EP0551410A1 - Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium. - Google Patents

Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium.

Info

Publication number
EP0551410A1
EP0551410A1 EP91918975A EP91918975A EP0551410A1 EP 0551410 A1 EP0551410 A1 EP 0551410A1 EP 91918975 A EP91918975 A EP 91918975A EP 91918975 A EP91918975 A EP 91918975A EP 0551410 A1 EP0551410 A1 EP 0551410A1
Authority
EP
European Patent Office
Prior art keywords
fatty acid
alkyl
polyhydroxy fatty
sulfonate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91918975A
Other languages
German (de)
French (fr)
Other versions
EP0551410B1 (en
Inventor
Thomas Richard Rolfes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0551410A1 publication Critical patent/EP0551410A1/en
Application granted granted Critical
Publication of EP0551410B1 publication Critical patent/EP0551410B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • C11D1/652Mixtures of anionic compounds with carboxylic amides or alkylol amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/32Amides; Substituted amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/18Sulfonic acids or sulfuric acid esters; Salts thereof derived from amino alcohols
    • C11D1/20Fatty acid condensates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • C11D1/44Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to detergent compositions com ⁇ prising one or more anionic sulfate or sulfonate surfactants, one or more polyhydroxy fatty acid amides and magnesium.
  • it relates to detergent compositions which possess desirable cleaning and sudsing properties, are mild to the hand, and are especially suitable for use in dishwashing applications.
  • detergent compositions containing one or more anionic sulfated or sulfonated detergent surfactants, one or more polyhydroxy fatty acid amides and magnesium exhibit sudsing and cleaning performance which is unexpectedly superior to the performance of anionic sulfated or sulfonated surfactants alone.
  • compositions when compared to anionic sulfated or sulfonated surfactants, milder to the hand, have improved rinsability, are not as slippery to the touch, and are easier to formulate due to a reduced need for process additives such as solvents and hydrotropes.
  • the polyhydroxy fatty acid amide component contained in the composition of the present invention is also known in the art, as are several of its uses.
  • N-acyl, N-methyl gluca ides for example, are disclosed by J. W. Goodby, M. A. Marcus, E. Chin, and P. L. Finn in "The Thermotropic Liquid-Crystalline Properties of Some Straight Chain Carbohydrate Amphiphiles," Liquid Crystals, 1988, Volume 3, No. 11, pp. 1569-1581, and by A. Muller-Fahrnow, V. Zabel, M. Steifa, and R. Hilgenfeld in "Molecular and Crystal Structure of a Nonionic Detergent: Nonanoyl-N-methylglucamide," J. Chem. Soc.
  • N-alkyl polyhydrox amide surfactants have been of substantial interest recently for use in biochemistry, for example in the dissociation of biological membranes. See, for example, the journal article "N-D-Gluco-N-methyl-alkanamide Compounds, a New Class of Non-Ionic Detergents For Membrane Biochemistry," Biochem. J. (1982), Vol. 207, pp. 363-366, by J. E. K. Hildreth.
  • N-alkyl glucamides in detergent compositions has also been discussed.
  • U.S. Patent 2,965,576, issued December 20, 1960 to E. R. Wilson, and U.K. Patent Specification 809,060, already referred to herein, relate to detergent compositions containing anionic surfactants and certain amide surfactants, which can include N-methyl glucamide, added as a low temperature suds enhancing agent.
  • These compounds include an N-acyl radical of a higher straight-chain fatty acid having 10-14 carbon atoms.
  • These compositions may also contain auxiliary mater s such as alkali metal phosphates, alkali metal silicates, sulft. i, and carbonates. It is also generally indicated that additional constituents to impart desirable proper ⁇ ties to the composition can also be included in the compositions, such as fluorescent dyes, bleaching agents, perfumes, etc.
  • U.S. Patent 2,703,798, issued March 8, 1955 to A. M. Schwartz relates to aqueous detergent compositions containing the condensa ⁇ tion reaction product of N-alkyl glucamine and an aliphatic ester of a fatty acid.
  • the product of this reaction is said to be useable in aqueous detergent compositions without further purification.
  • amphiphilic compounds contain ⁇ ing polyhydroxyl aliphatic groups said to be useful for a variety of purposes including use as surfactants in cosmetics, drugs, shampoos, lotions, and eye ointments, as emulsifiers and dispensing agents for medicines, and in biochemistry for solubilizing membranes, whole cells, or other tissue samples, and for preparing liposomes.
  • R'C0N(R)CH2R H and R"CON(R)R' wherein R is hydrogen or an organic grouping, R' is an aliphatic hydrocarbon group of at least three carbon atoms, and R" is the residue of an aldose.
  • N-polyhydroxy alkyl fatty acid amides as thickening agents in aqueous detergent systems. Included are amides of the formula RjC(0)N(X)R2 wherein Ri is a C ⁇ -C ⁇ 7 (preferably C7-C17) alkyl, 2 is hydrogen, a Cj-Cis (preferably Cj-C ⁇ ) alkyl, or an alkylene oxide, and X is a polyhydroxy alkyl having four to seven carbon atoms, e.g., N-methyl, coconut fatty acid glucamide.
  • the thickening properties of the amides are indicated as being of particular use in liquid surfactant systems containing paraffin sulfonate, although the aqueous surfactant systems can contain other anionic surfactants, such as alkylaryl sulfonates, olefin sulfonate, sulfosuccinic acid half ester salts, and fatty alcohol ether sulfonates, and nonionic surfactants such as fatty alcohol polyglycol ether, alkylphenol polyglycol ether, fatty acid polyglycol ester, polypropylene oxide-polyethylene oxide mixed polymers, etc.
  • anionic surfactants such as alkylaryl sulfonates, olefin sulfonate, sulfosuccinic acid half ester salts, and fatty alcohol ether sulfonates
  • nonionic surfactants such as fatty alcohol polyglycol ether, alkylphenol polyglycol ether,
  • Paraffin sulfonate/N-methyl coconut fatty acid glucamide/nonionic surfactant shampoo formulations are exemplified.
  • the N-polyhydroxy alkyl fatty acid amides are said to have superior skin tolerance attributes.
  • U.S. Patent 2,982,737 issued May 2, 1961, to Boettner, et al., relates to detergent bars containing urea, sodium lauryl sulfate anionic surfactant, and an N-alkylglucamide nonionic surfactant which is selected from N-methyl,N-sorbityl lauramide and N-methyl, N-sorbityl myristamide.
  • glucamide surfactants are disclosed, for example, in DT 2,226,872, published December 20, 1973, H. W. Eckert, et al . , which relates to washing compositions comprising one or more surfactants and builder salts selected from polymeric phosphates, sequestering agents, and washing alkalis, improved by the addition of an N-acyl- pol hydroxyalkyl mine of the formula R ⁇ C(0)N(R2)CH2(CHOH) n CH2 ⁇ H, wherein Ri is a C1-C3 alkyl, R2 is a C10-C22 alkyl, and n is 3 or 4.
  • the N-acylpolyhydroxyalkyl-amine is added as a soil suspending agent.
  • U.S. Patent 3,654,166, issued April 4, 1972, to H. W. Eckert, et al. relates to detergent compositions comprising at least one surfactant selected from the group of anionic, zwitterionic, and nonionic surfactants and, as a textile softener, an N-acyl, N-alkyl polyhydroxyalkyl compound of the formula R ⁇ N(Z)C(0)R2 wherein Ri is a C10-C22 alkyl, R2 is a C7-C21 alkyl, Ri and R2 total from 23 to 39 carbon atoms, and Z is a polyhydroxyalkyl which can be -CH2(CHOH) m CH2 ⁇ H where m is 3 or 4.
  • U.S. Patent 4,021,539 issued May 3, 1977, to H. M ⁇ ller, et al., relates to skin treating cosmetic compositions containing N-polyhydroxyalkyl-amines which include compounds of the formula RlN(R)CH(CH0H) m R2 wherein Ri is H, lower alkyl, hydroxy-lower alkyl, or aminoalkyl, as well as heterocyclic aminoalkyl, R is the same as Rl but both cannot be H, and R2 is CH2OH or COOH.
  • French Patent 1,360,018, April 26, 1963, assigned to Commercial Solvents Corporation, relates to solutions of formaldehyde stabilized against polymerization with the addition of amides of the formula RC(0)N(R ⁇ )G wherein R is a carboxylic acid functionality having at least seven carbon atoms, Ri is hydrogen or a lower alkyl group, and G is a glycitol radical with at least 5 carbon atoms.
  • German Patent 1,261,861, February 29, 1968, A. Heins relates to glucamine derivatives useful as wetting and dispersing agents of the formula N(R)(R ⁇ )(R2) wherein R is a sugar residue of glucamine, Rl is a C10-C20 alkyl radical, and R2 is a C1-C5 acyl radical.
  • G.B. Patent 745,036, published February 15, 1956, assigned to Atlas Powder Company, relates to heterocyclic amides and carboxylic esters thereof that are said to be useful as chemical intermediates, emulsifiers, wetting and dispersing agents, detergents, textile softeners, etc.
  • the compounds are expressed by the formula N(R)(R ⁇ )C(0)R2 wherein R is the residue of an anhydrized hexane pentol or a carboxylic acid ester thereof, Ri is a monovalent hydrocarbon radical, and -C(0)R2 is the acyl radical of a carboxylic acid having from 2 to 25 carbon atoms.
  • Hooker discloses solid toilet bars that are substantially free of anionic detergents and alkaline builder materials, and which contain lithium soap of certain fatty acids, a nonionic surfactant selected from certain propylene oxide-ethylenediamine-ethylene oxide condensates, propylene oxide-propylene glycol-ethylene oxide condensates, and polymerized ethylene glycol, and also contain a nonionic lathering component which can include polyhydroxyamide of the formula RC(0)NRl(R 2 ) wherein RC(0) contains from about 10 to about 14 carbon atoms, and Rl and R 2 each are H or Ci-C ⁇ alkyl groups, said alkyl groups containing a total number of carbon atoms of from 2 to about 7 and a total number of substituent hydroxyl groups of from 2 to about 6.
  • RC(0)NRl(R 2 ) wherein RC(0) contains from about 10 to about 14 carbon atoms, and Rl and R 2 each are H or Ci-C ⁇ alkyl groups, said alkyl groups containing a
  • the present invention is directed to detergent compositions comprising from about 5% to about 65% by weight of a surfactant mixture comprising:
  • the detergent compositions of the present invention comprise from about 5% to about 65% by weight, preferably from about 10% to about 50% by weight, most preferably from about 20% to about 40% by weight of a surfactant mixture comprising one or more anionic sulfated or sulfonated surfactants and one or more polyhydroxy fatty acid amides.
  • These compositions additionally contain magnesium in a molar amount corresponding to 0.1X-2.0X, p referably 0.2X-1.7X, more preferably 0.3X-1.5X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in said composition.
  • the detergent compositions of the present invention are preferably in the form cf either a liquid or a gel, more preferably light-duty liquid detergent compositions, most preferably light-duty liquid dishwashing detergent compositions.
  • the surfactant mixture of the present invention comprises from about 5% to about 95%, preferably from about 3% to about 80%, more preferably from about 40% to about 60% by weight of one or more anionic sulfate or sulfonate surfactants.
  • the anionic sulfate or sulfonate surfactants may be any organic sulfate or sulfonate surfactant, but is preferably selected from C ⁇ -C ⁇ alkyl benzene sulfonates, C 10 -C 16 alkyl sulfates and their ethoxy analogues containing up to twelve moles of ethylene oxide per mole of alkyl ethoxy sulfates, C 13 -C 18 paraffin sulfonates and secondary alkane sulfonates, C 10 -C 16 olefin sulfonates, C 10 -C 20 alkyl glyceryl ether sulfonates, C9-C17 acy
  • Alkyl benzene sulfonates useful in compositions of the present invention are those in which the alkyl group, which is substantially linear, contains 10-16 carbon atoms, preferably 10-13 carbon atoms, a material with an average carbon chain length of 11.2 being most preferred.
  • the phenyl iso er distribution i.e., the point of attachment of the alkyl chain to the benzene nucleus, is not critical, but alkyl benzenes having a high 2-phenyl isomer content are preferred.
  • Suitable alkyl sulfates are primary alkyl sulfates in which the alkyl group contains 10-16 carbon atoms, more preferably an average of 12-14 carbon atoms preferably in a linear chain.
  • C 10 -C 16 alcohols derived from natural fats, or Ziegler olefin build-up, or 0X0 synthesis, form suitable sources for the alkyl group.
  • synthetically derived materials include Dobanol 23 (RTM) sold by Shell Chemicals (UK) Ltd., Ethyl 24 sold by the Ethyl Corporation, a blend of C 13 -C 15 alcohols in the ratio 67% C 13 , 33% C 15 sold under the trade name Lutensol by BASF GmbH and Synperonic (RTM) by ICI Ltd., and Lial 125 sold by Liquichi ica Italiana.
  • RTM Dobanol 23
  • UK Shell Chemicals
  • Ethyl 24 sold by the Ethyl Corporation
  • Lial 125 sold by Liquichi ica Italiana
  • Examples of naturally occurring materials from which the alcohols can be derived are coconut oil and palm kernel oil and the corresponding fatty acids.
  • Alkyl ethoxy sulfate surfactants comprise a primary alkyl ethoxy sulfate derived from the condensation product of a C 10 -C 16 alcohol with an average of up to 7 ethylene oxide groups.
  • the C 10 -C 16 alcohol itself can be obtained from any of the sources previously described for the alkyl sulfate component.
  • C 12 -C 13 alkyl ethoxy sulfates are preferred.
  • Blends can be made of material having different degrees of ethoxylation and/or different ethoxylate distributions arising from the specific ethoxylation techniques employed and subsequent processing steps such as distillation.
  • Secondary alkane sulfonates useful *• the present invention have from 13 to 18 carbon atoms per molecu. ⁇ , more desirably 13 to 16 carbon atoms per molecule.
  • These sulfonates are preferably prepared by subjecting a cut of paraffin, corresponding to the chain lengths specified above, to the action of sulfur dioxide and oxygen in accordance with the well-known sulfoxidation process.
  • the product of this reaction is a secondary sulfonic acid which is then neutralized with a suitable base to provide a water-soluble secondary alkyl sulfonate.
  • Similar secondary alkyl sulfonates may be obtained by other methods, e.g., by the sulfochlorination method in which chlorine and sulfur dioxide are reacted with paraffins in the presence of actinic light, the resulting sulfonyl chlorides being hydrolyzed and neutralized to form the secondary alkyl sulfonates.
  • the proportions of disulfonate or higher sulfonated material will be minimized, although some may be present.
  • the monosulfonate may be terminally sulfonated or the sulfonate group may be joined on the 2-carbon or other carbon of the linear chain.
  • any accompanying disulfonate usually produced when an excess of sulfonating agent is present, may have the sulfonate groups distributed over different carbon atoms of the paraffin base, and mixtures of the monosulfonates and disulfonates may be present.
  • Mixtures of monoalkane sulfonates wherein the alkanes are of 14 and 15 carbon atoms are particularly preferred wherein the sulfonates are present in the weight ratio of C 14 -C 15 paraffins in the range from 1:3 to 3:1.
  • Olefin sulfonates useful in the present invention are mixtures of alkene-1-sulfonates, alkene hydroxysulfonates, alkene disulfonates and hydroxydisulfonates, and are described in the commonly assigned U.S. Patent 3,332,880, issued to P. F. Pflauner and A. Kessler on July 25, 1967.
  • Suitable alkyl glyceryl ether sulfonates are those derived from ethers of coconut oil and tallow.
  • sulfate surfactants include the C9-C17 acyl-N-(C ⁇ -C4 alkyl) or -N-(C ⁇ -C2 hydroxyalkyl) glucamine sulfates, preferably those in which the C9-C17 acyl group is derived from coconut or palm kernel oil. These materials can be prepared by the method disclosed in U.S. Patent 2,717,894, issued September 13, 1955 to Schwartz.
  • the counterion for the anionic surfactant component is preferably selected from sodium, potassium, magnesium, ammonium or alkanol-ammonium, and mixtures thereof, with magnesium being preferred.
  • the surfactant mixture of the present invention comprises from about 5% to about 95%, preferably from about 20% to about 80%, more preferably from about 40% to about 60% by weight of one or more polyhydroxy fatty acid amides having the structural formula: 0 Rl (I) R2 - C - N - Z wherein: is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C1-C4 alkyl, more preferably C ⁇ or C2 alkyl, most preferably Cj alkyl (i.e., methyl); and R 2 is a C5-C31 hydrocarbyl, preferably straight-chain C7-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CH0H) n -CH 2 0H, -CH(CH 2 0H)-(CH0H) n -,.- CH 2 0H, -CH 2 -(CH0H)2(CH0R')(CH0H)-CH20H, where n is an ir + eger from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosacchar- ide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH2-(CH0H)4-CH20H.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 -C0-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, caprica ide, pal itamide, tallowamide, etc.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxy- maltotriotityl, etc.
  • the most preferred polyhydroxy fatty acid amide has the general formula
  • R 2 is a C11-C17 straight-chain alkyl or alkenyl group.
  • polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd.. U.S.
  • the product is made by reacting N-alkyl- or N-hydroxyalkyl-glucamine with a fatty ester selected from fatty methyl esters, fatty ethyl esters, and fatty triglycerides in the presence of a catalyst selected from the group consisting of tri- lithium phosphate, trisodium phosphate, tripotassium phosphate, tetrasodium pyrophosphate, pentapotassium tripolyphosphate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate
  • the amount of catalyst is preferably from about 0.5 mole % to about 50 mole %, more preferably from about 2.0 mole % to about 10 mole %, on an N-alkyl or N-hydroxyalkyl-glucamine molar basis.
  • the reaction is preferably carried out at from about 138 * C to about 170 * C for typically from about 20 to about 90 minutes.
  • the reaction is also preferably carried out using from about 1 to about 10 weight % of a phase transfer agent, calculated on a weight percent basis of total reaction mixture, selected from saturated fatty alcohol polyethoxyl- ates, alkylpolyglucosides, linear glucamide surfactant, and mixtures thereof.
  • this process is carried out as follows:
  • N-linear glucosyl fatty acid amide product is added to the reaction mixture, by weight of the reactants, as the phase transfer agent if the fatty ester is a triglyceride. This seeds the reaction, thereby increasing reaction rate.
  • a detailed experimental procedure is provided below in the section entitled Experimental .
  • polyhydroxy "fatty acid” amide materials used herein also offer the advantages to the detergent formulator that they can be prepared wholly or primarily from natural, renewable, non-petro ⁇ chemical feedstocks and are degradable. They also exhibit low toxicity to aquatic life.
  • the processes used to produce them will also typically produce quantities of nonvolatile by-product such as esteramides and cyclic polyhydroxy fatty acid amide.
  • the level of these by-products will vary depending upon the particular reactants and process conditions.
  • the polyhydroxy fatty acid amide incorporated into the detergent compositions hereof will be provided in a form such that the polyhydroxy fatty acid amide-containing composition added to the detergent contains less than about 10%, preferably less than about 4%, of cyclic polyhydroxy fatty acid amide.
  • the preferred processes described above are advantageous in that they can yield rather low levels of by-products, including such cyclic amide by-product.
  • the detergent compositions of the present invention contain magnesium in a molar amount corresponding to 0.1X-2.0X, preferably from 0.2X-1.7X, more preferably from 0.3X-1.5X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in such detergent compositions.
  • individual anionic surfactants can be made as aqueous solutions of alkali metal or ammonium salts which are then mixed together with a hydrotrope, after which the magnesium can be introduced as a water soluble salt, such as the chloride or sulfate.
  • a water soluble salt such as the chloride or sulfate.
  • Optional minor ingredients may then be added before pH and viscosity are adjusted.
  • This method has the advantage of utilizing conventional techniques and equipment but does result in the introduction of additional chloride or sulfate ions which can increase the chill point temperature (the temperature at which inorganic salts precipitate as crystals in the liquid).
  • the magnesium can be added by neutralization of the acid with a magnesium oxide or magnesium hydroxide slurry in water. This technique avoids the addition of chloride and sulfate ions. The neutralized surfactant salts and the hydrotrope are then added to the final mixing tank and any optional ingredients are added before adjusting the pH.
  • a third technique is to add the anionic sulfate or sulfonate surfactant as a magnesium sulfate salt.
  • any magnesium desired in molar excess of anionic surfactant can be added in one of the other methods identified herein, or by methods known to those skilled in the art.
  • the detergent compositions of the present invention are liquid detergent compositions.
  • These preferred liquid detergent compositions comprise from about 95% to about 35% by weight, preferably from about 90% to about 50% by weight, most preferably from about 80% to about 60% by weight of a liquid carrier, e.g., water, preferably a mixture of water and a C1-C4 monohydric alcohol (e.g., ethanol, propanol, isopropanol, butanol, and mixtures thereof), with ethanol being the preferred alcohol.
  • a liquid carrier e.g., water, preferably a mixture of water and a C1-C4 monohydric alcohol (e.g., ethanol, propanol, isopropanol, butanol, and mixtures thereof), with ethanol being the preferred alcohol.
  • a liquid carrier e.g., water, preferably a mixture of water and a C1-C4 monohydric alcohol (e.g., ethanol, propanol, isopropanol
  • liquid detergent compositions hereof will preferably be formulated such that during use in aqueous cleaning operations the wash water will have a pH of between about 5.5 and about 9.5, more preferably between about 6.5 and about 8.0.
  • Liquid product formulations preferably have a pH in the range of from about 5.0 to about 10.5, preferably from about 6.0 to about 9.0, most preferably from about 6.5 to about 7.5.
  • Techniques for controlling pH at recommended usage levels include the use of buffers, alkali, acids, etc., and are well known to those skilled in the art. Thickening Aoent
  • the detergent compositions of the present invention may also be in the form of a gel.
  • Such compositions are typically formulated in the same manner as liquid detergent compositions, except they contain an additional thickening agent.
  • any material or materials which can be admixed with the aqueous liquid to provide shear-thinning compositions having sufficient yield values can be used in the compositions of this invention.
  • Materials such as colloidal silica, particulate polymers, such as polystyrene and oxidized polystyrene, combinations of certain surfactants, and water-soluble polymers such as polyacrylate are known to provide yield values.
  • a preferred thickening agent useful in the compositions of the present invention is a high molecular weight polycarbox late polymer thickener.
  • high molecular weight it is meant from about 500,000 to about 5,000,000, preferably from about 750,000 to about 4,000,000.
  • the polycarboxylate polymer may be a carboxyvinyl polymer.
  • carboxyvinyl polymer Such compounds are disclosed in U.S. Patent 2,798,053, which is incorporated herein by reference. Methods for making carboxyvinyl polymers are also disclosed in Brown, and are also incorporated herein by reference.
  • a carboxyvinyl polymer is an interpoly er of a monomeric mixture comprising a monomeric olefinically unsaturated carboxylic acid, and from about 0.1% to about 10% by weight of the total monomers of a polyether of a polyhydric alcohol, which polyhydric alcohol contains at least four carbon atoms to which are attached at least three hydroxyl groups, the polyether containing more than one alkenyl group per molecule.
  • Other monoolefinic monomeric materials may be present in the monomeric mixture if desired, even in predomi ⁇ nant proportion.
  • Carboxyvinyl polymers are substantially insoluble in liquid, volatile organic hydrocarbons and are dimensionally stable on exposure to air.
  • Preferred polyhydric alcohols used to produce carboxyvinyl polymers include polyols selected from the class consisting of oligosaccharides, reduced derivatives thereof in which the carbonyl group is converted to an alcohol group, and pentaerythritol; more preferred are oligosaccharides, most preferred is sucrose. It is preferred that the hydroxyl groups of the polyol which are modified be etherified with ally! groups, the polyol having at least two ally! ether groups per polyol molecule. When the polyol is sucrose, it is preferred that the sucrose have at least about five allyl ether groups per sucrose molecule. It is preferred that the polyether of the polyol comprise from about 0.1% to about 4% of the total monomers, more preferably from about 0.2% to about 2.5%.
  • Preferred monomeric olefinically unsaturated carboxylic acids for use in producing carboxyvinyl polymers used herein include monomeric, polymerizable, alpha-beta onoolefinically unsaturated lower aliphatic carboxylic acids; more preferred are monomeric monoolefinic acrylic acids of the structure
  • R CH2 - C - COOH herein R is a substituent selected from the group consisting of hydrogen and lower alkyl groups; most preferred is acrylic acid.
  • Carboxyvinyl polymers useful in formulations of the present invention have a molecular weight of at least about 750,000. Pre ⁇ ferred are highly cross-linked carboxyvinyl polymers having a molecular weight of at least about 1,250,000. Also preferred are carboxyvinyl polymers having a molecular weight of at least about 3,000,000, which may be less highly cross-linked.
  • Carboxyvinyl polymers useful in formulations of the present invention include Carbopol 910 having a molecular weight of about 750,000; preferred is Carbopol 941 having a molecular weight of about 1,250,000, and more preferred are Carbopol 934 and 940 having molecular weights of about 3,000,000 and 4,000,000, respec ⁇ tively.
  • Carbopol 934 is a very slightly cross-linked carboxyvinyl polymer having a molecular weight of about 3,000,000. It has been described as a high molecular weight polyacrylic acid cross-linked with about 1% of polyallyl sucrose having an average of about 5.8 allyl groups for each molecule of sucrose.
  • Additional polycarboxylate polymers useful in the present invention are Sokolan PHC-25 R , a polyacrylic acid available from BASF Corp., and Gantrez R a poly(methyl vinyl ether/maleic acid) interpolymer available from GAF Corp.
  • Preferred polycarboxylate polymers of the present invention are non-linear, water-dispersible, polyacrylic acid cross-linked with a polyalkenyl polyether and having a molecular weight of from about 750,000 to about 4,000,000.
  • polycarboxylate polymer thickeners are the Carbopol 600 series resins available ⁇ -om B. F. Goodrich. Especially preferred are Carbopol 616 and ⁇ It is believed that these resins are more highly cross-linked thcii the 900 series resins and have molecular weights between about 1,000,000 and 4,000,000. Mixtures of polycarboxylate polymers as herein described may also be used in the present invention. Particularly preferred is a mixture of Carbopol 616 and 617 series resins.
  • the polycarboxylate polymer thickener is utilized preferably with essentially no clay thickening agents. In fact, it has been found that if the polycarboxylate polymers of the present invention are utilized with clay in the composition of the present invention, a less desirable product, in terms of phase instability, results. In other words, the polycarboxylate polymer is preferably used instead of clay as a thickening/stabilizing agent in the present compositions.
  • the polycarboxylate polymer also provides a reduction in what is commonly called “bottle hang-up". This term refers to the inability to dispense all of the dishwashing detergent product from its container. Without intending to be bound by theory, it is believed that the thickened compositions of the present invention provide this benefit because the force of cohesion of the composition is greater than the force of adhesion to the container wall. With clay thickener systems, which most cc-imercially available products contain, bottle hang-up can be a significant problem under certain conditions.
  • the long chain molecules of the polycarboxylate polymer thick ⁇ ener help suspend solids in the thickened detergent compositions of the present invention and help keep the matrix expanded.
  • the polymeric material is also less sensitive than clay thickeners to destruction due to repeated shearing, such as occurs when the composition is vigorously mixed.
  • polycarboxylate polymer is used as a thickening agent in the compositions of the present invention, it is typically present _ _
  • the thickening agents are used to provide a yield value of from about 50 to about 350 and most preferably from about 75 to about 250. Yield Value Analysis
  • the yield value is an indication of the shear stress at which the gel strength is exceeded and flow is initiated. It is measured herein with a Brookfield RVT model viscometer with a T-bar B spindle at 25°C utilizing a Helipath drive upward during associated readings. The system is set to 0.5 rpm and a reading is taken for the composition to be tested after 30 seconds or after the system is stable. The system is stopped and the rpm is reset to 1.0 rpm. A reading is taken for the same composition after 30 seconds or after the system is stable. Stress at zero shear is equal to two times the 0.5 rpm reading minus the reading at 1.0 rpm. The yield value is calculated as the stress at zero shear times 18.8 (conversion factor).
  • Optional Components is an indication of the shear stress at which the gel strength is exceeded and flow is initiated. It is measured herein with a Brookfield RVT model viscometer with a T-bar B spindle at 25°C utilizing a Helipath drive upward during associated readings. The system
  • anionic surfactants useful for detersive purposes can also be included in the compositions hereof.
  • exemplary, non-limiting useful anionics include salts (e.g., sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkyl glycerol sulfonates 1,082,179, C8-C22 alkylsulfates, C8-C24 alkylpolyglycolether- sulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty acyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, alkyl phosphates, isethionates such as the acyl isethionates, acyl taurates, fatty acid amides, alkyl succinates and sulfosuccinates, acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds having already been described herein), alkyl ether carbonates
  • Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • the polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from 6 to 12 carbon atoms in either a straight- or branched-chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100, and X-102, all marketed by the Rohm & Haas Company.
  • the condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl gro * ⁇ containing froir. about 10 to about 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • nonionic surfactants of this type include TergitolTM 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolT 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-6.5 (the condensation product of C12-C13 linear alcohol with 6.5 moles of ethylene oxide), NeodolTM 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide), NeodolT 45-4 (the condensation product of C14-C15 linear alcohol with 4 moles of ethylene oxide), marketed by Shell Chemical Company, and KyroTM EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company.
  • the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
  • the addition of pol oxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation prod ⁇ uct, which corresponds to condensation with up to about 40 moles of ethylene oxide.
  • Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from 10 to 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from 1 to 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
  • R 3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from 8 to 22 carbon atoms
  • R 4 is an alkylene or hydroxyal ylene group containing from 2 to 3 carbon atoms or mixtures thereof
  • x is from 0 to 3
  • each R 5 is an alkyl or hydroxyalkyl group containing from 1 to 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include Cio-Ci ⁇ alkyl dimethyl amine oxides and C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides.
  • Any reducing saccharide contain ⁇ ing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • a polyalkylene- oxide chain joining the hydrophobic moiety and the polysaccharide moiety.
  • the preferred alkyleneoxide is ethylene oxide.
  • Typical hydrophobic groups include alkyl groups, either saturated or unsatu ⁇ rated, branched or unbranched containing from 8 to 18, preferably from 10 to 16, carbon atoms.
  • the alkyl group is a straight-chain saturated alkyl group.
  • the alkyl group can contain up to 3 hydroxyl groups and/or the pol alkyleneoxide chain can contain up to 10, preferably less than 5, alkyleneoxide moieties.
  • Suitable alkyl polysaccharides are octyl, nonyldecyl, undecyldo- decyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses.
  • Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
  • the preferred alkylpolyglycosides have the formula
  • R2 ⁇ (C n H2nO)t(glycosyl) x wherein R is selected from the group consisting of alkyl, alkyl- phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14 carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
  • the glycosyl is preferably derived from glucose.
  • the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position).
  • the additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
  • R 6 is an alkyl group containing from 7 to 21, preferably from 9 to 17, carbon atoms and each R? is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and -(C2H4 ⁇ ) ⁇ H where x varies from about 1 to about 3.
  • Preferred amides are C8-C20 ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides.
  • Other Surfactants are C8-C20 ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides.
  • Ampholytic surfactants may also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight-branched chains.
  • One of the aliphatic substituents contains at least 8 carbon atoms, typically from 8 to 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975, at column 19, lines 18-35 (herein incorporated by reference) for examples of useful ampholytic surfactants.
  • Zwitterionic surfactants may also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, deriva ⁇ tives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975, at column 19, line 38 through column 22, line 48 (herein incorporated by reference) for examples of useful zwitterionic surfactants.
  • ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • Betaine and sulfobetaine (“sultaine”) surfactants, and mixtures thereof, are especially preferred for use herein.
  • Preferred addit ' inal surfactants are anionic and nonionic surfactants.
  • Preferred nonionic surfactants include polyethylene, polypropylene and polybutylene oxide condensates of alkyl phenols; the alkyl ethoxylate condensation products of aliphatic alcohols with ethylene oxide; the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol; the condensation product of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine; alkylpolysaccharides, more oreferably alkylpolysaccharides having a hydrophobic group containing from about 6 to about 30 carbon atoms and a polysaccharide group containing from about 1.3 to about 10 saccharide units; fatty acid amides; and mixtures thereof.
  • these optional additional surfactants are typically present at a concentration of from about 1.0% to about 15%, preferably from about 2% to about 10% by weight.
  • detergency builders either of the organic or inorganic type, although such builders in general are not preferred for use in the composition of the present invention.
  • water-soluble inorganic builders which can be used, either alone or in admixture with themselves or with organic alkaline sequestrant builder salts, are glycine, alkyl and alkenyl succinates, alkali metal carbonates, phosphates, polyphosphates, and silicates.
  • Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, potassium carbonate, sodium pyrophosphate, potassium pyrophosphate, potassium tripolyphosphate, and sodium hexametaphosphate.
  • alkali metal polycarboxylates examples of which include, but are not limited to, water-soluble citrates such as sodium and potassium citrate, sodium and potassium tartrate, sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(2-hydroxy- ethyl)-ethylene diamine triacetates, sodium and potassium nitrilo triacetates, sodium and potassium N-(2-hydroxyethyl)-nitrilo diacetates, sodium and potassium oxydisuccinates, and sodium and potassium tartrate mono- and di-succinates, such as those described in U.S.
  • water-soluble citrates such as sodium and potassium citrate, sodium and potassium tartrate, sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(2-hydroxy- ethyl)-ethylene diamine triacetates, sodium and potassium nitrilo triacetates, sodium and potassium N-(2-hydroxyethyl)-nitrilo diacetates, sodium and potassium
  • Patent 4,663,071 (Bush et al., issued May 5, 1987), the disclosure of which is incorporated herein.
  • Other organic detergency builders such as water-soluble phosphonates, can be used in the compositions of the present invention.
  • detergency builders in general have limited value when the compositions of the present invention are in the form of light-duty liquid dishwashing detergent compositions. If included in the compositions of the present invention, these optional builders are typically present at a concentration of from about 1.0% to about 10%, preferably from about 2% to about 5% by weight.
  • Diluents can be inorganic salts, such as sodium and potassium sulfate, ammonium chloride, sodium and potassium chloride, sodium bicarbonate, etc.
  • Diluents useful in the compositions of the present invention are typically present at levels of from about 1% to about 10%, preferably from about 2% to about 5% by weight.
  • Solvents useful herein include water and lower molecular weight alcohols, such as ethyl alcohol, isopropyl alcohol, etc. Solvents useful in the compositions of the present invention are typically present at levels of from about 1% to about 60%, preferably from about 5% to about 50% by weight.
  • Hydrotropes such as sodium and potassium toluene sulfonate, sodium and potassium xylene sulfonate, sodium and potassium cumene sulfonate, trisodium and tripotassium sulfosuccinate, and related compounds (as disclosed in U.S. Patent 3,915,903, the disclosure of which is incorporated herein) can be utilized in the interests of achieving a desired product phase stability and viscosity. It has been found that the hydrotropes can have a positive effect on the suds benefit of the present invention. While not intending to be bound by theory, it is believed that this benefit is due to the viscosity characteristics of such hydrotropes. Hydrotropes useful in the compositions of the present invention are typically present at levels of from about 1% to about 10%, preferably from about 2% to about 7% by weight.
  • Optional ingredients useful when the compositions of the present invention are used in liquid dishwashing detergent applications include drainage promoting ethoxylated nonionic surfactants of the type disclosed in U.S. Patent 4,316,824, issued to Pancheri on February 23, 1982, the disclosure of which is incorporated herein.
  • compositions of the present invention are beneficial in that they provide unexpected improved sudsing and grease cleaning performance and clean dishes without imparting a "greasy" feel to the cleaned dish, which is especially important in consumer markets where the cleanliness of a dish is judged by the lack of such a "greasy” feel.
  • additional benefits of the compositions of the present invention are their ease of rinsing and that they reduce the slippery feel associated with typical liquid detergent compositions. This is important in consumer markets where such a "slippery" feel is not favored and is viewed as resulting from incomplete rinsing of surfactants from the dish surface.
  • soiled dishes are contacted with an effective amount, typically from about 0.5 ml. to about 20 ml. (per 25 dishes being treated), preferably from about 3 ml. to about 10 ml., of the composition of the present invention.
  • the actual amount of liquid detergent composition used will be based on the judgement of user, and will typically depend upon factors such as the particular product formulation of the composition, including the concentration of active ingredient in the composition, the number of soiled dishes to be cleaned, the degree of soiling on the dishes, and the like.
  • the particular product formulation in turn, will depend upon a number of factors, such as the intended market (i.e., U.S., Europe, Japan, etc.) for the composition product.
  • a liquid detergent composition in a typical U.S. application, from about 3 ml. to about 15 ml., preferably from about 5 ml. to about 10 ml. of a liquid detergent composition is combined with from about 1,000 ml. to about 10,000 ml., more typically from about 3,000 ml. to about 5,000 ml. of water in a sink having a volumetric capacity in the range of from about 5,000 ml. to about 20,000 ml., more typically from about 10,000 ml. to about 15,000 ml.
  • the detergent composition has a surfactant mixture concentration of from about 21% to about 44% by weight, preferably from about 25% to about 40% by weight.
  • the soiled dishes are immersed in the sink containing the detergent composition and water, where they are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article.
  • the cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user.
  • the contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface. In a typical European market application, from about 3 ml . to about 15 ml., preferably from about 3 ml. to about 10 ml.
  • a liquid detergent composition is combined with from about 1,000 ml. to about 10,000 ml., more typically from about 3,000 ml. to about 5,000 ml. of water in a sink having a volumetric capacity in the range of from about 5,000 ml. to about 20,000 ml., more typically from about 10,000 ml. to about 15,000 ml.
  • the detergent composition has a surfactant mixture concentration of from about 21% to about 44% by weight, preferably from about 25% to about 35% by weight.
  • the soiled dishes are immersed in the sink containing the detergent composition and water, where they are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article.
  • the cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user.
  • the contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface.
  • a detergent composition in a typical Latin American and Japanese market application, from about 1 ml. to about 50 ml., preferably from about 2 ml. to about 10 ml. of a detergent composition is combined with from about 50 ml. to about 2,000 ml., more typically from about 100 ml. to about 1,000 ml. of water in a bowl having a volumetric capacity in the range of from about 500 ml. to about 5,000 ml., more typically from about 500 ml. to about 2,000 ml.
  • the detergent composition has a surfactant mixture concentration of from about 5% to about 40% by weight, preferably from about 10% to about 30% by weight.
  • the soiled dishes are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article.
  • the cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user.
  • the contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface.
  • Another method of use will comprise immersing the soiled dishes into a water bath which is absent any liquid dishwashing detergent.
  • a device for absorbing liquid dishwashing detergent such as a sponge, is placed directly into a separate quantity of undiluted liquid dishwashing composition for a period of time typically ranging from about 1 to about 5 seconds.
  • the absorbing device, and consequently the undiluted liquid dishwashing composition is then contacted individually to the surface of each of the soiled dishes to remove said soiling.
  • the absorbing device is typically contacted with each dish surface for a period of time range from about 1 to about 10 seconds, although the actual time of application will be dependent upon factors such as the degree of soiling of the dish.
  • the contacting of the absorbing device to the dish surface is preferably accompanied by concurrent scrubbing.
  • one suitable apparatus for use herein comprises a three-liter four-necked flask fitted with a motor-driven paddle stirrer and a thermometer of length sufficient to contact the reaction medium.
  • the other two necks of the flask are fitted with a nitrogen sweep and a wide-bore side-arm (caution: a wide-bore side-arm is important in case of very rapid methanol evolution) to which is connected an efficient collecting condenser and vacuum outlet.
  • the latter is connected to a nitrogen bleed and vacuum gauge, then to an aspirator and a trap.
  • a 500 watt heating mantle with a variable transformer temperature controller (“Variac”) used to heat the reaction is so placed on a lab-jack that it may be readily raised or lowered to further control temperature of the reaction.
  • Variac variable transformer temperature controller
  • N-methylglucamine (195 g., 1.0 mole, Aldrich, M4700-0) and methyl laurate (Procter & Gamble CE 1270, 220.9 g., 1.0 mole) are placed in a flask.
  • the solid/liquid mixture is heated with stirring under a nitrogen sweep to form a melt (approximately 25 minutes).
  • catalyst anhydrous powdered sodium carbonate, 10.5 g., 0.1 mole, J. T. Baker
  • the nitrogen sweep is shut off and the aspirator and nitrogen bleed are adjusted to give 5 inches (5/31 atm.) Hg. vacuum. From this point on, the reaction temperature is held at 150 * C by adjusting the Variac and/or by raising or lowering the mantle.
  • compositions are formulated on a weight percent basis. These compositions are prepared according to the description set forth below:
  • a surfactant paste is initially formed by combining any desired surfactants with water and alcohol.
  • the surfactants contained in this surfactant paste include the polyhydroxy fatty acid amides of the present invention.
  • the surfactant paste should be pumpable at room or elevated temperatures.
  • a large mixing vessel having a propeller mixer three-quarters of the water of the formulated product, one-half of the alcohol of the formulated product, and any required hydrotropes (e.g., xylene, cumene, toluene sulfonates) are combined with mixing to give a clear solution.
  • Magnesium is added next, followed by the surfactant paste, to form a mixture.
  • the magnesium may be added directly to the mixing vessel as magnesium chloride, magnesium sulfate, or as magnesium oxide or hydroxide powder.
  • the magnesium oxide or hydroxide powder is added to the acid form of the surfactant salts (e.g, alkyl benzene sulfonates, alkyl sulfates, alkyl ethoxylated sulfates, methyl ester sulfonates, etc.) in the surfactant paste.
  • the surfactant salts e.g, alkyl benzene sulfonates, alkyl sulfates, alkyl ethoxylated sulfates, methyl ester sulfonates, etc.
  • the pH of the magnesium-containing surfactant paste is then adjusted by using NaOH or KOH solutions.
  • the mixture is mixed until a homogenous, clear solution product is obtained. Additional water, alcohol, and any desired additional hydrotropes (added as a solution) may then be added to trim the solution product viscosity to the desired level, ideally between 50 and 1000 cps, as measured by a Brookfield viscometer at 70°F.
  • the pH of the solution product is then adjusted with either HCl or NaOH to a level of 7.0 ⁇ 0.7 for formulas containing ammonium ions, and 8.5 + 1.5 for formulas which do not contain ammonium ions.
  • Perfume, dye and other ingredients are added as the last step.
  • Lytron can be added directly as a dispersion with mixing.
  • Ethylene glycol distearate must be added in a molten state with rapid mixing to form the desired pearlescent crystals.
  • EXAMPLE II The following compositions are formulated on a weight percent basis. These compositions are prepared in same manner as the compositions of Example I.
  • Component A C12-14 al kyl
  • EXAMPLE III The following compositions are formulated on a weight percent basis. These compositions are prepared in same manner as the compositions of Example I.
  • EXAMPLE IV The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
  • EXAMPLE V The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
  • EXAMPLE VI The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
  • detergent compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
  • EXAMPLE VIII An alternate method for preparing the polyhydroxy fatty acid amides used herein is as follows. A reaction mixture consisting of 84.87g. fatty acid methyl ester (source: Procter & Gamble methyl ester CE1270), 75g. N-methyl-D-glucamine (source: Aldrich Chemical Company M4700-0), 1.04g. sodium methoxide (source: Aldrich Chemical Company 16,499-2), and 68.51g. methyl alcohol is used. The reaction vessel comprises a standard reflux set-up fitted with a drying tube, condenser and stir bar. In this procedure, the N-methyl glucamine is combined with methanol with stirring under argon and heating is begun with good mixing (stir bar; reflux).
  • the ester and sodium methoxide catalyst are added. Samples are taken periodically to monitor the course of the reaction, but it is noted that the solution is completely clear by 63.5 minutes. It is judged that the reaction is, in fact, nearly complete at that point.
  • the reaction mixture is maintained at reflux for 4 hours. After removal of the methanol, the recovered crude product weighs 156.16 grams. After vacuum drying and purification, an overall yield of 106.92 grams purified product is recovered. However, percentage yields are not calculated on this basis, inasmuch as regular sampling throughout the course of the reaction makes an overall percentage yield value meaningless.
  • the reaction can be carried out at 80% and 90% reactant concentrations for periods up to 6 hours to yield products with extremely small by-product formation.
  • the polyhydroxy fatty acid amides are, by virtue of their amide bond, subject to some instability under highly basic or highly acidic conditions. While some decomposition can be tolerated, it is preferred that these materials not be subjected to pH's above about 11, preferably 10, nor below about 3 for unduly extended periods. Final product pH (liquids) is typically 7.0-9.0. During the manufacture of the polyhydroxy fatty acid amides it will typically be necessary to at least partially neutralize the base catalyst used to form the amide bond. While any acid can be used for this purpose, the detergent formulator will recognize that it is a simple and convenient matter to use an acid which provides an anion that is otherwise useful and desirable in the finished detergent composition.
  • citric acid can be used for purposes of neutralization and the resulting citrate ion (ca. 1%) be allowed to remain with a ca. 40% polyhydroxy fatty acid amide slurry and be pumped into the later manufacturing stages of the overall detergent-manufacturing process.
  • the acid forms of materials such as oxydisuccinate, nitrilotriacetate, ethylenediaminetetraacetate, tartrate/succinate, and the like, can be used similarly.
  • the polyhydroxy fatty acid amides derived from coconut alkyl fatty acids are more soluble than their tallow alkyl (predominantly C 16 -C 18 ) counterparts. Accordingly, the C 12 -C 14 materials are somewhat easier to formulate in liquid compositions, and are more soluble in cool-water laundering baths. However, the C 16 -C 18 materials are also quite useful, especially under circumstances where warm-to-hot wash water is used. Indeed, the C 16 -C 18 materials may be better detersive surfactants than their c i 2 _c i counterparts. Accordingly, the formulator may wish to balance ease-of-manufacture vs. performance when selecting a particular polyhydroxy fatty acid amide for use in a given formulation.
  • solubility of the polyhydroxy fatty acid amides can be increased by having points of unsaturation and/or chain branching in the fatty acid moiety.
  • materials such as the polyhydroxy fatty acid amides derived from oleic acid and iso-stearic acid are more soluble than their n-alkyl counterparts.
  • polyhydroxy fatty acid amides prepared from disaccharides, trisaccharides, etc. will ordinarily be greater than the solubility of their monosaccharide-derived counterpart materials. This higher solubility can be of particular assistance when formulating liquid compositions.
  • polyhydroxy fatty acid amides wherein the p " "yhydroxy group is derived from maltose appear to function especially well as detergents when used in combination with conventional alkylbenzene sulfonate ("LAS") surfactants.
  • LAS alkylbenzene sulfonate
  • the polyhydroxy fatty acid amides can be manufactured not only from the purified sugar; but also from hydrolyzed starches, e.g., corn starch, potato starch, or any other convenient plant-derived starch which contains the mono-, di-, etc. saccharide desired by the formulator. This is of particular importance from the economic standpoint. Thus, "high glucose” corn syrup, "high maltose” corn syrup, etc. can conveniently and economically be used. De-lignified, hydrolyzed cellulose pulp can also provide a raw material source for the polyhydroxy fatty acid amides.
  • the formu ⁇ lator may elect to use a raw material comprising a high glucose corn syrup, for example, but to select a syrup which contains a modicum of maltose (e.g., 1% or more).
  • polyhydroxy fatty acid amides prepared from mixed sugars can offer very substantial advant ⁇ ages with respect to performance and/or ease-of-formulation. In some instances, however, some loss of grease removal performance (dishwashing) may be noted at fatty acid maltamide levels above about 25% and some loss in sudsing above about 33% (said percentages being the percentage of maltamide-derived polyhydroxy fatty acid amide vs.
  • glucose-derived polyhydroxy fatty acid amide in the mixture may vary somewhat, depending on the chain length of the fatty acid moiety.
  • the formulator electing to use such mixtures may find it advantageous to select polyhydroxy fatty acid amide mixtures which contain ratios of monosaccharides (e.g., glucose) to di- and higher saccharides (e.g., maltose) from about 4:1 to about 99:1.
  • formulator of, for example, solid, typically granular, detergent compositions may find it convenient to run the process at
  • solvents which comprise ethoxylated alcohols, such as the ethoxylated (EO 3-8) C 12 -C 14 alcohols, such as those available as NEODOL 23 E06.5 (Shell).
  • ethoxylated alcohols such as the ethoxylated (EO 3-8) C 12 -C 14 alcohols, such as those available as NEODOL 23 E06.5 (Shell).
  • EO 3-8 ethoxylated (EO 3-8) C 12 -C 14 alcohols, such as those available as NEODOL 23 E06.5 (Shell).
  • NEODOL 23 E06.5 Shell
  • T designation.
  • the industrial scale reaction sequence for preparing the preferred acyclic polyhydroxy fatty acid amides will comprise: Step 1 - preparing the N-alkyl polyhydroxy amine derivative from the desired sugar or sugar mixture by formation of an adduct of the N-alkyl amine and the sugar, followed by reaction with hydrogen in the presence of a catalyst; followed by Step 2 - reacting the aforesaid polyhydroxy amine with, preferably, a fatty ester to form an amide bond. While a variety of N-alkyl polyhydroxy amines useful in Step 2 of the reaction sequence can be prepared by various art-disclosed processes, the following process is convenient and makes use of economical sugar syrup as the raw material.
  • Adduct Formation The following is a standard process in which about 420 g of about 55% glucose solution (corn syrup - about 231 g glucose - about 1.28 moles) having a Gardner Color of less than 1 is reacted with about 119 g of about 50% aqueous methylamine (59.5 g of methylamine - 1.92 moles) solution.
  • the methylamine (MMA) solution is purged and shielded with N 2 and cooled to about 10*C, or less.
  • the corn syrup is purged and shielded with N 2 at a temperature of about 10*-20 * C.
  • the corn syrup is added slowly to the MMA solution at the indicated reaction temperature as shown.
  • the Gardner Color is measured at the indicated approximate times in minutes.
  • the Gardner Color for the adduct is much worse as the temperature is raised above about 30*C and at about 50 * C, the time that the adduct has a Gardner Color below 7 is only about 30 minutes. For longer reaction, and/or holding times, the temperature should be less than about 20 * C.
  • the Gardner Color should be less than about 7, and preferably less than about 4 for good color glucamine.
  • the time to reach substantial equilibrium concentration of the adduct is shortened by the use of higher ratios of amine to sugar.
  • equilibrium is reached in about two hours at a reaction temperature of about 30 * C.
  • the time is at least about three hours.
  • the combination of amine:sugar ratio; reaction temperature; and reaction time is selected to achieve substantially equilibrium conversion, e.g., more than about 90%, preferably more than about 95%, even more preferably more than about 99%, based upon the sugar, and a color that is less than about 7, preferably less than about 4, more preferably less than about 1, for the adduct.
  • the MMA adduct color (after substantial equilibrium is reached in at least about two hours) is as indicated.
  • the starting sugar material must be very near colorless in order to consistently have adduct that is acceptable.
  • the sugar has a Gardner Color of about 1, the adduct is sometimes acceptable and sometimes not acceptable.
  • the Gardner Color is above 1 the resulting adduct is unacceptable. The better the initial color of the sugar, the better is the color of the adduct.
  • the above procedure is repeated with about 23.1 g of Raney Ni catalyst with the following changes.
  • the catalyst is washed three times and the reactor, with the catalyst in the reactor, is purged twice with 200 psig H 2 and the reactor is pressurized with H 2 at 1600 psig for two hours, the pressure is released at one hour and the reactor is repressurized to 1600 psig.
  • the adduct is then pumped into the reactor which is at 200 psig and 20'C, and the reactor is purged with 200 psig H 2 , etc., as above.
  • the resulting product in each case is greater than about 95% N-methyl glucamine; has less than about 10 ppm Ni based upon the glucamine; and has a solution color of less than about Gardner 2.
  • the crude N-methyl glucamine is color stable to about 140'C for a short exposure time.
  • adduct that has low sugar content (less than about 5%, preferably less than about 1%) and a good color (less than about 7, preferably less than about 4 Gardner, more preferably less than about 1).
  • adduct is prepared starting with about 159 g of about 50% methylamine in water, which is purged and shielded with N 2 at about 10-20'C. About 330 g of about 70% corn syrup (near water-white) is degassed with N 2 at about 50'C and is added slowly to the methylamine solution at a temperature of less than about 20'C. The solution is mixed for about 30 minutes to give about 95% adduct that is a very light yellow solution.
  • About 190 g of adduct in water and about 9 g of United Catalyst G49B Ni catalyst are added to a 200 ml autoclave and purged three times with H 2 at about 20'C.
  • the H 2 pressure is raised to about 200 psi and the temperature is raised to about 50'C.
  • the pressure is raised to 250 psi and the temperature is held at about 50-55 ⁇ C for about three hours.
  • the product, which is about 95% hydrogenated at this point, is then raised to a temperature of about 85'C for about 30 minutes and the product, after removal of water and evaporation, is about 95% N-methyl glucamine, a white powder.
  • Ni content in the glucamine is about 100 ppm as compared to the less than 10 ppm in the previous reaction.
  • a 200 ml autoclave reactor is used following typical procedures similar to those set forth above to make adduct and to run the hydrogen reaction at various temperatures.
  • Adduct for use in making glucamine is prepared by combining about 420 g of about 55% glucose (corn syrup) solution (231 g glucose; 1.28 moles) (the solution is made using 99DE corn syrup from CarGill, the solution having a color less than Gardner 1) and about 119 g of 50% methylamine (59.5 g MMA; 1.92 moles) (from Air Products).
  • the adduct is used for the hydrogen reaction right after making, or is stored at low temperature to prevent further degradation.
  • the glucamine adduct hydrogen reactions are as follows:
  • the preparation of the tallow (hardened) fatty acid amide of N-methyl maltamine for use in detergent compositions according to this invention is as follows.
  • Step 1 - Reactants Maltose monohydrate (Aldrich, lot 01318KW); methylamine (40 wt% in water) (Aldrich, lot 03325TM); Raney nickel, 50% slurry (UAD 52-73D, Aldrich, lot 12921LW).
  • the reactants are added to glass liner (250 g maltose, 428 g methylamine solution, 100 g catalyst slurry - 50 g Raney Ni) and placed in 3 L rocking autoclave, which is purged with nitrogen (3X500 psig) and hydrogen (2X500 psig) and rocked under H 2 at room temperature over a weekend at temperatures ranging from 28'C to 50'C.
  • the crude reaction mixture is vacuum filtered 2X through a glass microfiber filter with a silica gel plug.
  • the fil ⁇ ate is concentrated to a viscous material.
  • the final traces of w&ter are azetroped off by dissolving the material in methanol and then removing the methanol/water on a rotary evaporator.
  • step 2 Reactants: N-methyl maltamine (from Step 1); hardened tallow methyl esters; sodium methoxide (25% in methanol); absolute methanol (solvent); mole ratio 1:1 amine:ester; initial catalyst level 10 mole % (w/r maltamine), raised to 20 mole %; solvent level 50% (wt.).
  • 20.36 g of the tallow methyl ester is heated to its melting point (water bath) and loaded into a 250 ml 3-neck round-bottom flask with mechanical stirring. The flask is heated to ca. 70'C to prevent the ester from solidifying.
  • the product is allowed to remain in the reaction flask at 110'C (external temperature) for 60 minutes.
  • the product is scraped from the flask and triturated in ethyl ether over a weekend.
  • Ether is removed on a rotary evaporator and the product is stored in an oven overnight, and ground to a powder. Any remaining N-methyl maltamine is removed from the product using silica gel.
  • a silica gel slurry in 100% methanol is loaded into a funnel and washed several times with 100% methanol.
  • a concentrated sample of the product (20 g in 100 ml of 100% methanol) is loaded onto the silica gel and eluted several times using vacuum and several methanol washes.
  • Step 1 of the foregoing reaction sequence can be conducted using commercial corn syrup comprising glucose or mixtures of glucose and,' typically, 5%, or higher, maltose.
  • the resulting polyhydroxy fatty acid amides and mixtures can be used in any of the detergent compositions herein.
  • Step 2 of the foregoing reaction sequence can be carried out in 1,2-propylene glycol or NEODOL.
  • the propylene glycol or NEODOL need not be removed from the reaction product prior to its use to formulate detergent compositions.
  • the methoxide catalyst can be neutralized by citric acid to provide sodium citrate, which can remain in the polyhydroxy fatty acid amide.
  • the compositions herein can contain more or less of various suds control agents.
  • various suds control agents for dishwashing high sudsing is desirable so no suds control agent will be used.
  • a wide v-riety of suds control agents are known in the art and can be routinely selected for use herein. Indeed, the selection of suds control agent, or mixtures of suds control agents, for any specific detergent composition will depend not only on the presence and amount of polyhydroxy fatty acid amide used therein, but also on the other surfactants present in the formulation.
  • silicone-based suds control agents of various types are more efficient (i.e lower levels can be used) than various other types of suds control agents.
  • the silicone suds control agents available as AE, X2-3419, Q2-3302 and DC-544 (Dow Corning) are particularly useful .
  • the formulator of fabric laundering compositions which can advantageously contain soil release agent has a wide variety of known materials to choose from (see, for example, U.S. Patents 3,962,152; 4,116,885; 4,238,531; 4,702,857; 4,721,5 ⁇ and 4,877,896).
  • Additional soil release materials useful herein include the nonionic oligomeric esterification product of a reaction mixture comprising a source of Cj-C 4 alkoxy-terminated polyethoxy units (e.g., CH 3 [0CH 2 CH 2 ]i 6 0H), a source of terephthaloyl units (e.g., dimethyl terephthalate); a source of poly(oxyethylene)oxy units (e.g., polyethylene glycol 1500); a source of oxyiso-propyleneoxy units (e.g., 1,2-propylene glycol); and a source of oxyethyleneoxy units (e.g., ethylene glycol) especially wherein the mole ratio of oxyethyleneoxy units:oxyiso-propyleneoxy units is at least about
  • a source of Cj-C 4 alkoxy-terminated polyethoxy units e.g., CH 3 [0CH 2 CH 2 ]i 6 0H
  • a source of terephthaloyl units e.
  • lk ll are each integers from about 6 to about 100; m is an integer of from about 0.75 to about 30; n is an integer from about 0.25 to about 20; and R 2 is a mixture of both H and CH 3 to provide a mole ratio of oxyethyleneox :oxyisopropyleneoxy of at least about 0.5:1.
  • soil release agent useful herein is of the general anionic type described in U.S. Patent 4,877,896, but with the condition that such agents be substantially free of monomers of the H0R0H type wherein R is propylene or higher alkyl.
  • the soil release agents of U.S. Patent 4,877,896 can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 1,2-propylene glycol and 3-sodiosulfobenzoic acid
  • these additional soil release agents can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 5-sodiosulfoisophthalate and 3-sodiosulfobenzoic acid.
  • Such agents are preferred for use in granular laundry detergents.
  • the formulator may also determine that it is advantageous to include a non-perborate bleach, especially in heavy-duty granular laundry detergents.
  • a non-perborate bleach especially in heavy-duty granular laundry detergents.
  • peroxygen bleaches are available, commercially, and can be used herein, but, of these, percarbonate is convenient and economical.
  • the compositions herein can contain a solid percarbonate bleach, normally in the form of the sodium salt, incorporated at a level of from 3% to 20% by weight, more preferably from 5% to 18% by weight and most preferably from 8% to 15% by weight of the composition.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na 2 C0 3 . 3H 2 0 2 , and is available commercially as a crystalline solid. Most commercially available material includes a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an amino-phosphonate, that is incorporated during the manufacturing process.
  • a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an amino-phosphonate
  • the percarbonate can be incorporate into detergent compositions without additional protection, but preferred embodiments of the invention utilize a coated form of the material.
  • sodium silicate Si0 2 :Na 2 0 ratio from 1.6:1 to 2.8:1, preferably 2.0:1, applied as an aqueous solution and dried to give a level of from 2% to 10% (normally from 3% to 5%), of silicate solids by weight of the percarbonate.
  • Magnesium silicate can also be used and a chelant such as one of those mentioned above can also be included in the coating.
  • the particle size range of the crystalline percarbonate is from 350 micrometers to 450 micrometers with a mean of approximately 400 micrometers. When coated, the crystals have a size in the range from 400 to 600 micrometers.
  • the percarbonate While heavy metals present in the sodium carbonate used to manufacture the percarbonate can be controlled by the inclusion of sequestrants in the reaction mixture, the percarbonate still requires protection from heavy metals present as impurities in other ingredients of the product. It has been found that the total level of iron, copper and manganese ions in the product should not exceed 25 ppm and preferably should be le s than 20 ppm in order to avoid an unacceptably adverse effect on percarbonate stability.
  • magnesium ion e.g., 1%, typically 0.15%-3.0% Mg Cl 2
  • Mg Cl 2 magnesium ion
  • Examples X A and B illustrate such compositions.
  • Examples X C and D illustrate superior grease-cutting compositions containing calcium ions. It is within the scope of the technology herein to provide mixed Mg/Ca compositions containing both Ca ++ and Mg ++ ions.
  • EXAMPLES X A-D The following Examples illustrate light duty liquid detergent compositions which are especially adapted for dishwashing and other hard surface cleaning operations.
  • the surfact- ants comprise various alkyl ethoxy sulfate surfactants which, using standard terminology, are abbreviated to indicate their average degree of ethoxylation; thus C 12 _ 13 E0(0.8) sulfate indicates a sulfated mixed C 12 -C 13 alcohol fraction having an average degree of ethoxylation of 0.8.
  • These anionic ethoxy sulfates are preferably used in their Na+ or NH 4 + salt form.
  • the C 12 - 13 amine oxide is a mixed C 12 . 13 (average) dimethyl amine oxide.
  • the C 12 _ 14 AP betaine is C 12 / 14 H 25 / 29 C0NH(CH 2 ) 3 N+(CH 3 ) 2 CH 2 C0 2 H.
  • the C 12 . 14 AP sultaine is C 12 /C 14 H 25 / 29 C0NH(CH 2 ) 3 N+(CH 3 ) 2 CH 2 CH(0H)CH 2 S0 3 H.
  • the C 12 . 14 DM betaine is C 12 / i4 H 25 / 29 N + (CH 3 ) 2 CH 2 C0 2 H.
  • the ethoxylated nonionic surfactant designated C 9 - X E0(8) refers to C 9 -C alcohols ethoxyl ⁇ ated with an average of 8 moles of ethylene oxide, respectively.
  • the Ca ++ and Mg ++ cations are conveniently introduced into the compositions as CaCl 2 and MgCl 2 .
  • the balance of the compositions comprises water and citrate/propylene glycol present in the gluca- mide surfactant (1-5%) and 1-3% cumene sulfonate or xylene sulfonate hydrotrope.
  • the pH is typically 6.8-7.4 (NH 4 + salts) or 7-8.2 (Na+ salts) .
  • EXAMPLE XI A granular laundry detergent composition suitable for use at the relatively high concentrations common to front-loading automatic washing machines, especially in Europe, and over a wide range of temperatures is as follows.
  • SOKALAN sodium poly-acrylate/maleate available from Hoechst.
  • X2-3419 is a silicone suds suppressor available from Dow Corning.
  • the procedure for preparing the granules comprises various tower-drying, agglomerating, dry-additions, etc., as follows. The percentages are based on the finished composition.
  • a surfactant mixture of 20% DOBANOL C 12 . 15 E0(3) and 80% C 16 -C 18 N-methyl glucose amide is obtained and coagglomerated with 10% sodium carbonate.
  • the above particle is then coagglomerated with a high active paste (70%) of a sodium salt of C 14 -C 15 alkyl sulfate and C 12 - 15 E°(3) sulfate and Zeolite A and extra sodium carbonate. This particle evidences a good dispersibility in cold water of the C 16 -C 18 N-methyl glucose amide.
  • the overall formulation of this particle (contribution to the detergent formulation after the drying of the agglomerate) is: C 16 -C 18 N-methyl glucose amide 4.1%
  • the silicone suds suppressor X2-3419 (95-97% high molecular weight linear silicone; 3%-5% hydrophobic silica) ex Dow Corning is coagglomerated with Zeolite A (2-5 ⁇ size), starch and stearyl alcohol binder. This particle has the following formulation: Zeolite A 0.22%
  • the detergent preparation exhibits excellent solubility, superior performance and excellent suds control when used in European washing machine, e.g., using 85 g detergent in a AEG-brand washing machine in 30'C, 40'C, 60'C and 90 ⁇ C cycles.
  • European washing machine e.g., using 85 g detergent in a AEG-brand washing machine in 30'C, 40'C, 60'C and 90 ⁇ C cycles.
  • the fatty acid glucamide surfactant can be replaced by an equivalent amount of the maltamide surfactant, or mixtures of glucamide/maltamide surfactants derived from plant sugar sources.
  • the use of ethanol- amides appears to help cold temperature stability of the finished formulations.
  • the use of sulfobetaine and/or amine oxide surfactants provides superior sudsing.
  • compositions where especially high sudsing is desired e.g., dishwashing
  • the formulator of high sudsing compositions will desirably avoid the introduction of suds-suppressing amounts of such fatty acids into high sudsing compositions with the polyhydroxy fatty acid amide, and/or avoid the formation of C 1 and higher fatty acids on storage of the finished compositions.
  • One simple means is to use C 12 ester reactants to prepare the polyhydroxy fatty acid amides herein. Fortunately, the use of amine oxide or sulfobetaine sur ⁇ factants •-an overcome sonv: f the negative sudsing effects caused by the fatty acids.
  • anionic optical brighteners to liquid detergents containing relatively high concentrations (e.g., 10% and greater) of anionic or polyanionic substituents such as the polycarboxylate builders may find it useful to pre-mix the bright- ener with water and the polyhydroxy fatty acid amide, and then to add the pre-mix to the final composition.
  • anionic or polyanionic substituents such as the polycarboxylate builders

Abstract

La présente invention décrit une composition détersive comprenant un ou plusieurs agent(s) tensio-actifs anioniques de sulfate ou de sulfonate; un ou plusieurs amide(s) d'acide gras de polyhydroxy de la formule (I) où R1 représente H, un hydrocarbyle C1-C4, 2-hydroxy éthyle, 2-hydroxy propyle, ou des mélanges de ceux-ci, R2 représente un hydrocarbyle C5-C31, et Z représente un polyhydroxyhydrocarbyle présentant une chaîne d'hydrocarbyle linéaire, au mois 3 groupes hydroxyles étant directement reliés à la chaîne, ou un dérivé alcoxylé de ce constituant; et du magnésium en une quantité molaire correspondant à 0,1X-2,0X, où X représente le nombre de moles de l'agent tensio-actif anionique de sulfate ou de sulfonate présent dans ladite composition. La présente invention décrit aussi un procédé servant à nettoyer de la vaisselle sale et qui consiste à traiter ladite vaisselle au moyen de la composition détersive décrite.The present invention describes a detergent composition comprising one or more anionic sulfate or sulfonate surfactant(s); one or more polyhydroxy fatty acid amide(s) of formula (I) wherein R1 represents H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or mixtures thereof, R2 represents a C5-C31 hydrocarbyl, and Z represents a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyl groups directly attached to the chain, or an alkoxylated derivative thereof; and magnesium in a molar amount corresponding to 0.1X-2.0X, where X represents the number of moles of anionic sulfate or sulfonate surfactant present in said composition. The present invention also describes a method for cleaning dirty dishes which comprises treating said dishes with the described detergent composition.

Description

DETERGENT COMPOSITIONS CONTAINING ANIONIC SURFACTANTS, POLYHYDROXY FATTY ACID AMIDES AND MAGNESIUM
TECHNICAL FIELD The present invention relates to detergent compositions com¬ prising one or more anionic sulfate or sulfonate surfactants, one or more polyhydroxy fatty acid amides and magnesium. In particular, it relates to detergent compositions which possess desirable cleaning and sudsing properties, are mild to the hand, and are especially suitable for use in dishwashing applications.
BACKGROUND OF THE INVENTION The use of anionic sulfated or sulfonated surfactants in detergent compositions is known. However, it would be desirable to incorporate such surfactants into detergent compositions which exhibit improved cleaning and sudsing performance.
It has now been found that detergent compositions containing one or more anionic sulfated or sulfonated detergent surfactants, one or more polyhydroxy fatty acid amides and magnesium exhibit sudsing and cleaning performance which is unexpectedly superior to the performance of anionic sulfated or sulfonated surfactants alone.
In addition to these performance benefits, such compositions are, when compared to anionic sulfated or sulfonated surfactants, milder to the hand, have improved rinsability, are not as slippery to the touch, and are easier to formulate due to a reduced need for process additives such as solvents and hydrotropes.
BACKGROUND ART The use of anionic sulfate or sulfonate surfactants in detergent compositions is known in the art. U.S. Patent 4,435,317 (Gerritson et al . , March 6, 1984), discloses liquid detergent compositions which contain alkyl sulfate, alkyl ether sulfate and alkylbenzene sulfonate surfactants. U.K. Patent Specification 809,060, assigned to Hedley & Co. Ltd., published February 18, 1959, discloses detergent compositions containing a sulfate or sulfonate surfactant with a particular polyhydroxy fatty acid amide.
The polyhydroxy fatty acid amide component contained in the composition of the present invention is also known in the art, as are several of its uses. N-acyl, N-methyl gluca ides, for example, are disclosed by J. W. Goodby, M. A. Marcus, E. Chin, and P. L. Finn in "The Thermotropic Liquid-Crystalline Properties of Some Straight Chain Carbohydrate Amphiphiles," Liquid Crystals, 1988, Volume 3, No. 11, pp. 1569-1581, and by A. Muller-Fahrnow, V. Zabel, M. Steifa, and R. Hilgenfeld in "Molecular and Crystal Structure of a Nonionic Detergent: Nonanoyl-N-methylglucamide," J. Chem. Soc. Chem. Commun., 1986, pp. 1573-1574. The use of N-alkyl polyhydrox amide surfactants has been of substantial interest recently for use in biochemistry, for example in the dissociation of biological membranes. See, for example, the journal article "N-D-Gluco-N-methyl-alkanamide Compounds, a New Class of Non-Ionic Detergents For Membrane Biochemistry," Biochem. J. (1982), Vol. 207, pp. 363-366, by J. E. K. Hildreth.
The use of N-alkyl glucamides in detergent compositions has also been discussed. U.S. Patent 2,965,576, issued December 20, 1960 to E. R. Wilson, and U.K. Patent Specification 809,060, already referred to herein, relate to detergent compositions containing anionic surfactants and certain amide surfactants, which can include N-methyl glucamide, added as a low temperature suds enhancing agent. These compounds include an N-acyl radical of a higher straight-chain fatty acid having 10-14 carbon atoms. These compositions may also contain auxiliary mater s such as alkali metal phosphates, alkali metal silicates, sulft. i, and carbonates. It is also generally indicated that additional constituents to impart desirable proper¬ ties to the composition can also be included in the compositions, such as fluorescent dyes, bleaching agents, perfumes, etc.
U.S. Patent 2,703,798, issued March 8, 1955 to A. M. Schwartz, relates to aqueous detergent compositions containing the condensa¬ tion reaction product of N-alkyl glucamine and an aliphatic ester of a fatty acid. The product of this reaction is said to be useable in aqueous detergent compositions without further purification. It is also known to prepare a sulfuric ester of acylated glucamine as disclosed in U.S. Patent 2,717,894, issued September 13, 1955, to A. M. Schwartz.
PCT International Application W0 83/04412, published December 22, 1983, by J. Hildreth, relates to amphiphilic compounds contain¬ ing polyhydroxyl aliphatic groups said to be useful for a variety of purposes including use as surfactants in cosmetics, drugs, shampoos, lotions, and eye ointments, as emulsifiers and dispensing agents for medicines, and in biochemistry for solubilizing membranes, whole cells, or other tissue samples, and for preparing liposomes. Included in this disclosure are compounds of the formula R'C0N(R)CH2RH and R"CON(R)R' wherein R is hydrogen or an organic grouping, R' is an aliphatic hydrocarbon group of at least three carbon atoms, and R" is the residue of an aldose.
European Patent 0 285 768, published October 12, 1988, H. Kelkenberg, et al., relates to the use of N-polyhydroxy alkyl fatty acid amides as thickening agents in aqueous detergent systems. Included are amides of the formula RjC(0)N(X)R2 wherein Ri is a Cι-Cχ7 (preferably C7-C17) alkyl, 2 is hydrogen, a Cj-Cis (preferably Cj-Cβ) alkyl, or an alkylene oxide, and X is a polyhydroxy alkyl having four to seven carbon atoms, e.g., N-methyl, coconut fatty acid glucamide. The thickening properties of the amides are indicated as being of particular use in liquid surfactant systems containing paraffin sulfonate, although the aqueous surfactant systems can contain other anionic surfactants, such as alkylaryl sulfonates, olefin sulfonate, sulfosuccinic acid half ester salts, and fatty alcohol ether sulfonates, and nonionic surfactants such as fatty alcohol polyglycol ether, alkylphenol polyglycol ether, fatty acid polyglycol ester, polypropylene oxide-polyethylene oxide mixed polymers, etc. Paraffin sulfonate/N-methyl coconut fatty acid glucamide/nonionic surfactant shampoo formulations are exemplified. In addition to thickening attributes, the N-polyhydroxy alkyl fatty acid amides are said to have superior skin tolerance attributes.
U.S. Patent 2,982,737, issued May 2, 1961, to Boettner, et al., relates to detergent bars containing urea, sodium lauryl sulfate anionic surfactant, and an N-alkylglucamide nonionic surfactant which is selected from N-methyl,N-sorbityl lauramide and N-methyl, N-sorbityl myristamide.
Other glucamide surfactants are disclosed, for example, in DT 2,226,872, published December 20, 1973, H. W. Eckert, et al . , which relates to washing compositions comprising one or more surfactants and builder salts selected from polymeric phosphates, sequestering agents, and washing alkalis, improved by the addition of an N-acyl- pol hydroxyalkyl mine of the formula RιC(0)N(R2)CH2(CHOH)nCH2θH, wherein Ri is a C1-C3 alkyl, R2 is a C10-C22 alkyl, and n is 3 or 4. The N-acylpolyhydroxyalkyl-amine is added as a soil suspending agent.
U.S. Patent 3,654,166, issued April 4, 1972, to H. W. Eckert, et al., relates to detergent compositions comprising at least one surfactant selected from the group of anionic, zwitterionic, and nonionic surfactants and, as a textile softener, an N-acyl, N-alkyl polyhydroxyalkyl compound of the formula RιN(Z)C(0)R2 wherein Ri is a C10-C22 alkyl, R2 is a C7-C21 alkyl, Ri and R2 total from 23 to 39 carbon atoms, and Z is a polyhydroxyalkyl which can be -CH2(CHOH)mCH2θH where m is 3 or 4.
U.S. Patent 4,021,539, issued May 3, 1977, to H. Mδller, et al., relates to skin treating cosmetic compositions containing N-polyhydroxyalkyl-amines which include compounds of the formula RlN(R)CH(CH0H)mR2 wherein Ri is H, lower alkyl, hydroxy-lower alkyl, or aminoalkyl, as well as heterocyclic aminoalkyl, R is the same as Rl but both cannot be H, and R2 is CH2OH or COOH.
French Patent 1,360,018, April 26, 1963, assigned to Commercial Solvents Corporation, relates to solutions of formaldehyde stabilized against polymerization with the addition of amides of the formula RC(0)N(Rι)G wherein R is a carboxylic acid functionality having at least seven carbon atoms, Ri is hydrogen or a lower alkyl group, and G is a glycitol radical with at least 5 carbon atoms.
German Patent 1,261,861, February 29, 1968, A. Heins, relates to glucamine derivatives useful as wetting and dispersing agents of the formula N(R)(Rι)(R2) wherein R is a sugar residue of glucamine, Rl is a C10-C20 alkyl radical, and R2 is a C1-C5 acyl radical.
G.B. Patent 745,036, published February 15, 1956, assigned to Atlas Powder Company, relates to heterocyclic amides and carboxylic esters thereof that are said to be useful as chemical intermediates, emulsifiers, wetting and dispersing agents, detergents, textile softeners, etc. The compounds are expressed by the formula N(R)(Rι)C(0)R2 wherein R is the residue of an anhydrized hexane pentol or a carboxylic acid ester thereof, Ri is a monovalent hydrocarbon radical, and -C(0)R2 is the acyl radical of a carboxylic acid having from 2 to 25 carbon atoms. U.S. Patent 3,312,627, issued April 4, 1967 to D. T. Hooker, discloses solid toilet bars that are substantially free of anionic detergents and alkaline builder materials, and which contain lithium soap of certain fatty acids, a nonionic surfactant selected from certain propylene oxide-ethylenediamine-ethylene oxide condensates, propylene oxide-propylene glycol-ethylene oxide condensates, and polymerized ethylene glycol, and also contain a nonionic lathering component which can include polyhydroxyamide of the formula RC(0)NRl(R2) wherein RC(0) contains from about 10 to about 14 carbon atoms, and Rl and R2 each are H or Ci-Cβ alkyl groups, said alkyl groups containing a total number of carbon atoms of from 2 to about 7 and a total number of substituent hydroxyl groups of from 2 to about 6. A substantially similar disclosure is found in U.S. Patent 3,312,626, also issued April 4, 1967 to D. T. Hooker.
The use of magnesium in detergent compositions is also known in the art. U.S. Patent 4,435,317, already referred to herein, discloses detergent compositions comprising magnesium and anionic surfactants.
However, there is nothing in the art which teaches the unexpectedly superior cleaning and sudsing performance, ease of rinsing, lack of "slippery" feel, and mildness to hand associated with the detergent compositions of the present invention which contain anionic sulfated or sulfonated surfactants, polyhydroxy fatty acid amides and magnesium.
It is therefore an object of the present invention to provide such detergent compositions which exhibit such properties.
It is another object of the present invention to provide a method for cleaning soiled dishes by treating said dishes with the particular detergent compositions described herein.
These objects are realized by the present invention. SUMMARY OF THE INVENTION
The present invention is directed to detergent compositions comprising from about 5% to about 65% by weight of a surfactant mixture comprising:
(a) from about 5% to about 95% by weight of one or more anionic sulfate or sulfonate surfactants; and
(b) from about 5% to about 95% by weight of one or more polyhydroxy fatty acid amides having the formula 0 Rl R2-C-N-Z wherein R1 is H, a C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or mixtures thereof, R2 is a C5-C31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyl groups directly connected to the chain, or an alkoxylated derivative thereof; provided that the composition contains magnesium in a molar amount corresponding to 0.1X-2.0X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in said composition. The present invention is also directed toward a method for cleaning soiled dishes, said method comprising treating said dishes with the detergent compositions claimed herein. DETAILED DESCRIPTION OF THE INVENTION
The detergent compositions of the present invention comprise from about 5% to about 65% by weight, preferably from about 10% to about 50% by weight, most preferably from about 20% to about 40% by weight of a surfactant mixture comprising one or more anionic sulfated or sulfonated surfactants and one or more polyhydroxy fatty acid amides. These compositions additionally contain magnesium in a molar amount corresponding to 0.1X-2.0X, preferably 0.2X-1.7X, more preferably 0.3X-1.5X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in said composition. These and other ingredients typically found in detergent compositions are set forth below. The detergent compositions of the present invention are preferably in the form cf either a liquid or a gel, more preferably light-duty liquid detergent compositions, most preferably light-duty liquid dishwashing detergent compositions. Anionic Surfactant
The surfactant mixture of the present invention comprises from about 5% to about 95%, preferably from about 3% to about 80%, more preferably from about 40% to about 60% by weight of one or more anionic sulfate or sulfonate surfactants. The anionic sulfate or sulfonate surfactants may be any organic sulfate or sulfonate surfactant, but is preferably selected from C^-C^ alkyl benzene sulfonates, C10-C16 alkyl sulfates and their ethoxy analogues containing up to twelve moles of ethylene oxide per mole of alkyl ethoxy sulfates, C13-C18 paraffin sulfonates and secondary alkane sulfonates, C10-C16 olefin sulfonates, C10-C20 alkyl glyceryl ether sulfonates, C9-C17 acyl-N-(Cι-C4 alkyl) or -N-(C2-C hydrox alkyl) glucamine sulfates, and mixtures of any of the foregoing. More preferably the anionic surfactant is selected from alkyl ethoxy sulfates, alkyl glyceryl ether sulfonates and paraffin sulfonates.
Alkyl benzene sulfonates useful in compositions of the present invention are those in which the alkyl group, which is substantially linear, contains 10-16 carbon atoms, preferably 10-13 carbon atoms, a material with an average carbon chain length of 11.2 being most preferred. The phenyl iso er distribution, i.e., the point of attachment of the alkyl chain to the benzene nucleus, is not critical, but alkyl benzenes having a high 2-phenyl isomer content are preferred. Suitable alkyl sulfates are primary alkyl sulfates in which the alkyl group contains 10-16 carbon atoms, more preferably an average of 12-14 carbon atoms preferably in a linear chain. C10-C16 alcohols, derived from natural fats, or Ziegler olefin build-up, or 0X0 synthesis, form suitable sources for the alkyl group. Examples of synthetically derived materials include Dobanol 23 (RTM) sold by Shell Chemicals (UK) Ltd., Ethyl 24 sold by the Ethyl Corporation, a blend of C13-C15 alcohols in the ratio 67% C13, 33% C15 sold under the trade name Lutensol by BASF GmbH and Synperonic (RTM) by ICI Ltd., and Lial 125 sold by Liquichi ica Italiana. Examples of naturally occurring materials from which the alcohols can be derived are coconut oil and palm kernel oil and the corresponding fatty acids.
Alkyl ethoxy sulfate surfactants comprise a primary alkyl ethoxy sulfate derived from the condensation product of a C10-C16 alcohol with an average of up to 7 ethylene oxide groups. The C10-C16 alcohol itself can be obtained from any of the sources previously described for the alkyl sulfate component. C12-C13 alkyl ethoxy sulfates are preferred.
Conventional base-catalyzed ethoxylation processes to produce an average degree of ethoxylation of 12 result in a distribution of individual ethoxylates ranging from 1 to 15 ethoxy groups per mole of alcohol, so that the desired average can be obtained in a variety of ways. Blends can be made of material having different degrees of ethoxylation and/or different ethoxylate distributions arising from the specific ethoxylation techniques employed and subsequent processing steps such as distillation. For example, it has been found that sudsing and grease removal performance equivalent to that given by a blend of alkyl sulfate and alkyl triethoxy sulfate can be obtained by reducing the level of alkyl sulfate and using an alkyl ethoxy sulfate with an average of approximately two ethoxy groups per mole of alcohol. In preferred compositions in accordance with the present invention an alkyl ethoxy sulfate is used which has an average degree of ethoxylation of from 0.4 to 6.5 (decreases product hazing), more preferably from 0.4 to 3.0.
Secondary alkane sulfonates useful *• the present invention have from 13 to 18 carbon atoms per molecu.≤, more desirably 13 to 16 carbon atoms per molecule. These sulfonates are preferably prepared by subjecting a cut of paraffin, corresponding to the chain lengths specified above, to the action of sulfur dioxide and oxygen in accordance with the well-known sulfoxidation process. The product of this reaction is a secondary sulfonic acid which is then neutralized with a suitable base to provide a water-soluble secondary alkyl sulfonate. Similar secondary alkyl sulfonates may be obtained by other methods, e.g., by the sulfochlorination method in which chlorine and sulfur dioxide are reacted with paraffins in the presence of actinic light, the resulting sulfonyl chlorides being hydrolyzed and neutralized to form the secondary alkyl sulfonates. Whatever technique is employed, it is normally desirable to produce the sulfonate as the monosulfonate, having no unreacted starting hydrocarbon or having only a limited proportion thereof present and with little or no inorganic salt by-product. Similarly, the proportions of disulfonate or higher sulfonated material will be minimized, although some may be present. The monosulfonate may be terminally sulfonated or the sulfonate group may be joined on the 2-carbon or other carbon of the linear chain. Similarly, any accompanying disulfonate, usually produced when an excess of sulfonating agent is present, may have the sulfonate groups distributed over different carbon atoms of the paraffin base, and mixtures of the monosulfonates and disulfonates may be present.
Mixtures of monoalkane sulfonates wherein the alkanes are of 14 and 15 carbon atoms are particularly preferred wherein the sulfonates are present in the weight ratio of C14-C15 paraffins in the range from 1:3 to 3:1.
Olefin sulfonates useful in the present invention are mixtures of alkene-1-sulfonates, alkene hydroxysulfonates, alkene disulfonates and hydroxydisulfonates, and are described in the commonly assigned U.S. Patent 3,332,880, issued to P. F. Pflauner and A. Kessler on July 25, 1967.
Suitable alkyl glyceryl ether sulfonates are those derived from ethers of coconut oil and tallow.
Other sulfate surfactants include the C9-C17 acyl-N-(Cι-C4 alkyl) or -N-(Cι-C2 hydroxyalkyl) glucamine sulfates, preferably those in which the C9-C17 acyl group is derived from coconut or palm kernel oil. These materials can be prepared by the method disclosed in U.S. Patent 2,717,894, issued September 13, 1955 to Schwartz.
The counterion for the anionic surfactant component is preferably selected from sodium, potassium, magnesium, ammonium or alkanol-ammonium, and mixtures thereof, with magnesium being preferred. Polvhvdroxy Fattv Acid Amide Component
The surfactant mixture of the present invention comprises from about 5% to about 95%, preferably from about 20% to about 80%, more preferably from about 40% to about 60% by weight of one or more polyhydroxy fatty acid amides having the structural formula: 0 Rl (I) R2 - C - N - Z wherein: is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C1-C4 alkyl, more preferably C\ or C2 alkyl, most preferably Cj alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C7-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose. As raw materials, high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH2-(CH0H)n-CH20H, -CH(CH20H)-(CH0H)n-,.- CH20H, -CH2-(CH0H)2(CH0R')(CH0H)-CH20H, where n is an ir+eger from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosacchar- ide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH2-(CH0H)4-CH20H.
In Formula (I), R1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
R2-C0-N< can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, caprica ide, pal itamide, tallowamide, etc.
Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxy- maltotriotityl, etc.
The most preferred polyhydroxy fatty acid amide has the general formula
0 CH3 R2 - C - - CH2 - (CHOH)4CH2θH wherein R2 is a C11-C17 straight-chain alkyl or alkenyl group.
Methods for making polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product. Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd.. U.S. Patent 2,965,576, issued December 20, 1960 to E. R. Wilson, at.2 U.S. Patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, and U.S. Patent 1,985,424, issued December 25, 1934 to Piggott, eεch of which is incorporated herein by reference. In one process for producing N-alkyl or N-hydroxyalkyl, N-deoxyglycityl fatty acid amides wherein the glycityl component is derived from glucose and the N-alkyl or N-hydroxy- alkyl functional¬ ity is N-methyl, N-ethyl, N-propyl, N-butyl, N-hydroxyethyl, or N-hydroxypropyl , the product is made by reacting N-alkyl- or N-hydroxyalkyl-glucamine with a fatty ester selected from fatty methyl esters, fatty ethyl esters, and fatty triglycerides in the presence of a catalyst selected from the group consisting of tri- lithium phosphate, trisodium phosphate, tripotassium phosphate, tetrasodium pyrophosphate, pentapotassium tripolyphosphate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, disodiu tartrate, dipotassium tartrate, sodium potassium tartrate, trisodium citrate, tripotassium citrate, sodium basic silicates, potassium basic silicates, sodium basic aluminosilicates, and potassium basic aluminosilicates, and mixtures thereof. The amount of catalyst is preferably from about 0.5 mole % to about 50 mole %, more preferably from about 2.0 mole % to about 10 mole %, on an N-alkyl or N-hydroxyalkyl-glucamine molar basis. The reaction is preferably carried out at from about 138*C to about 170*C for typically from about 20 to about 90 minutes. When triglycerides are utilized in the reaction mixture as the fatty ester source, the reaction is also preferably carried out using from about 1 to about 10 weight % of a phase transfer agent, calculated on a weight percent basis of total reaction mixture, selected from saturated fatty alcohol polyethoxyl- ates, alkylpolyglucosides, linear glucamide surfactant, and mixtures thereof.
Preferably, this process is carried out as follows:
(a) preheating the fatty ester to about 138βC to about 170°C;
(b) adding the N-alkyl or N-hydroxyalkyl glucamine to the heated fatty acid ester and mixing to the extent needed to form a two-phase liquid/liquid mixture;
(c) mixing the catalyst into the reaction mixture; and
(d) stirring for the specified reaction time.
Also preferably, from about 2% to about 20% of preformed linear N-alkyl/N-hydroxyalkyl, N-linear glucosyl fatty acid amide product is added to the reaction mixture, by weight of the reactants, as the phase transfer agent if the fatty ester is a triglyceride. This seeds the reaction, thereby increasing reaction rate. A detailed experimental procedure is provided below in the section entitled Experimental .
The polyhydroxy "fatty acid" amide materials used herein also offer the advantages to the detergent formulator that they can be prepared wholly or primarily from natural, renewable, non-petro¬ chemical feedstocks and are degradable. They also exhibit low toxicity to aquatic life.
It should be recognized that along with the polyhydroxy fatty acid amides of Formula (I), the processes used to produce them will also typically produce quantities of nonvolatile by-product such as esteramides and cyclic polyhydroxy fatty acid amide. The level of these by-products will vary depending upon the particular reactants and process conditions. Preferably, the polyhydroxy fatty acid amide incorporated into the detergent compositions hereof will be provided in a form such that the polyhydroxy fatty acid amide-containing composition added to the detergent contains less than about 10%, preferably less than about 4%, of cyclic polyhydroxy fatty acid amide. The preferred processes described above are advantageous in that they can yield rather low levels of by-products, including such cyclic amide by-product. Magnesium Component
The detergent compositions of the present invention contain magnesium in a molar amount corresponding to 0.1X-2.0X, preferably from 0.2X-1.7X, more preferably from 0.3X-1.5X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in such detergent compositions.
The technique of incorporating the magnesium into the compositions of the present invention is not thought to be critical and can be accomplished in a number of ways.
Thus, individual anionic surfactants can be made as aqueous solutions of alkali metal or ammonium salts which are then mixed together with a hydrotrope, after which the magnesium can be introduced as a water soluble salt, such as the chloride or sulfate. Optional minor ingredients may then be added before pH and viscosity are adjusted. This method has the advantage of utilizing conventional techniques and equipment but does result in the introduction of additional chloride or sulfate ions which can increase the chill point temperature (the temperature at which inorganic salts precipitate as crystals in the liquid).
If the anionic surfactants are in the acid form, then the magnesium can be added by neutralization of the acid with a magnesium oxide or magnesium hydroxide slurry in water. This technique avoids the addition of chloride and sulfate ions. The neutralized surfactant salts and the hydrotrope are then added to the final mixing tank and any optional ingredients are added before adjusting the pH.
A third technique, and the most preferred, is to add the anionic sulfate or sulfonate surfactant as a magnesium sulfate salt. When this method of magnesium addition is used, any magnesium desired in molar excess of anionic surfactant can be added in one of the other methods identified herein, or by methods known to those skilled in the art. Liquid Carrier
In a preferred embodiment, the detergent compositions of the present invention are liquid detergent compositions. These preferred liquid detergent compositions comprise from about 95% to about 35% by weight, preferably from about 90% to about 50% by weight, most preferably from about 80% to about 60% by weight of a liquid carrier, e.g., water, preferably a mixture of water and a C1-C4 monohydric alcohol (e.g., ethanol, propanol, isopropanol, butanol, and mixtures thereof), with ethanol being the preferred alcohol. Composition DH
The liquid detergent compositions hereof will preferably be formulated such that during use in aqueous cleaning operations the wash water will have a pH of between about 5.5 and about 9.5, more preferably between about 6.5 and about 8.0. Liquid product formulations preferably have a pH in the range of from about 5.0 to about 10.5, preferably from about 6.0 to about 9.0, most preferably from about 6.5 to about 7.5. Techniques for controlling pH at recommended usage levels include the use of buffers, alkali, acids, etc., and are well known to those skilled in the art. Thickening Aoent
The detergent compositions of the present invention may also be in the form of a gel. Such compositions are typically formulated in the same manner as liquid detergent compositions, except they contain an additional thickening agent.
Any material or materials which can be admixed with the aqueous liquid to provide shear-thinning compositions having sufficient yield values can be used in the compositions of this invention. Materials such as colloidal silica, particulate polymers, such as polystyrene and oxidized polystyrene, combinations of certain surfactants, and water-soluble polymers such as polyacrylate are known to provide yield values.
A preferred thickening agent useful in the compositions of the present invention is a high molecular weight polycarbox late polymer thickener. By "high molecular weight" it is meant from about 500,000 to about 5,000,000, preferably from about 750,000 to about 4,000,000.
The polycarboxylate polymer may be a carboxyvinyl polymer. Such compounds are disclosed in U.S. Patent 2,798,053, which is incorporated herein by reference. Methods for making carboxyvinyl polymers are also disclosed in Brown, and are also incorporated herein by reference.
A carboxyvinyl polymer is an interpoly er of a monomeric mixture comprising a monomeric olefinically unsaturated carboxylic acid, and from about 0.1% to about 10% by weight of the total monomers of a polyether of a polyhydric alcohol, which polyhydric alcohol contains at least four carbon atoms to which are attached at least three hydroxyl groups, the polyether containing more than one alkenyl group per molecule. Other monoolefinic monomeric materials may be present in the monomeric mixture if desired, even in predomi¬ nant proportion. Carboxyvinyl polymers are substantially insoluble in liquid, volatile organic hydrocarbons and are dimensionally stable on exposure to air.
Preferred polyhydric alcohols used to produce carboxyvinyl polymers include polyols selected from the class consisting of oligosaccharides, reduced derivatives thereof in which the carbonyl group is converted to an alcohol group, and pentaerythritol; more preferred are oligosaccharides, most preferred is sucrose. It is preferred that the hydroxyl groups of the polyol which are modified be etherified with ally! groups, the polyol having at least two ally! ether groups per polyol molecule. When the polyol is sucrose, it is preferred that the sucrose have at least about five allyl ether groups per sucrose molecule. It is preferred that the polyether of the polyol comprise from about 0.1% to about 4% of the total monomers, more preferably from about 0.2% to about 2.5%.
Preferred monomeric olefinically unsaturated carboxylic acids for use in producing carboxyvinyl polymers used herein include monomeric, polymerizable, alpha-beta onoolefinically unsaturated lower aliphatic carboxylic acids; more preferred are monomeric monoolefinic acrylic acids of the structure
R CH2 - C - COOH herein R is a substituent selected from the group consisting of hydrogen and lower alkyl groups; most preferred is acrylic acid.
Carboxyvinyl polymers useful in formulations of the present invention have a molecular weight of at least about 750,000. Pre¬ ferred are highly cross-linked carboxyvinyl polymers having a molecular weight of at least about 1,250,000. Also preferred are carboxyvinyl polymers having a molecular weight of at least about 3,000,000, which may be less highly cross-linked.
Various carboxyvinyl polymers are commercially available from B. F. Goodrich Company, New York, N.Y., under the trade name Carbopol. Carboxyvinyl polymers useful in formulations of the present invention include Carbopol 910 having a molecular weight of about 750,000; preferred is Carbopol 941 having a molecular weight of about 1,250,000, and more preferred are Carbopol 934 and 940 having molecular weights of about 3,000,000 and 4,000,000, respec¬ tively.
Carbopol 934 is a very slightly cross-linked carboxyvinyl polymer having a molecular weight of about 3,000,000. It has been described as a high molecular weight polyacrylic acid cross-linked with about 1% of polyallyl sucrose having an average of about 5.8 allyl groups for each molecule of sucrose.
Additional polycarboxylate polymers useful in the present invention are Sokolan PHC-25R, a polyacrylic acid available from BASF Corp., and GantrezR a poly(methyl vinyl ether/maleic acid) interpolymer available from GAF Corp.
Preferred polycarboxylate polymers of the present invention are non-linear, water-dispersible, polyacrylic acid cross-linked with a polyalkenyl polyether and having a molecular weight of from about 750,000 to about 4,000,000.
Highly preferred examples of these polycarboxylate polymer thickeners are the Carbopol 600 series resins available ^-om B. F. Goodrich. Especially preferred are Carbopol 616 and β It is believed that these resins are more highly cross-linked thcii the 900 series resins and have molecular weights between about 1,000,000 and 4,000,000. Mixtures of polycarboxylate polymers as herein described may also be used in the present invention. Particularly preferred is a mixture of Carbopol 616 and 617 series resins.
The polycarboxylate polymer thickener is utilized preferably with essentially no clay thickening agents. In fact, it has been found that if the polycarboxylate polymers of the present invention are utilized with clay in the composition of the present invention, a less desirable product, in terms of phase instability, results. In other words, the polycarboxylate polymer is preferably used instead of clay as a thickening/stabilizing agent in the present compositions.
The polycarboxylate polymer also provides a reduction in what is commonly called "bottle hang-up". This term refers to the inability to dispense all of the dishwashing detergent product from its container. Without intending to be bound by theory, it is believed that the thickened compositions of the present invention provide this benefit because the force of cohesion of the composition is greater than the force of adhesion to the container wall. With clay thickener systems, which most cc-imercially available products contain, bottle hang-up can be a significant problem under certain conditions.
Without intending to be bound by theory, it is also believed that the long chain molecules of the polycarboxylate polymer thick¬ ener help suspend solids in the thickened detergent compositions of the present invention and help keep the matrix expanded. The polymeric material is also less sensitive than clay thickeners to destruction due to repeated shearing, such as occurs when the composition is vigorously mixed.
If the polycarboxylate polymer is used as a thickening agent in the compositions of the present invention, it is typically present _ _
at a level of from about 0.1% to about 10%, preferably from about 0.2% to about 2% by weight.
The thickening agents are used to provide a yield value of from about 50 to about 350 and most preferably from about 75 to about 250. Yield Value Analysis
The yield value is an indication of the shear stress at which the gel strength is exceeded and flow is initiated. It is measured herein with a Brookfield RVT model viscometer with a T-bar B spindle at 25°C utilizing a Helipath drive upward during associated readings. The system is set to 0.5 rpm and a reading is taken for the composition to be tested after 30 seconds or after the system is stable. The system is stopped and the rpm is reset to 1.0 rpm. A reading is taken for the same composition after 30 seconds or after the system is stable. Stress at zero shear is equal to two times the 0.5 rpm reading minus the reading at 1.0 rpm. The yield value is calculated as the stress at zero shear times 18.8 (conversion factor). Optional Components
Other anionic surfactants useful for detersive purposes can also be included in the compositions hereof. Exemplary, non-limiting useful anionics include salts (e.g., sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C8-C22 alkylsulfates, C8-C24 alkylpolyglycolether- sulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty acyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, alkyl phosphates, isethionates such as the acyl isethionates, acyl taurates, fatty acid amides, alkyl succinates and sulfosuccinates, acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds having already been described herein), alkyl ether carbonates, alkyl ethoxy carboxylates, fatty acids esterified with isethionic acid and neutralized with sodium hydroxide, and fatty acids amides of methyl tauride. Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference). Nonionic Detergent Surfactants
Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
1. The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from 6 to 12 carbon atoms in either a straight- or branched-chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include Igepal™ CO-630, marketed by the GAF Corporation; and Triton™ X-45, X-114, X-100, and X-102, all marketed by the Rohm & Haas Company.
2. The condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl gro*φ containing froir. about 10 to about 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol. Examples of commercially available nonionic surfactants of this type include Tergitol™ 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolT 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), Neodol™ 23-6.5 (the condensation product of C12-C13 linear alcohol with 6.5 moles of ethylene oxide), NeodolTM 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide), NeodolT 45-4 (the condensation product of C14-C15 linear alcohol with 4 moles of ethylene oxide), marketed by Shell Chemical Company, and Kyro™ EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company.
3. The condensation products of ethylene oxide with a hydro- phobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility. The addition of pol oxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation prod¬ uct, which corresponds to condensation with up to about 40 moles of ethylene oxide. Examples of compounds of this type include certain of the commercially-available Pluronic™ surfactants, marketed by BASF.
4. The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000. Examples of this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
5. Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from 10 to 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from 1 to 3 carbon atoms.
Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
wherein R3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from 8 to 22 carbon atoms; R4 is an alkylene or hydroxyal ylene group containing from 2 to 3 carbon atoms or mixtures thereof; x is from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups. The R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
These amine oxide surfactants in particular include Cio-Ciβ alkyl dimethyl amine oxides and C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides.
6. Alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group con¬ taining from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide contain¬ ing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties. (Optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
Optionally, and less desirably, there can be a polyalkylene- oxide chain joining the hydrophobic moiety and the polysaccharide moiety. The preferred alkyleneoxide is ethylene oxide. Typical hydrophobic groups include alkyl groups, either saturated or unsatu¬ rated, branched or unbranched containing from 8 to 18, preferably from 10 to 16, carbon atoms. Preferably, the alkyl group is a straight-chain saturated alkyl group. The alkyl group can contain up to 3 hydroxyl groups and/or the pol alkyleneoxide chain can contain up to 10, preferably less than 5, alkyleneoxide moieties. Suitable alkyl polysaccharides are octyl, nonyldecyl, undecyldo- decyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses. Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
The preferred alkylpolyglycosides have the formula
R2θ(CnH2nO)t(glycosyl)x wherein R is selected from the group consisting of alkyl, alkyl- phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14 carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
7. Fatty acid amide surfactants having the formula:
wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17, carbon atoms and each R? is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and -(C2H4θ)χH where x varies from about 1 to about 3.
Preferred amides are C8-C20 ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides. Other Surfactants
Ampholytic surfactants may also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight-branched chains. One of the aliphatic substituents contains at least 8 carbon atoms, typically from 8 to 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975, at column 19, lines 18-35 (herein incorporated by reference) for examples of useful ampholytic surfactants.
Zwitterionic surfactants may also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, deriva¬ tives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975, at column 19, line 38 through column 22, line 48 (herein incorporated by reference) for examples of useful zwitterionic surfactants.
Such ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants. Betaine and sulfobetaine ("sultaine") surfactants, and mixtures thereof, are especially preferred for use herein.
Preferred addit'inal surfactants are anionic and nonionic surfactants. Preferred nonionic surfactants include polyethylene, polypropylene and polybutylene oxide condensates of alkyl phenols; the alkyl ethoxylate condensation products of aliphatic alcohols with ethylene oxide; the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol; the condensation product of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine; alkylpolysaccharides, more oreferably alkylpolysaccharides having a hydrophobic group containing from about 6 to about 30 carbon atoms and a polysaccharide group containing from about 1.3 to about 10 saccharide units; fatty acid amides; and mixtures thereof.
If included in the compositions of the present invention, these optional additional surfactants are typically present at a concentration of from about 1.0% to about 15%, preferably from about 2% to about 10% by weight.
Other optional ingredients include detergency builders, either of the organic or inorganic type, although such builders in general are not preferred for use in the composition of the present invention. Examples of water-soluble inorganic builders which can be used, either alone or in admixture with themselves or with organic alkaline sequestrant builder salts, are glycine, alkyl and alkenyl succinates, alkali metal carbonates, phosphates, polyphosphates, and silicates. Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, potassium carbonate, sodium pyrophosphate, potassium pyrophosphate, potassium tripolyphosphate, and sodium hexametaphosphate. Examples of organic builder salts which can be used alone, or in admixture with each other, or with the preceding inorganic alkaline builder salts, are alkali metal polycarboxylates, examples of which include, but are not limited to, water-soluble citrates such as sodium and potassium citrate, sodium and potassium tartrate, sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(2-hydroxy- ethyl)-ethylene diamine triacetates, sodium and potassium nitrilo triacetates, sodium and potassium N-(2-hydroxyethyl)-nitrilo diacetates, sodium and potassium oxydisuccinates, and sodium and potassium tartrate mono- and di-succinates, such as those described in U.S. Patent 4,663,071 (Bush et al., issued May 5, 1987), the disclosure of which is incorporated herein. Other organic detergency builders, such as water-soluble phosphonates, can be used in the compositions of the present invention. However, detergency builders in general have limited value when the compositions of the present invention are in the form of light-duty liquid dishwashing detergent compositions. If included in the compositions of the present invention, these optional builders are typically present at a concentration of from about 1.0% to about 10%, preferably from about 2% to about 5% by weight.
Other desirable ingredients include diluents, solvents, dyes, perfumes and hydrotropes (preferred). Diluents can be inorganic salts, such as sodium and potassium sulfate, ammonium chloride, sodium and potassium chloride, sodium bicarbonate, etc. Diluents useful in the compositions of the present invention are typically present at levels of from about 1% to about 10%, preferably from about 2% to about 5% by weight.
Solvents useful herein include water and lower molecular weight alcohols, such as ethyl alcohol, isopropyl alcohol, etc. Solvents useful in the compositions of the present invention are typically present at levels of from about 1% to about 60%, preferably from about 5% to about 50% by weight.
Hydrotropes such as sodium and potassium toluene sulfonate, sodium and potassium xylene sulfonate, sodium and potassium cumene sulfonate, trisodium and tripotassium sulfosuccinate, and related compounds (as disclosed in U.S. Patent 3,915,903, the disclosure of which is incorporated herein) can be utilized in the interests of achieving a desired product phase stability and viscosity. It has been found that the hydrotropes can have a positive effect on the suds benefit of the present invention. While not intending to be bound by theory, it is believed that this benefit is due to the viscosity characteristics of such hydrotropes. Hydrotropes useful in the compositions of the present invention are typically present at levels of from about 1% to about 10%, preferably from about 2% to about 7% by weight.
Optional ingredients useful when the compositions of the present invention are used in liquid dishwashing detergent applications include drainage promoting ethoxylated nonionic surfactants of the type disclosed in U.S. Patent 4,316,824, issued to Pancheri on February 23, 1982, the disclosure of which is incorporated herein.
While not intending to be bound by theory, it is believed that the claimed compositions of the present invention are beneficial in that they provide unexpected improved sudsing and grease cleaning performance and clean dishes without imparting a "greasy" feel to the cleaned dish, which is especially important in consumer markets where the cleanliness of a dish is judged by the lack of such a "greasy" feel. Furthermore, while not intending to be bound by theory, it is believed that additional benefits of the compositions of the present invention are their ease of rinsing and that they reduce the slippery feel associated with typical liquid detergent compositions. This is important in consumer markets where such a "slippery" feel is not favored and is viewed as resulting from incomplete rinsing of surfactants from the dish surface.
In the method aspect of this invention, soiled dishes are contacted with an effective amount, typically from about 0.5 ml. to about 20 ml. (per 25 dishes being treated), preferably from about 3 ml. to about 10 ml., of the composition of the present invention. The actual amount of liquid detergent composition used will be based on the judgement of user, and will typically depend upon factors such as the particular product formulation of the composition, including the concentration of active ingredient in the composition, the number of soiled dishes to be cleaned, the degree of soiling on the dishes, and the like. The particular product formulation, in turn, will depend upon a number of factors, such as the intended market (i.e., U.S., Europe, Japan, etc.) for the composition product. The following are examples of typical methods in which the detergent compositions of the present invention may be used to clean dishes. These examples are for illustrative purposes and are not intended to be limiting.
In a typical U.S. application, from about 3 ml. to about 15 ml., preferably from about 5 ml. to about 10 ml. of a liquid detergent composition is combined with from about 1,000 ml. to about 10,000 ml., more typically from about 3,000 ml. to about 5,000 ml. of water in a sink having a volumetric capacity in the range of from about 5,000 ml. to about 20,000 ml., more typically from about 10,000 ml. to about 15,000 ml. The detergent composition has a surfactant mixture concentration of from about 21% to about 44% by weight, preferably from about 25% to about 40% by weight. The soiled dishes are immersed in the sink containing the detergent composition and water, where they are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user. The contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface. In a typical European market application, from about 3 ml . to about 15 ml., preferably from about 3 ml. to about 10 ml. of a liquid detergent composition is combined with from about 1,000 ml. to about 10,000 ml., more typically from about 3,000 ml. to about 5,000 ml. of water in a sink having a volumetric capacity in the range of from about 5,000 ml. to about 20,000 ml., more typically from about 10,000 ml. to about 15,000 ml. The detergent composition has a surfactant mixture concentration of from about 21% to about 44% by weight, preferably from about 25% to about 35% by weight. The soiled dishes are immersed in the sink containing the detergent composition and water, where they are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user. The contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface.
In a typical Latin American and Japanese market application, from about 1 ml. to about 50 ml., preferably from about 2 ml. to about 10 ml. of a detergent composition is combined with from about 50 ml. to about 2,000 ml., more typically from about 100 ml. to about 1,000 ml. of water in a bowl having a volumetric capacity in the range of from about 500 ml. to about 5,000 ml., more typically from about 500 ml. to about 2,000 ml. The detergent composition has a surfactant mixture concentration of from about 5% to about 40% by weight, preferably from about 10% to about 30% by weight. The soiled dishes are cleaned by contacting the soiled surface of the dish with a cloth, sponge, or similar article. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranging from about 1 to about 10 seconds, although the actual time will vary with each application and user. The contacting of the cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface. Another method of use will comprise immersing the soiled dishes into a water bath which is absent any liquid dishwashing detergent. A device for absorbing liquid dishwashing detergent, such as a sponge, is placed directly into a separate quantity of undiluted liquid dishwashing composition for a period of time typically ranging from about 1 to about 5 seconds. The absorbing device, and consequently the undiluted liquid dishwashing composition, is then contacted individually to the surface of each of the soiled dishes to remove said soiling. The absorbing device is typically contacted with each dish surface for a period of time range from about 1 to about 10 seconds, although the actual time of application will be dependent upon factors such as the degree of soiling of the dish. The contacting of the absorbing device to the dish surface is preferably accompanied by concurrent scrubbing.
EXPERIMENTAL
This exemplifies a process for making a N-methyl, 1-deoxy- glucityl lauramide surfactant for use herein. Although a skilled chemist can vary apparatus configuration, one suitable apparatus for use herein comprises a three-liter four-necked flask fitted with a motor-driven paddle stirrer and a thermometer of length sufficient to contact the reaction medium. The other two necks of the flask are fitted with a nitrogen sweep and a wide-bore side-arm (caution: a wide-bore side-arm is important in case of very rapid methanol evolution) to which is connected an efficient collecting condenser and vacuum outlet. The latter is connected to a nitrogen bleed and vacuum gauge, then to an aspirator and a trap. A 500 watt heating mantle with a variable transformer temperature controller ("Variac") used to heat the reaction is so placed on a lab-jack that it may be readily raised or lowered to further control temperature of the reaction.
N-methylglucamine (195 g., 1.0 mole, Aldrich, M4700-0) and methyl laurate (Procter & Gamble CE 1270, 220.9 g., 1.0 mole) are placed in a flask. The solid/liquid mixture is heated with stirring under a nitrogen sweep to form a melt (approximately 25 minutes). When the melt temperature reaches 145* C, catalyst (anhydrous powdered sodium carbonate, 10.5 g., 0.1 mole, J. T. Baker) is added. The nitrogen sweep is shut off and the aspirator and nitrogen bleed are adjusted to give 5 inches (5/31 atm.) Hg. vacuum. From this point on, the reaction temperature is held at 150* C by adjusting the Variac and/or by raising or lowering the mantle.
Within 7 minutes, first methanol bubbles are sighted at the meniscus of the reaction mixture. A vigorous reaction soon follows. Methanol is distilled over until its rate subsides. The vacuum is adjusted to give about 10 inches Hg. (10/31 atm.) vacuum. The vacuum is increased approximately as follows (in inches Hg. at minutes): 10 at 3, 20 at 7, 25 at 10. 11 minutes from the onset of methanol evolution, heating and stirring are discontinued co-incident with some foaming. The product is cooled and solidifies.
The following examples are meant to exemplify compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.
EXAMPLES
The following examples illustrate the practice of the present invention, but are not intended to be limiting thereof.
EXAMPLE I
The following compositions are formulated on a weight percent basis. These compositions are prepared according to the description set forth below:
A surfactant paste is initially formed by combining any desired surfactants with water and alcohol. The surfactants contained in this surfactant paste include the polyhydroxy fatty acid amides of the present invention. Ideally the surfactant paste should be pumpable at room or elevated temperatures. Separately, in a large mixing vessel having a propeller mixer, three-quarters of the water of the formulated product, one-half of the alcohol of the formulated product, and any required hydrotropes (e.g., xylene, cumene, toluene sulfonates) are combined with mixing to give a clear solution. Magnesium is added next, followed by the surfactant paste, to form a mixture.
The magnesium may be added directly to the mixing vessel as magnesium chloride, magnesium sulfate, or as magnesium oxide or hydroxide powder. The magnesium oxide or hydroxide powder is added to the acid form of the surfactant salts (e.g, alkyl benzene sulfonates, alkyl sulfates, alkyl ethoxylated sulfates, methyl ester sulfonates, etc.) in the surfactant paste. When magnesium is added as a oxide or hydroxide powder, a less than stoichiometrically required amount is added with mixing to ensure complete dissolution. The pH of the magnesium-containing surfactant paste is then adjusted by using NaOH or KOH solutions.
The mixture is mixed until a homogenous, clear solution product is obtained. Additional water, alcohol, and any desired additional hydrotropes (added as a solution) may then be added to trim the solution product viscosity to the desired level, ideally between 50 and 1000 cps, as measured by a Brookfield viscometer at 70°F. The pH of the solution product is then adjusted with either HCl or NaOH to a level of 7.0 ± 0.7 for formulas containing ammonium ions, and 8.5 + 1.5 for formulas which do not contain ammonium ions.
Perfume, dye and other ingredients, e.g., opacifying agents such as Lytron and ethylene glycol distearate, are added as the last step. Lytron can be added directly as a dispersion with mixing. Ethylene glycol distearate must be added in a molten state with rapid mixing to form the desired pearlescent crystals. Component A B £ D £
C12-14 alkyl
N-methyl glucamide 5.0 12.5 9.0 10.0 20.0 Sodium Cπ.2 linear alkyl benzene sulfonate 15.0 - - 10.0 Ammonium coconut alcohol ethoxylate
(1.0 ave.) sulfate 10.0 15.0 10.0 10.0 10.0 Ammonium coconut alcohol sulfate - - 5.0 MgO 2.0 2.0 1.5 2.5 2.0
Dodecyl dimethyl amine oxide - 4.0 3.5 - 3.0 Coconut amidopropyl dimethyl betaine 2.0 - 2.0 4.0 Coconut mono- ethanolamide .2.0 - - 1.0 2.0 Coconut di- ethanolamide 2.0 - - 1.0 - Sodium cumene sulfonate 4.0 3.0 2.0 4.0 Potassium toluene sulfonate 3.0 3.0 Propylene glycol 3.0 Ethanol 4.0 5.0 5.0 5.0 2.0 Water & misc. -- balance to 100% -- (dye, perfume, opacifier, etc.)
EXAMPLE II The following compositions are formulated on a weight percent basis. These compositions are prepared in same manner as the compositions of Example I.
Component A C12-14 al kyl
N-methyl glucamide 5.0 5.0 10.0 10.0 6.0 Sodium CJ .2 l inear al kyl benzene sulfonate 10.0 Ammonium coconut al cohol ethoxy! ate
(1.0 ave. ) sul fate 25.0 8.0 Ammonium coconut al cohol sulfate 10.0 5.0 8.0 Sodi um salt of coco¬ nut acid methyl ester sul fonate 15.0 MgCl ∑ 0.5 1.5 0.8 0.6 1.8 Sodium Ci4- 6 al pha ol efin sul fonate 20.0 Coconut polyglyco- side (1.6 ave. glucose unit per molecule) 5.0 Dodecyl dimethyl amine oxide 3.0 3.0 5.0 1.6 Coconut amidopropyl dimethyl betaine 3.0 3.0 Coconut mono¬ ethanolamide 2.0 Sodium cumene sulfonate 2.0 3.0 3.0 3.0 4.0
Potassium toluene sulfonate 2.0 Ethanol 5.0 4.0 - 3.0 2.5
Water & misc. - bal ance to 100% -- (dye, perfume, opacifier, etc.)
EXAMPLE III The following compositions are formulated on a weight percent basis. These compositions are prepared in same manner as the compositions of Example I.
Component A ]3 C D
C12-14 alkyl
N-methyl glucamide 15.0 20.0 12.5 5.0 Sodium Cn.2 linear alkyl benzene sulfonate 5.0
Ammonium coconut alcohol ethoxylate
(1.0 ave.) sulfate 15.0 5.0 Sodium salt of coco¬ nut acid methyl ester sulfonate - - - 15.0 MgCl2 0.5 0.7 2.0 1.9
Coconut polyglyco- side (1.6 ave. glucose unit per molecule) - 15.0
Dodecyl dimethyl amine oxide 3.0 6.0
Coconut amidopropyl dimethyl betaine - - 3.0 Hexadecyl dimethyl betaine . . . 5,0 Coconut di - ethanolamide 3.0 2.0 Sodium cumene sulfonate 3.0
Sodium xylene sulfonate - 3.0
Potassium toluene sulfonate - - 2.0 2.0
Ethanol 4.0 3.0 3.0 4.0
Water & misc. — balance to 100%
(dye, perfume, opacifier, etc.)
EXAMPLE IV The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
COf^,30NENT A B
Ammonium Cn .2 l inear al kyl benzene sul fonate 10.0 8.0 13.5 13.5 C12-14 fatty acid N-methyl gl ucamide 16.5 12.5 10.0 12.5 10.0 Ammonium C12-C1 al kyl
(E0)0.8 sulfate Cocoamide propyl betaine Hexadecyl dimethyl betaine Coconut monoethanolamide cιz~ci4 alkyl dimethyl amine oxide Sodium cumene sulfonate Ethanol Urea
Magnesium hydroxide Water & Misc.
(dye, perfume, opacifier, etc.) EXAMPLE V The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
COMPONENT A B C D E F
Cl4-16 alpha olefin sulfonate - - - 5.0 -
Magnesium C 4- 6 alpha olefin sulfonate 5.0 10.0 10.0 5.0
Dodecyl benzene sulfonate - - - - 5.0
C12-14 fatty acid
N-methyl glucamide 12.0 12.0 5.0 10.0 10.0 12.0 Magnesium C12-14 alkyl ethoxy
(0.8 ave.) sulfate 12.0 12.0 - - - 15.0 Magnesium C12-13 alkyl ethoxy
(1.0 ave.) sulfate - - - 5.0 5.0 CJO primary alcohol ethoxylate (8.0 ave.) - 4.0
C12-14 dimethyl betaine 4.0
C12-14 amidopropyl dimethyl betaine - - 3.0 3.0 3.0 3.0 Coconut acid mono¬ ethanol amide - - - 2.0 Coconut acid diethanol amide - - 2.0 2.0 Coconut dimethyl amine oxide - 3.0 - - 3.0 3.0
Sodium cumene sulfonate 3.0 2.0 2.0 3.0 5.0 2.0
Sodium xylene sulfonate 1.0 3.0 3.0 - - 2.0
Ethanol 5.0 5.0 3.0 4.0 5.0 4.0 Ethylene glycol distearate - - - 1.0 -
Urea 2.0 1.5
Water & misc. balance to 100%
(dye, perfume, opacifier, etc.)
EXAMPLE VI The following compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
COMPONENT A & C D E F
Ci2-14 fatty acid
N-methyl glucamide 5.0 10.0 14.0 8.0 10.0 10.0 Magnesium Cχ2-14 alkyl ethoxy
(0.8 ave.) sulfate 5.0 Magnesium Cχ2-13 alkyl ethoxy
(1.0 ave.) sulfate 5.0 10.0 13.0 - - 10.0 Magnesium C12-13 alkyl ethoxy
(6.5 ave.) sulfate 5.0 - - 13.0 Magnesium C 4-I6 paraffin sulfonate - 5.0 - 5.0 10.0 Magnesium C12-14 methyl ester sulfonate - - - 5.0 10.0 c12-14 polyglycoside 5.0 5.0 - 5.0
C10 primary alcohol ethoxylate (8.0 ave.) - - - - - 4.0 C12-14 dimethyl betaine - 3.0 - c12-14 amidopropyl dimethyl betaine 2.0 - - - 2.0 Coconut acid mono¬ ethanol amide 1.0 2.0 2.0 . . . Coconut acid diethanol amide 1.0 2.0 2.0 - 3.0 5.0 2.0 4.0
2.0 - - 2.0
The following detergent compositions are formulated on a weight percent basis. These compositions are prepared in the same manner as the compositions of Example I.
COMPONENT A B C D £ F G
Sodium Ci - 5 paraffin sulfonate 26.0 - - - 15.0 Magnesium C14-I6 paraffin sulfonate - 26.0 - Sodiu salt of a sulfated coconut alcohol ethoxylated with 3 moles of ethoxylated oxide - - 14.0 - - 15.0 10.0 Magnesium salt of a sulfated coconut alcohol ethoxylated with 3 moles of ethylene oxide . . . 34,0 - Sodium coconut glyceryl ether sulfonate - - - - 5.0 - Magnesium coconut glyceryl ether sulfonate - - - - - 5.0 - Ci2-14 fatty acid
N-methylglucamide 15.0 12.0 12.0 15.0 10.0 3.0 10.0 Dimethyldodecyl- amine oxide 4.0 4.0 4.0 4.0 4.0 4.0 2.0 ci2-i acyla ido- propyldimethyl betaine Triethanolamine Ethanol Carbopol® 616 Carbopol® 617 2.0 Water & misc. balance to 100% — (dye, perfume, opacifier, etc.)
EXAMPLE VIII An alternate method for preparing the polyhydroxy fatty acid amides used herein is as follows. A reaction mixture consisting of 84.87g. fatty acid methyl ester (source: Procter & Gamble methyl ester CE1270), 75g. N-methyl-D-glucamine (source: Aldrich Chemical Company M4700-0), 1.04g. sodium methoxide (source: Aldrich Chemical Company 16,499-2), and 68.51g. methyl alcohol is used. The reaction vessel comprises a standard reflux set-up fitted with a drying tube, condenser and stir bar. In this procedure, the N-methyl glucamine is combined with methanol with stirring under argon and heating is begun with good mixing (stir bar; reflux). After 15-20 minutes, when the solution has reached the desired temperature, the ester and sodium methoxide catalyst are added. Samples are taken periodically to monitor the course of the reaction, but it is noted that the solution is completely clear by 63.5 minutes. It is judged that the reaction is, in fact, nearly complete at that point. The reaction mixture is maintained at reflux for 4 hours. After removal of the methanol, the recovered crude product weighs 156.16 grams. After vacuum drying and purification, an overall yield of 106.92 grams purified product is recovered. However, percentage yields are not calculated on this basis, inasmuch as regular sampling throughout the course of the reaction makes an overall percentage yield value meaningless. The reaction can be carried out at 80% and 90% reactant concentrations for periods up to 6 hours to yield products with extremely small by-product formation.
The following is not intended to limit the invention herein, but is simply to further illustrate additional aspects of the technology which may be considered by the formulator in the manufacture of a wide variety of detergent compositions using the polyhydroxy fatty acid amides.
It will be readily appreciated that the polyhydroxy fatty acid amides are, by virtue of their amide bond, subject to some instability under highly basic or highly acidic conditions. While some decomposition can be tolerated, it is preferred that these materials not be subjected to pH's above about 11, preferably 10, nor below about 3 for unduly extended periods. Final product pH (liquids) is typically 7.0-9.0. During the manufacture of the polyhydroxy fatty acid amides it will typically be necessary to at least partially neutralize the base catalyst used to form the amide bond. While any acid can be used for this purpose, the detergent formulator will recognize that it is a simple and convenient matter to use an acid which provides an anion that is otherwise useful and desirable in the finished detergent composition. For example, citric acid can be used for purposes of neutralization and the resulting citrate ion (ca. 1%) be allowed to remain with a ca. 40% polyhydroxy fatty acid amide slurry and be pumped into the later manufacturing stages of the overall detergent-manufacturing process. The acid forms of materials such as oxydisuccinate, nitrilotriacetate, ethylenediaminetetraacetate, tartrate/succinate, and the like, can be used similarly.
The polyhydroxy fatty acid amides derived from coconut alkyl fatty acids (predominantly C12-C14) are more soluble than their tallow alkyl (predominantly C16-C18) counterparts. Accordingly, the C12-C14 materials are somewhat easier to formulate in liquid compositions, and are more soluble in cool-water laundering baths. However, the C16-C18 materials are also quite useful, especially under circumstances where warm-to-hot wash water is used. Indeed, the C16-C18 materials may be better detersive surfactants than their ci2 _ci counterparts. Accordingly, the formulator may wish to balance ease-of-manufacture vs. performance when selecting a particular polyhydroxy fatty acid amide for use in a given formulation.
It will also be appreciated that the solubility of the polyhydroxy fatty acid amides can be increased by having points of unsaturation and/or chain branching in the fatty acid moiety. Thus, materials such as the polyhydroxy fatty acid amides derived from oleic acid and iso-stearic acid are more soluble than their n-alkyl counterparts.
Likewise, the solubility of polyhydroxy fatty acid amides prepared from disaccharides, trisaccharides, etc., will ordinarily be greater than the solubility of their monosaccharide-derived counterpart materials. This higher solubility can be of particular assistance when formulating liquid compositions. Moreover, the polyhydroxy fatty acid amides wherein the p ""yhydroxy group is derived from maltose appear to function especially well as detergents when used in combination with conventional alkylbenzene sulfonate ("LAS") surfactants. While not intending to be limited by theory, it appears that the combination of LAS with the polyhydroxy fatty acid amides derived from the higher saccharides such as maltose causes a substantial and unexpected lowering of interfacial tension in aqueous media, thereby enhancing net detergency performance. (The manufacture of a polyhydroxy fatty acid amide derived from maltose is described hereinafter.)
The polyhydroxy fatty acid amides can be manufactured not only from the purified sugar; but also from hydrolyzed starches, e.g., corn starch, potato starch, or any other convenient plant-derived starch which contains the mono-, di-, etc. saccharide desired by the formulator. This is of particular importance from the economic standpoint. Thus, "high glucose" corn syrup, "high maltose" corn syrup, etc. can conveniently and economically be used. De-lignified, hydrolyzed cellulose pulp can also provide a raw material source for the polyhydroxy fatty acid amides.
As noted above, polyhydroxy fatty acid amides derived from the higher saccharides, such as maltose, lactose, etc., are more soluble than their glucose counterparts. Moreover, it appears that the more soluble polyhydroxy fatty acid amides can help solubilize their less soluble counterparts, to varying degrees. Accordingly, the formu¬ lator may elect to use a raw material comprising a high glucose corn syrup, for example, but to select a syrup which contains a modicum of maltose (e.g., 1% or more). The resulting mixture of polyhydroxy fatty acids will, in general, exhibit more preferred solubility properties over a broader range of temperatures and concentrations than would a "pure" glucose-derived polyhydroxy fatty acid amide. Thus, in addition to any economic advantages for using sugar mix¬ tures rather than pure sugar reactants, the polyhydroxy fatty acid amides prepared from mixed sugars can offer very substantial advant¬ ages with respect to performance and/or ease-of-formulation. In some instances, however, some loss of grease removal performance (dishwashing) may be noted at fatty acid maltamide levels above about 25% and some loss in sudsing above about 33% (said percentages being the percentage of maltamide-derived polyhydroxy fatty acid amide vs. glucose-derived polyhydroxy fatty acid amide in the mixture). This can vary somewhat, depending on the chain length of the fatty acid moiety. Typically, then, the formulator electing to use such mixtures may find it advantageous to select polyhydroxy fatty acid amide mixtures which contain ratios of monosaccharides (e.g., glucose) to di- and higher saccharides (e.g., maltose) from about 4:1 to about 99:1.
The manufacture of preferred, uncyclized polyhydroxy fatty acid amides from fatty esters and N-alkyl polyols can be carried out in alcohol solvents at temperatures from about 30*C-90*C, preferably about 50*C-80*C. It has now been determined that it may be convenient for the formulator of, for example, liquid detergents to conduct such processes in 1,2-propylene glycol solvent, since the glycol solvent need not be completely removed from the reaction product prior to use in the finished detergent formulation.
Likewise, the formulator of, for example, solid, typically granular, detergent compositions may find it convenient to run the process at
30*C-90'C in solvents which comprise ethoxylated alcohols, such as the ethoxylated (EO 3-8) C12-C14 alcohols, such as those available as NEODOL 23 E06.5 (Shell). When such ethoxylates are used, it is preferred that they not contain substantial amounts of unethoxylated alcohol and, most preferably, not contain substantial amounts of mono-ethoxylated alcohol. ("T" designation.)
While methods for making polyhydroxy fatty acid amides per se form no part of the invention herein, the formulator can also note other syntheses of polyhydroxy fatty acid amides as described hereinafter.
Typically, the industrial scale reaction sequence for preparing the preferred acyclic polyhydroxy fatty acid amides will comprise: Step 1 - preparing the N-alkyl polyhydroxy amine derivative from the desired sugar or sugar mixture by formation of an adduct of the N-alkyl amine and the sugar, followed by reaction with hydrogen in the presence of a catalyst; followed by Step 2 - reacting the aforesaid polyhydroxy amine with, preferably, a fatty ester to form an amide bond. While a variety of N-alkyl polyhydroxy amines useful in Step 2 of the reaction sequence can be prepared by various art-disclosed processes, the following process is convenient and makes use of economical sugar syrup as the raw material. It is to be understood that, for best results when using such syrup raw materials, the manufacturer should select syrups that are quite light in color or, preferably, nearly colorless ("water-white"). Preparation of N-Alkyl Polyhydroxy Amine From Plant-Derived Sugar Syrup
I. Adduct Formation - The following is a standard process in which about 420 g of about 55% glucose solution (corn syrup - about 231 g glucose - about 1.28 moles) having a Gardner Color of less than 1 is reacted with about 119 g of about 50% aqueous methylamine (59.5 g of methylamine - 1.92 moles) solution. The methylamine (MMA) solution is purged and shielded with N2 and cooled to about 10*C, or less. The corn syrup is purged and shielded with N2 at a temperature of about 10*-20*C. The corn syrup is added slowly to the MMA solution at the indicated reaction temperature as shown. The Gardner Color is measured at the indicated approximate times in minutes.
TABLE 1
As can be seen from the above data, the Gardner Color for the adduct is much worse as the temperature is raised above about 30*C and at about 50*C, the time that the adduct has a Gardner Color below 7 is only about 30 minutes. For longer reaction, and/or holding times, the temperature should be less than about 20*C. The Gardner Color should be less than about 7, and preferably less than about 4 for good color glucamine.
When one uses lower temperatures for forming the adduct, the time to reach substantial equilibrium concentration of the adduct is shortened by the use of higher ratios of amine to sugar. With the 1.5:1 mole ratio of amine to sugar noted, equilibrium is reached in about two hours at a reaction temperature of about 30*C. At a 1.2:1 mole ratio, under the same conditions, the time is at least about three hours. For good color, the combination of amine:sugar ratio; reaction temperature; and reaction time is selected to achieve substantially equilibrium conversion, e.g., more than about 90%, preferably more than about 95%, even more preferably more than about 99%, based upon the sugar, and a color that is less than about 7, preferably less than about 4, more preferably less than about 1, for the adduct.
Using the above process at a reaction temperature of less than about 20*C and corn syrups with different Gardner Colors as indicated, the MMA adduct color (after substantial equilibrium is reached in at least about two hours) is as indicated.
TABLE 2 Gardner Color (Approximate!
Corn syrup 1 1 1 1+ 0 0 0+
Adduct 3 4/5 7/8 7/8 1 2 1
As can be seen from the above, the starting sugar material must be very near colorless in order to consistently have adduct that is acceptable. When the sugar has a Gardner Color of about 1, the adduct is sometimes acceptable and sometimes not acceptable. When the Gardner Color is above 1 the resulting adduct is unacceptable. The better the initial color of the sugar, the better is the color of the adduct.
II. Hydrogen Reaction - Adduct from the above having a Gardner Color of 1 or less is hydrogenated according to the following procedure.
About 539 g of adduct in water and about 23.1 g of United Catalyst G49B Ni catalyst are added to a one liter autoclave and purged two times with 200 psig H2 at about 20"C. The H2 pressure is raised to about 1400 psi and the temperature is raised to about 50'C. The pressure is then raised to about 1600 psig and the temperature is held at about 50-55'C for about three hours. The product is about 95% hydrogenated at this point. The temperature is then raised to about 85'C for about 30 minutes and the reaction mixture is decanted and the catalyst is filtered out. The product, after removal of water and MMA by evaporation, is about 95% N-methyl glucamine, a white powder.
The above procedure is repeated with about 23.1 g of Raney Ni catalyst with the following changes. The catalyst is washed three times and the reactor, with the catalyst in the reactor, is purged twice with 200 psig H2 and the reactor is pressurized with H2 at 1600 psig for two hours, the pressure is released at one hour and the reactor is repressurized to 1600 psig. The adduct is then pumped into the reactor which is at 200 psig and 20'C, and the reactor is purged with 200 psig H2, etc., as above.
The resulting product in each case is greater than about 95% N-methyl glucamine; has less than about 10 ppm Ni based upon the glucamine; and has a solution color of less than about Gardner 2.
The crude N-methyl glucamine is color stable to about 140'C for a short exposure time.
It is important to have good adduct that has low sugar content (less than about 5%, preferably less than about 1%) and a good color (less than about 7, preferably less than about 4 Gardner, more preferably less than about 1).
In another reaction, adduct is prepared starting with about 159 g of about 50% methylamine in water, which is purged and shielded with N2 at about 10-20'C. About 330 g of about 70% corn syrup (near water-white) is degassed with N2 at about 50'C and is added slowly to the methylamine solution at a temperature of less than about 20'C. The solution is mixed for about 30 minutes to give about 95% adduct that is a very light yellow solution.
About 190 g of adduct in water and about 9 g of United Catalyst G49B Ni catalyst are added to a 200 ml autoclave and purged three times with H2 at about 20'C. The H2 pressure is raised to about 200 psi and the temperature is raised to about 50'C. The pressure is raised to 250 psi and the temperature is held at about 50-55βC for about three hours. The product, which is about 95% hydrogenated at this point, is then raised to a temperature of about 85'C for about 30 minutes and the product, after removal of water and evaporation, is about 95% N-methyl glucamine, a white powder.
It is also important to minimize contact between adduct and catalyst when the H2 pressure is less than about 1000 psig to minimize Ni content in the glucamine. The nickel content in the N-methyl glucamine in this, reaction is about 100 ppm as compared to the less than 10 ppm in the previous reaction.
The following reactions with H2 are run for direct comparison of reaction temperature effects.
A 200 ml autoclave reactor is used following typical procedures similar to those set forth above to make adduct and to run the hydrogen reaction at various temperatures.
Adduct for use in making glucamine is prepared by combining about 420 g of about 55% glucose (corn syrup) solution (231 g glucose; 1.28 moles) (the solution is made using 99DE corn syrup from CarGill, the solution having a color less than Gardner 1) and about 119 g of 50% methylamine (59.5 g MMA; 1.92 moles) (from Air Products).
The reaction procedure is as follows:
1. Add about 119 g of the 50% methylamine solution to a N2 purged reactor, shield with N2 and cool down to less than about lO'C.
2. Degas and/or purge the 55% corn syrup solution at 10-20'C with N2 to remove oxygen in the solution.
3. Slowly add the corn syrup solution to the methylamine solution and keep the temperature less than about 20'C.
4. Once all corn syrup solution is added in, agitate for about 1-2 hours.
The adduct is used for the hydrogen reaction right after making, or is stored at low temperature to prevent further degradation.
The glucamine adduct hydrogen reactions are as follows:
1. Add about 134 g adduct (color less than about Gardner 1) and about 5.8 g G49B Ni to a 200 ml autoclave.
2. Purge the reaction mix with about 200 psi H2 twice at about 20-30'C.
3. Pressure with H2 to about 400 psi and raise the temperature to about 50'C. 4. Raise pressure to about 500 psi, react for about 3 hours. Keep temperature at about 50-55'C. Take Sample 1.
5. Raise temperature to about 85"C for about 30 minutes.
6. Decant and filter out the Ni catalyst. Take Sample 2. Conditions for constant temperature reactions:
1. Add about 134 g adduct and about 5.8 g G49B Ni to a 200 ml autoclave.
2. Purge with about 200 psi H2 twice at low temperature.
3. Pressure with H2 to about 400 psi and raise temperature to about 50'C.
4. Raise pressure to about 500 psi, react for about 3.5 hours. Keep temperature at indicated temperature.
5. Decant and filter out the Ni catalyst. Sample 3 is for about 50-55'C; Sample 4 is for about 75'C; and Sample 5 is for about 85'C. (The reaction time for about 85'C is about 45 minutes.) All runs give similar purity of N-methyl glucamine (about 94%); the Gardner Colors of the runs are similar right after reaction, but only the two-stage heat treatment gives good color stability; and the 85'C run gives marginal color immediately after reaction. EXAMPLE IX
The preparation of the tallow (hardened) fatty acid amide of N-methyl maltamine for use in detergent compositions according to this invention is as follows.
Step 1 - Reactants: Maltose monohydrate (Aldrich, lot 01318KW); methylamine (40 wt% in water) (Aldrich, lot 03325TM); Raney nickel, 50% slurry (UAD 52-73D, Aldrich, lot 12921LW).
The reactants are added to glass liner (250 g maltose, 428 g methylamine solution, 100 g catalyst slurry - 50 g Raney Ni) and placed in 3 L rocking autoclave, which is purged with nitrogen (3X500 psig) and hydrogen (2X500 psig) and rocked under H2 at room temperature over a weekend at temperatures ranging from 28'C to 50'C. The crude reaction mixture is vacuum filtered 2X through a glass microfiber filter with a silica gel plug. The fil^ate is concentrated to a viscous material. The final traces of w&ter are azetroped off by dissolving the material in methanol and then removing the methanol/water on a rotary evaporator. Final drying is done under high vacuum. The crude product is dissolved in refluxing methanol, filtered, cooled to recrystallize, filtered and the filter cake is dried under vacuum at 35"C. This is cut #1. The filtrate is concentrated until a precipitate begins to form and is stored in a refrigerator overnight. The solid is filtered and dried under vacuum. This is cut #2. The filtrate is again concentrated to half its volume and a recrystallization is performed. Very little precipitate forms. A small quantity of ethanol is added and the solution is left in the freezer over a weekend. The solid material is filtered and dried under vacuum. The combined solids comprise N-methyl maltamine which is used in Step 2 of the overall synthesis. step 2 - Reactants: N-methyl maltamine (from Step 1); hardened tallow methyl esters; sodium methoxide (25% in methanol); absolute methanol (solvent); mole ratio 1:1 amine:ester; initial catalyst level 10 mole % (w/r maltamine), raised to 20 mole %; solvent level 50% (wt.). In a sealed bottle, 20.36 g of the tallow methyl ester is heated to its melting point (water bath) and loaded into a 250 ml 3-neck round-bottom flask with mechanical stirring. The flask is heated to ca. 70'C to prevent the ester from solidifying. Separately, 25.0 g of N-methyl maltamine is combined with 45.36 g of methanol, and the resulting slurry is added to the tallow ester with good mixing. 1.51 g of 25% sodium methoxide in methanol is added. After four hours the reaction mixture has not clarified, so an additional 10 mole % of catalyst (to a total of 20 mole %) is added and the reaction is allowed to continue overnight (ca. 68'C) after which time the mixture is clear. The reaction flask is then modified for distillation. The temperature is increased to IIO'C. Distillation at atmospheric pressure is continued for 60 minutes. High vacuum distillation is then begun and continued for 14 minutes, at which time the product is very thick. The product is allowed to remain in the reaction flask at 110'C (external temperature) for 60 minutes. The product is scraped from the flask and triturated in ethyl ether over a weekend. Ether is removed on a rotary evaporator and the product is stored in an oven overnight, and ground to a powder. Any remaining N-methyl maltamine is removed from the product using silica gel. A silica gel slurry in 100% methanol is loaded into a funnel and washed several times with 100% methanol. A concentrated sample of the product (20 g in 100 ml of 100% methanol) is loaded onto the silica gel and eluted several times using vacuum and several methanol washes. The collected eluant is evaporated to dryness (rotary evaporator). Any remaining tallow ester is removed by trituration in ethyl acetate overnight, followed by filtration. The filter cake is then vacuum dried. The product is the tallow- alky! N-methyl maltamide. In an alternate mode, Step 1 of the foregoing reaction sequence can be conducted using commercial corn syrup comprising glucose or mixtures of glucose and,' typically, 5%, or higher, maltose. The resulting polyhydroxy fatty acid amides and mixtures can be used in any of the detergent compositions herein. In still another mode, Step 2 of the foregoing reaction sequence can be carried out in 1,2-propylene glycol or NEODOL. At the discretion of the formulator, the propylene glycol or NEODOL need not be removed from the reaction product prior to its use to formulate detergent compositions. Again, according to the desires of the formulator, the methoxide catalyst can be neutralized by citric acid to provide sodium citrate, which can remain in the polyhydroxy fatty acid amide.
Depending on the desires of the formulator, the compositions herein can contain more or less of various suds control agents. Typically, for dishwashing high sudsing is desirable so no suds control agent will be used. For fabric laundering in top-loading washing machines some control of suds may be desirable, and for front-loaders some "jnsiderable degree of suds control may be preferred. A wide v-riety of suds control agents are known in the art and can be routinely selected for use herein. Indeed, the selection of suds control agent, or mixtures of suds control agents, for any specific detergent composition will depend not only on the presence and amount of polyhydroxy fatty acid amide used therein, but also on the other surfactants present in the formulation. However, it appears that, for use with polyhydroxy fatty acid amides, silicone-based suds control agents of various types are more efficient (i.e lower levels can be used) than various other types of suds control agents. The silicone suds control agents available as AE, X2-3419, Q2-3302 and DC-544 (Dow Corning) are particularly useful .
The formulator of fabric laundering compositions which can advantageously contain soil release agent has a wide variety of known materials to choose from (see, for example, U.S. Patents 3,962,152; 4,116,885; 4,238,531; 4,702,857; 4,721,5^ and 4,877,896). Additional soil release materials useful herein include the nonionic oligomeric esterification product of a reaction mixture comprising a source of Cj-C4 alkoxy-terminated polyethoxy units (e.g., CH3[0CH2CH2]i60H), a source of terephthaloyl units (e.g., dimethyl terephthalate); a source of poly(oxyethylene)oxy units (e.g., polyethylene glycol 1500); a source of oxyiso-propyleneoxy units (e.g., 1,2-propylene glycol); and a source of oxyethyleneoxy units (e.g., ethylene glycol) especially wherein the mole ratio of oxyethyleneoxy units:oxyiso-propyleneoxy units is at least about
) lk ll are each integers from about 6 to about 100; m is an integer of from about 0.75 to about 30; n is an integer from about 0.25 to about 20; and R2 is a mixture of both H and CH3 to provide a mole ratio of oxyethyleneox :oxyisopropyleneoxy of at least about 0.5:1.
Another preferred type of soil release agent useful herein is of the general anionic type described in U.S. Patent 4,877,896, but with the condition that such agents be substantially free of monomers of the H0R0H type wherein R is propylene or higher alkyl. Thus, the soil release agents of U.S. Patent 4,877,896 can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 1,2-propylene glycol and 3-sodiosulfobenzoic acid, whereas these additional soil release agents can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 5-sodiosulfoisophthalate and 3-sodiosulfobenzoic acid. Such agents are preferred for use in granular laundry detergents.
The formulator may also determine that it is advantageous to include a non-perborate bleach, especially in heavy-duty granular laundry detergents. A variety of peroxygen bleaches are available, commercially, and can be used herein, but, of these, percarbonate is convenient and economical. Thus, the compositions herein can contain a solid percarbonate bleach, normally in the form of the sodium salt, incorporated at a level of from 3% to 20% by weight, more preferably from 5% to 18% by weight and most preferably from 8% to 15% by weight of the composition.
Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C03. 3H202, and is available commercially as a crystalline solid. Most commercially available material includes a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an amino-phosphonate, that is incorporated during the manufacturing process. For use herein, the percarbonate can be incorporate into detergent compositions without additional protection, but preferred embodiments of the invention utilize a coated form of the material. Although a variety of coatings can be used, the most economical is sodium silicate of Si02:Na20 ratio from 1.6:1 to 2.8:1, preferably 2.0:1, applied as an aqueous solution and dried to give a level of from 2% to 10% (normally from 3% to 5%), of silicate solids by weight of the percarbonate. Magnesium silicate can also be used and a chelant such as one of those mentioned above can also be included in the coating.
The particle size range of the crystalline percarbonate is from 350 micrometers to 450 micrometers with a mean of approximately 400 micrometers. When coated, the crystals have a size in the range from 400 to 600 micrometers.
While heavy metals present in the sodium carbonate used to manufacture the percarbonate can be controlled by the inclusion of sequestrants in the reaction mixture, the percarbonate still requires protection from heavy metals present as impurities in other ingredients of the product. It has been found that the total level of iron, copper and manganese ions in the product should not exceed 25 ppm and preferably should be le s than 20 ppm in order to avoid an unacceptably adverse effect on percarbonate stability.
The use of magnesium ion (e.g., 1%, typically 0.15%-3.0% Mg Cl2) provides especially preferred liquid dishwashing compositions which are characterized by their especially desirable sudsing properties. The following Examples X A and B illustrate such compositions. Examples X C and D illustrate superior grease-cutting compositions containing calcium ions. It is within the scope of the technology herein to provide mixed Mg/Ca compositions containing both Ca++ and Mg++ ions. EXAMPLES X A-D The following Examples illustrate light duty liquid detergent compositions which are especially adapted for dishwashing and other hard surface cleaning operations. In the Examples A-D, the surfact- ants comprise various alkyl ethoxy sulfate surfactants which, using standard terminology, are abbreviated to indicate their average degree of ethoxylation; thus C12_13E0(0.8) sulfate indicates a sulfated mixed C12-C13 alcohol fraction having an average degree of ethoxylation of 0.8. These anionic ethoxy sulfates are preferably used in their Na+ or NH4 + salt form. The C12-13 amine oxide is a mixed C12.13 (average) dimethyl amine oxide. The C12_14 AP betaine is C12/14H25/29C0NH(CH2)3N+(CH3)2CH2C02H. The C12.14 AP sultaine is C12/C14H25/29C0NH(CH2)3N+(CH3)2CH2CH(0H)CH2S03H. The C12.14 DM betaine is C12/i4H25/29N+(CH3)2CH2C02H. The ethoxylated nonionic surfactant designated C9-XE0(8) refers to C9-C alcohols ethoxyl¬ ated with an average of 8 moles of ethylene oxide, respectively. The Ca++ and Mg++ cations are conveniently introduced into the compositions as CaCl2 and MgCl2. The balance of the compositions comprises water and citrate/propylene glycol present in the gluca- mide surfactant (1-5%) and 1-3% cumene sulfonate or xylene sulfonate hydrotrope. The pH is typically 6.8-7.4 (NH4+ salts) or 7-8.2 (Na+ salts) .
While the effects of the Mg++ ion are exhibited most import¬ antly in liquid dishwashing-type compositions, the following illustrates the use of MgS04 in a granular composition.
EXAMPLE XI A granular laundry detergent composition suitable for use at the relatively high concentrations common to front-loading automatic washing machines, especially in Europe, and over a wide range of temperatures is as follows.
Ingredient Wt. %
SOKALAN CP5 (100% active as Na salt)1 3.52
DEQUEST 2066 (100% as acid)2 0.45
TIN0PAL DMS3 0.28
MgS04 0.49
Zeolite A (anhydrous) 17.92
CMC (100% active)* 0.47
Na2C03 9.44
Citric acid 3.5
Layered Silicate SKS-6 12.9
Tallow alkyl sulfate (100% active; Na salt) 2.82
C14-C15 alkyl sulfate (100% active; Na salt) 3.5
C12-C15 alkyl E0(3) sulfate 1.76
C16-C18 N-methyl glucamide 4.1
D0BAN0L C12-C15 E0(3) 3.54
LIP0LASE (100,000 LU/g)5 0.42
SAVINASE (4.0 KNPU)*5 1.65
Perfume 0.53
X2-3419 0.22
Starch 1.08
Stearyl alcohol 0.35
Sodium percarbonate (coated) 22.3
Tetraacetylethylenediamine (TAED) 5.9
Zinc phthalocyanin 0.02
Water (ex zeolite) Balance
SOKALAN is sodium poly-acrylate/maleate available from Hoechst.
2Monsanto brand of pentaphosphonomethyl diethylenetriamine. 30ptical brightener available from Ciba Geigy. *Trade name FINNFIX available from Metasaliton. sLIP0LASE lipolytic enzyme from N0V0.
6SAVINASE protease enzyme from N0V0.
7X2-3419 is a silicone suds suppressor available from Dow Corning.
The procedure for preparing the granules comprises various tower-drying, agglomerating, dry-additions, etc., as follows. The percentages are based on the finished composition.
A. Crutched and Blown Through the Tower
Using standard techniques the following components are crutched and tower-dried.
SOKALAN CP5 3.52%
DEQUEST 2066 0.45%
TINOPAL DMS 0.28%
Magnesium sulfate 0.42%
ZEOLITE A as anhydrous 7.1%
CMC 0.47%
B. Surfactant Agglomerates
Bl. Agglomeration of Sodium Salt of Tallow Alkyl Sulfate and Sodium Salt of C,,-,E E0(3) Sulfate Pastes - A 50% active paste of tallow alkyl sulfate and a 70% paste of C12-C15 EO(3) sulfate are agglomerated with Zeolite A and sodium carbonate according to the following formula (contribution to the detergent formulation after the drying of the agglomerate).
Tallow alkyl sulfate 2.4%
C12.15 E0(3) sulfate 1.18%
Zeolite A 5.3%
Sodium carbonate 4.5%
B2. Agglomerate of the C^-C., Alkyl Sulfate. C,,-C,^ Alkyl Ethoxy Sulfate. DOBANOL CT?-C1B EOf3) and Cιe-C1P N-methyl glucose amide - The C16-C18 glucose amide nonionic material is synthesized with DOBANOL Cα2.15E0(3) present during the reaction of methyl ester and N-methyl glucamine. The C12_15E0(3) acts as a melting point depressor which allows the reaction to be run without forming cyclic glucose amides which are undesirable.
A surfactant mixture of 20% DOBANOL C12.15 E0(3) and 80% C16-C18 N-methyl glucose amide is obtained and coagglomerated with 10% sodium carbonate. Second, the above particle is then coagglomerated with a high active paste (70%) of a sodium salt of C14-C15 alkyl sulfate and C12-15 E°(3) sulfate and Zeolite A and extra sodium carbonate. This particle evidences a good dispersibility in cold water of the C16-C18 N-methyl glucose amide.
The overall formulation of this particle (contribution to the detergent formulation after the drying of the agglomerate) is: C16-C18 N-methyl glucose amide 4.1%
DOBANOL C12.15 E0(3) 0.94%
Sodium carbonate 4.94%
Zeolite A 5.3%
Na C14-Ci5 al yl sulfate 3.5%
Na C12.15 E0(3) sulfate 0.59%
C. Drv Additives
The following ingredients are added.
Percarbonate 2.2.3% TAED (tetraacetylethylenediamine) 5.9%
Layered silicate SKS 6 from Hoechst 12.90% Citric acid 3.5%
Lipolase 0.42%
100,000 LU/g SAVINASE 4.0 KNPU 1.65%
Zinc phthalocyanin (photobleach) 0.02%
D. Sorav on
DOBANOL C12.15 E0(3) 2.60%
Perfume 0.53%
E. Suds Suppressor
The silicone suds suppressor X2-3419 (95-97% high molecular weight linear silicone; 3%-5% hydrophobic silica) ex Dow Corning is coagglomerated with Zeolite A (2-5 μ size), starch and stearyl alcohol binder. This particle has the following formulation: Zeolite A 0.22%
Starch 1.08%
X2-3419 0.22%
Stearyl alcohol 0.35%
The detergent preparation exhibits excellent solubility, superior performance and excellent suds control when used in European washing machine, e.g., using 85 g detergent in a AEG-brand washing machine in 30'C, 40'C, 60'C and 90βC cycles. EXAMPLE XII
In any of the foregoing examples, the fatty acid glucamide surfactant can be replaced by an equivalent amount of the maltamide surfactant, or mixtures of glucamide/maltamide surfactants derived from plant sugar sources. In the compositions the use of ethanol- amides appears to help cold temperature stability of the finished formulations. Moreover, the use of sulfobetaine and/or amine oxide surfactants provides superior sudsing.
The following Examples illustrate further liquid compositions (both Mg++ and Ca++, as noted above) which are especially suitable for "light-duty" use, such as for dishwashing.
EXAMPLE XIII A-D
For compositions where especially high sudsing is desired (e.g., dishwashing), it is preferred that less than about 5%, preferably less than about 2%, most preferably no C14 or higher fatty acids be present, since these can suppress sudsing. Accord¬ ingly, the formulator of high sudsing compositions will desirably avoid the introduction of suds-suppressing amounts of such fatty acids into high sudsing compositions with the polyhydroxy fatty acid amide, and/or avoid the formation of C1 and higher fatty acids on storage of the finished compositions. One simple means is to use C12 ester reactants to prepare the polyhydroxy fatty acid amides herein. Fortunately, the use of amine oxide or sulfobetaine sur¬ factants •-an overcome sonv: f the negative sudsing effects caused by the fatty acids.
The formulator wishing to add anionic optical brighteners to liquid detergents containing relatively high concentrations (e.g., 10% and greater) of anionic or polyanionic substituents such as the polycarboxylate builders may find it useful to pre-mix the bright- ener with water and the polyhydroxy fatty acid amide, and then to add the pre-mix to the final composition. It will be appreciated by those skilled in the chemical arts that the preparation of the polyhydroxy fatty acid amides herein using the di- and higher saccharides such as maltose will result in the formation of polyhydroxy fatty acid amides wherein linear substituent Z is "capped" by a polyhydroxy ring structure. Such materials are fully contemplated for use herein and do not depart from the spirit and scope of the invention as disclosed and claimed.

Claims

1. A detergent composition comprising from 5% to 65% by weight of a surfactant mixture comprising:
(a) from 5% to 95% by weight of one or more anionic sulfate or sulfonate surfactants; and
(b) from 5% to 95% by weight of one or more polyhydroxy fatty acid amides having the formula
0 Rl R2-C-N-Z wherein R is H, a C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or mixtures thereof, R is a C5-C31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyl groups directly connected to the chain, or an alkoxylated derivative thereof; characterized in that the composition contains magnesium ion in a molar amount corresponding to 0.1X-2.0X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in said composition.
2. A liquid detergent composition according to Claim 1 comprising from 10% to 50% by weight of the surfactant mixture and from 90% to 50% by weight of a liquid carrier, and which contains magnesium ion in a molar amount corresponding to 0.2X-1.7X.
3. A composition according to Claim 2 wherein the surfactant mixture comprises from 20% to 80% by weight of the anionic sulfate or sulfonate surfactant and from 20% to 80% by weight of the polyhydroxy fatty acid amide.
4. A composition according to Claim 3 wherein the liquid carrier comprises water or a mixture of water and a C1-C4 monohydric alcohol .
5. A composition according to Claim 4 wherein Rl is a C1-C2 alkyl group and R2 is a straight-chain C9-C17 alkyl or alkenyl group, or mixtures thereof.
6. A composition according to Claim 1 wherein, with respect to said polyhydroxy fatty acid amide, Z is derived from maltose.
7. A composition according to Claim 1 wherein, with respect to said polyhydroxy fatty acid amide, Z is derived from a mixture of monosaccharides, disaccharides and, optionally, higher sacchar¬ ides, said mixture comprising at least 1% of at least one disac¬ charide, preferably maltose.
8. A composition according to Claim 1 which additionally contains a betaine or sultaine surfactant, or mixtures thereof.
9. A composition according to Claim 5 which contains one or more additional anionic or nonionic surfactants selected from poly¬ ethylene, polypropylene and polybutylene oxide condensates of alkyl phenols; the alkyl ethoxylate condensation products of aliphatic alcohols with ethylene oxide; the condensation products of ethylene oxide with a hydrophobic base formed by the condensa¬ tion of propylene oxide with propylene glycol; the condensation product of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine; alkylpolysac¬ charides, preferably alkylpolysaccharide having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide hydrophilic group containing from 1.3 to 10 saccharide units: fatty acid amides; and mixtures thereof.
10. A composition according to Claim 9 which additionally contains a betaine or sultaine surfactant, or mixtures thereof.
11. A composition according to Claim 1 which additionally contains from 2% to 5% by weight of a hydrotrope.
12. A composition according to Claim 11 wherein the surfa- .-nt mixture comprises from 40% to 60% by weight of the anionic sulfate or sulfonate surfactant and from 40% to 60% by weight of the polyhydroxy fatty acid amide.
13. A composition according to Claim 12 wherein the polyhydroxy fatty acid amide is of the formula
0 CH3 R2 - C - N - CH2 - Z wherein R2 is a straight-chain C11-C17 alkyl or alkenyl group, Z is derived from glucose, maltose or mixtures thereof, and the hydrotrope is selected from sodium toluene sulfonate, potassium toluene sulfonate, sodium xylene sulfonate, potassium xylene sulfonate, sodium cumene sulfonate, potassium cumene sulfonate, trisodium sulfosuccinate and tripotassium sulfosuccinate.
14. A composition according to Claim 13 wherein, with respect to said polyhydroxy fatty acid amide, Z is derived from maltose.
15. A composition according to Claim 13 wherein, with respect to said polyhydroxy fatty acid amide, Z is derived from a mixture of monosaccharides, disaccharides and, optionally, higher sacchar¬ ides, said mixture comprising at least 1% of at least one disac¬ charide, preferably maltose.
16. A method for cleaning soiled dishes by contacting said dishes with an aqueous bath characterized in that it contains an effec¬ tive amount of a detergent composition comprising a surfactant mixture comprising:
(a) from 5% to 95% by weight of one or more anionic sulfate or sulfonate surfactants; and
(b) from 5% to 95% by weight of one or more polyhydroxy fatty acid amides having the formula
0 Rl r. " I
R2-C-N-Z wherein Rl is H, a C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or mixtures thereof, R2 is a C5-C31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyl groups directly connected to the chain, preferably Cj1-C17 N-methyl glucamide, C11-C17 N-methyl maltamide, or mixtures of said glucamide and maltamide, or an alkoxylated derivative thereof; said method being further characterized in that the detergent composition contains magnesium ion in a molar amount corresponding to 0.1X-2.0X, wherein X is the number of moles of anionic sulfate or sulfonate surfactant present in said composition.
17. A method according to Claim 16 wherein said Z moiety in said polyhydroxy fatty acid amide is derived from mixed monosacchar- ides, disaccharides and polysaccharides available from plant sources.
18. A method according to Claim 16 wherein said R2 moiety in said polyhydroxy fatty acid amide is C15-C17 alkyl, alkenyl, or mix¬ tures thereof.
19. A method according to Claim 15 wherein said detergent compo¬ sition additionally comprises a betaine surfactant, a sultaine surfactant, or mixtures thereof.
20. A method according to Claim 19 wherein said detergent compo¬ sition is substantially free of suds-suppressing amounts of C14 and higher fatty acids.
EP91918975A 1990-09-28 1991-09-25 Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium Expired - Lifetime EP0551410B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US59061790A 1990-09-28 1990-09-28
US590617 1990-09-28
US75590591A 1991-09-06 1991-09-06
US755905 1991-09-06
PCT/US1991/006982 WO1992006156A1 (en) 1990-09-28 1991-09-25 Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium

Publications (2)

Publication Number Publication Date
EP0551410A1 true EP0551410A1 (en) 1993-07-21
EP0551410B1 EP0551410B1 (en) 1995-09-13

Family

ID=27080893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91918975A Expired - Lifetime EP0551410B1 (en) 1990-09-28 1991-09-25 Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium

Country Status (24)

Country Link
EP (1) EP0551410B1 (en)
JP (1) JPH06505032A (en)
CN (1) CN1029010C (en)
AU (1) AU8768891A (en)
BR (1) BR9106933A (en)
CA (1) CA2092184C (en)
CZ (1) CZ281623B6 (en)
DE (1) DE69113057T2 (en)
DK (1) DK0551410T3 (en)
EG (1) EG19743A (en)
ES (1) ES2077250T3 (en)
FI (1) FI931368A (en)
GR (1) GR3018284T3 (en)
HU (1) HU214048B (en)
IE (1) IE913418A1 (en)
MA (1) MA22304A1 (en)
MX (1) MX9101364A (en)
MY (1) MY131214A (en)
NO (1) NO931021L (en)
NZ (1) NZ240040A (en)
PT (1) PT99101B (en)
SK (1) SK21893A3 (en)
TR (1) TR26011A (en)
WO (1) WO1992006156A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119644A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition
EP4119645A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition
EP4119643A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602179B1 (en) * 1991-09-06 1999-06-30 The Procter & Gamble Company Detergent compositions containing calcium and polyhydroxy fatty acid amide
AU5015293A (en) * 1992-08-21 1994-03-15 Procter & Gamble Company, The Concentrated liquid detergent composition comprising an alkyl ether sulphate and a process for making the composition
US5545354A (en) * 1992-09-01 1996-08-13 The Procter & Gamble Company Liquid or gel dishwashing detergent containing a polyhydroxy fatty acid amide, calcium ions and an alkylpolyethoxypolycarboxylate
JPH08500630A (en) * 1992-09-01 1996-01-23 ザ、プロクター、エンド、ギャンブル、カンパニー Liquid or gel detergent composition containing calcium and its stabilizer
CA2143328A1 (en) * 1992-09-01 1994-03-17 Kofi Ofosu-Asante Liquid or gel dishwashing detergent containing alkyl ethoxy carboxylate, divalent ions and alkylpolyethoxypolycarboxylate
US5580849A (en) * 1992-09-01 1996-12-03 The Procter & Gamble Company Liquid or gel detergent compositions containing calcium and stabilizing agent thereof
DE4229442A1 (en) * 1992-09-03 1994-03-10 Henkel Kgaa Dispersant
AU5540994A (en) * 1992-11-04 1994-05-24 Procter & Gamble Company, The Detergent gels
AU5678194A (en) * 1992-11-30 1994-06-22 Procter & Gamble Company, The High sudsing detergent compositions with specially selected soaps
US5318728A (en) * 1992-11-30 1994-06-07 The Procter & Gamble Company Low sudsing polyhydroxy fatty acid amide detergents
EP0670886A1 (en) * 1992-11-30 1995-09-13 The Procter & Gamble Company Detergent compositions containing polyhydroxy fatty acid amide, sulfated polyhydroxy fatty acid amide and soap
AU5678294A (en) * 1992-11-30 1994-06-22 Procter & Gamble Company, The Cleaning with low-sudsing mixed polyhydroxy fatty acid amide nonionic/anionic surfactants
CN1124499A (en) * 1993-04-08 1996-06-12 普罗格特-甘布尔公司 Secondary (2,3) alkyl sulfate surfactants in detergent compositions with polyhydroxy fatty acid amides
DE4323253C1 (en) * 1993-07-12 1995-01-05 Henkel Kgaa Use of fatty acid N-alkyl polyhydroxyalkylamides as rinse aid for machine cleaning hard surfaces
DE4331297A1 (en) * 1993-09-15 1995-03-16 Henkel Kgaa Bar soaps
EP1707624A3 (en) 1993-10-08 2007-01-03 Novozymes A/S Amylase variants
DE69423225T2 (en) * 1993-10-12 2000-06-21 Stepan Co ALPHA SULFONATED METHYL OR ETHYL FATTY ACID ESTER SALTS AND ANIONIC SURFACE ACTIVE AGENTS LIQUID DETERGENT COMPOSITIONS
DE4400632C1 (en) * 1994-01-12 1995-03-23 Henkel Kgaa Surfactant mixtures and compositions containing these
DE4409321A1 (en) * 1994-03-18 1995-09-21 Henkel Kgaa Low m.pt fatty acid isethionate-based detergent mixt.
EP0758371A1 (en) * 1994-05-06 1997-02-19 The Procter & Gamble Company Liquid detergent containing polyhydroxy fatty acid amide and toluene sulfonate salt
GB2292155A (en) * 1994-08-11 1996-02-14 Procter & Gamble Handwash laundry detergent composition comprising three surfactants
DE19533539A1 (en) 1995-09-11 1997-03-13 Henkel Kgaa O / W emulsifiers
WO1997012022A1 (en) * 1995-09-29 1997-04-03 The Procter & Gamble Company Stable aqueous laundry detergent compositions comprising quaternary surfactants and amine oxides and having improved suspension properties
DE19544422A1 (en) * 1995-11-29 1997-06-05 Hoechst Ag Sulfonsuccinates of polyhydroxyamides
DE19544710C2 (en) 1995-11-30 1998-11-26 Henkel Kgaa Thickener
US5932535A (en) * 1995-12-21 1999-08-03 Henkel Kommanditgesellschaft Auf Aktien Process for the production of light-colored, low-viscosity surfactant concentrates
DE19548068C1 (en) 1995-12-21 1997-06-19 Henkel Kgaa Process for the production of light colored, low viscosity surfactant concentrates
US5965508A (en) 1997-10-21 1999-10-12 Stepan Company Soap bar compositions comprising alpha sulfonated fatty acid alkyl esters and long chain fatty acids
JP2000073085A (en) * 1998-08-31 2000-03-07 Lion Corp Detergent composition
DE19840342A1 (en) * 1998-09-04 2000-03-09 Clariant Gmbh Solid surfactant mixtures containing fatty acid polyhydroxyamides
US6387870B1 (en) 1999-03-29 2002-05-14 Ecolab Inc. Solid pot and pan detergent
DE10018812A1 (en) 2000-04-15 2001-10-25 Cognis Deutschland Gmbh Nonionic surfactant granulate, used in surfactant, cosmetic or pharmaceutical formulation or laundry or other detergent, is obtained by granulating and simultaneously drying aqueous surfactant paste in presence of organic polymeric carrier
DE102004017112B4 (en) * 2004-04-07 2007-06-28 Henkel Kgaa Use of powdering agent
DE102005025933B3 (en) * 2005-06-06 2006-07-13 Centrotherm Photovoltaics Gmbh + Co. Kg Doping mixture for preparing and doping semiconductor surfaces, comprises a p- or n-dopant, for doping the semiconductor surfaces, water and mixture of two or more surfactants, where one of the surfactant is a non-ionic surfactant
JP4795298B2 (en) * 2007-04-12 2011-10-19 花王株式会社 Liquid detergent composition
EP2491104B1 (en) * 2009-10-21 2019-01-02 Stepan Company Viscous liquid cleansing compositions comprising sulfonated fatty acids, esters, or salts thereof and betaines or sultaines
KR101218398B1 (en) * 2010-12-02 2013-01-03 애경산업(주) liquid detergent composition
AU2010365414B2 (en) 2010-12-13 2014-07-10 Colgate-Palmolive Company Dilutable concentrated cleaning composition
IN2014DN09938A (en) * 2012-05-30 2015-08-14 Clariant Int Ltd
CN103860398A (en) * 2012-12-17 2014-06-18 江苏华艺服饰有限公司 Hand cleanser capable of removing dyes
US10550355B2 (en) 2015-01-15 2020-02-04 Ecolab Usa Inc. Long lasting cleaning foam
JP6688613B2 (en) * 2016-01-15 2020-04-28 株式会社ニイタカ Liquid detergent composition
JP6646512B2 (en) * 2016-04-15 2020-02-14 花王株式会社 Liquid detergent composition for tableware
DE102019207890A1 (en) * 2019-05-29 2020-12-03 Henkel Ag & Co. Kgaa Foam stabilization through a specific surfactant mixture
DE102019207891A1 (en) * 2019-05-29 2020-12-03 Henkel Ag & Co. Kgaa Foam stabilization through a specific surfactant mixture
WO2023122542A1 (en) * 2021-12-22 2023-06-29 Integrity Bio-Chemicals, Llc Compositions comprising reaction products of saccharide polymers and fatty acids or fatty esters formulated with an amide-based neutral surfactant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE557103A (en) * 1956-05-14
DK130418A (en) * 1967-07-19
JPS5950200B2 (en) * 1978-02-17 1984-12-06 ライオン株式会社 Improved liquid cleaning composition
GB2058823B (en) * 1979-09-17 1983-06-22 Unilever Ltd Dishwashing compositions
ATE25856T1 (en) * 1982-10-28 1987-03-15 Procter & Gamble LIQUID DETERGENT COMPOSITIONS.
IE58219B1 (en) * 1984-11-07 1993-08-11 Procter & Gamble Liquid detergent compositions
DE3538451A1 (en) * 1985-10-29 1987-05-07 Sueddeutsche Zucker Ag Fatty acid amides of amino polyols as non-ionic surfactants
DE3711776A1 (en) * 1987-04-08 1988-10-27 Huels Chemische Werke Ag USE OF N-POLYHYDROXYALKYL Fatty Acid Amides As Thickeners For Liquid Aqueous Surfactant Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9206156A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119644A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition
EP4119645A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition
EP4119643A1 (en) 2021-07-16 2023-01-18 The Procter & Gamble Company Liquid hand dishwashing cleaning composition

Also Published As

Publication number Publication date
PT99101B (en) 1999-02-26
HUT64378A (en) 1993-12-28
NZ240040A (en) 1995-05-26
NO931021L (en) 1993-05-12
GR3018284T3 (en) 1996-03-31
SK21893A3 (en) 1993-07-07
CZ281623B6 (en) 1996-11-13
JPH06505032A (en) 1994-06-09
PT99101A (en) 1992-08-31
AU8768891A (en) 1992-04-28
FI931368A0 (en) 1993-03-26
HU214048B (en) 1997-12-29
WO1992006156A1 (en) 1992-04-16
CA2092184C (en) 1998-06-30
NO931021D0 (en) 1993-03-22
EP0551410B1 (en) 1995-09-13
CZ32393A3 (en) 1994-03-16
MA22304A1 (en) 1992-04-01
CN1061036A (en) 1992-05-13
HU9300765D0 (en) 1993-07-28
DE69113057T2 (en) 1996-05-30
MX9101364A (en) 1992-05-04
ES2077250T3 (en) 1995-11-16
IE913418A1 (en) 1992-04-08
DE69113057D1 (en) 1995-10-19
MY131214A (en) 2007-07-31
TR26011A (en) 1993-11-01
DK0551410T3 (en) 1996-02-05
EG19743A (en) 1996-01-31
CN1029010C (en) 1995-06-21
CA2092184A1 (en) 1992-03-29
BR9106933A (en) 1993-08-17
FI931368A (en) 1993-04-26

Similar Documents

Publication Publication Date Title
CA2092184C (en) Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and magnesium
AU663854B2 (en) Detergent compositions containing polyhydroxy fatty acid amides and suds enhancing agent
CA2092185C (en) Detergent compositions containing alkyl ethoxy carboxylates and polyhydroxy fatty acid amides
EP0551375B2 (en) Polyhydroxy fatty acid amides in zeolite/layered silicate built detergents
EP0602179B1 (en) Detergent compositions containing calcium and polyhydroxy fatty acid amide
SK25093A3 (en) Detergent containing alkyl sulfate and polyhydroxy fatty acid amide surfactants
EP0551413A1 (en) Detergent compositions containing polyhydroxy fatty acid amide and alkyl benzene sulfonate.
IE913419A1 (en) Detergent compositions containing anionic surfactants, polyhydroxy fatty acid amides and a critically selected suds enhancing agent
CZ284004B6 (en) Cleansing agent with increased foam generation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930908

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 69113057

Country of ref document: DE

Date of ref document: 19951019

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077250

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018284

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000614

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20000726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000807

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000901

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000905

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000926

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000928

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001010

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001013

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010925

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010926

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: THE PROCTER & GAMBLE CY

Effective date: 20010930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 91918975.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050925