) リングコイル形三相二極リニア誘導機の電機子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR PT

17P Request for examination filed

Effective date: 19930728

17Q First examination report despatched

Effective date: 19941207

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR PT

REF Corresponds to:

Ref document number: 69212794

Country of ref document: DE

Date of ref document: 19960919

ET Fr: translation filed
SC4A Pt: translation is available

Free format text: 960814 AVAILABILITY OF NATIONAL TRANSLATION

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110426

Year of fee payment: 20

Ref country code: PT

Payment date: 20110426

Year of fee payment: 20

Ref country code: DE

Payment date: 20110427

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69212794

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69212794

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120508