EP0547470B1 - Positive displacement machine of the spiral principle - Google Patents

Positive displacement machine of the spiral principle Download PDF

Info

Publication number
EP0547470B1
EP0547470B1 EP92120868A EP92120868A EP0547470B1 EP 0547470 B1 EP0547470 B1 EP 0547470B1 EP 92120868 A EP92120868 A EP 92120868A EP 92120868 A EP92120868 A EP 92120868A EP 0547470 B1 EP0547470 B1 EP 0547470B1
Authority
EP
European Patent Office
Prior art keywords
oil
drive shaft
cavity
eccentric disc
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92120868A
Other languages
German (de)
French (fr)
Other versions
EP0547470A1 (en
Inventor
Gregor Jetzer
Roland Kolb
Fritz Spinnler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aginfor AG
Original Assignee
Aginfor AG fuer industrielle Forschung
Aginfor AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aginfor AG fuer industrielle Forschung, Aginfor AG filed Critical Aginfor AG fuer industrielle Forschung
Publication of EP0547470A1 publication Critical patent/EP0547470A1/en
Application granted granted Critical
Publication of EP0547470B1 publication Critical patent/EP0547470B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F01C1/0223Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system
    • F16N39/002Arrangements for conditioning of lubricants in the lubricating system by deaeration

Definitions

  • the invention relates to a displacement machine for compressible media with a plurality of spiral-shaped conveying spaces arranged in a fixed housing and with a displacer assigned to the conveying spaces, which is held on a disk-shaped rotor which can be driven eccentrically relative to the housing in such a way that each of its points has one of the circumferential walls during operation the displacement chamber performs limited circular movement, for which purpose an eccentric disk is arranged on the drive shaft, on which the rotor is mounted by means of an oil-lubricated bearing.
  • Displacement machines of the spiral type are known for example from DE-C-26 03 462.
  • a compressor constructed according to this principle is characterized by an almost pulsation-free conveyance of the gaseous working medium, which consists, for example, of air or an air-fuel mixture, and could therefore also be used with advantage for charging purposes of internal combustion engines, among other things.
  • the gaseous working medium which consists, for example, of air or an air-fuel mixture
  • the operation of such a compressor are spiraled along the displacement chamber between the Trained displacement body and the two circumferential walls of the displacement chamber including several, approximately crescent-shaped work spaces that move from the inlet through the displacement chamber to the outlet, their volume constantly being reduced and the pressure of the working medium being increased accordingly.
  • EP 0 354 342 A machine of the type mentioned at the outset is known from EP 0 354 342.
  • the drive shaft In this machine and in all the other known scroll compressors, in which a guide shaft which is angularly synchronous with the drive shaft is provided for translatory guiding of the rotor, the drive shaft is mounted in roller bearings . This is particularly evident in the displacement machine according to EP 0 354 342, in which the drive shaft is mounted in the housing in two ball bearings and the eccentric collar arranged on the drive shaft is supported by a needle bearing.
  • This type of support or mounting of the rotor is relatively expensive, since for reasons of space a needle bearing without an inner race is used.
  • this requires that the rolling path on the eccentric collar must be hardened, which in turn limits the selection for a cheap manufacturing method for the eccentric shaft.
  • a convenient method is the casting process if nodular cast iron is used.
  • Ductile iron is hardenable; However, the strength required for a heavily loaded rolling bearing operation is not achieved in the raceway, as is the case, for example, with rolling bearing steel.
  • the object of the invention is to simplify the bearing concept of the displacement machine with regard to cost optimization.
  • the object is achieved in that a sliding bearing is provided for the orbiting rotor on the rotating eccentric disc, the oil supply and oil discharge being effected via a bore in the eccentric disc, and in that means for air-free oil supply in the sliding bearing gap are arranged within the eccentric disc.
  • the machine is cheaper because, in addition to replacing a rolling bearing with a plain bearing, its smaller radial dimensions also increase the free space required for the air flow, the particular advantage is that this measure results in a hardened surface of the Eccentric disc can be dispensed with.
  • the indirect application of oil to the lubrication gap via degassing agent makes it possible to provide air-free oil for the highly loaded eccentric bearing in a simple manner It is expedient if a cavity which is open towards the lubrication gap is arranged in the eccentric disc, specifically in the angular plane in which the eccentric disc is at its greatest distance from the axis of rotation.
  • the oil supply is preferably carried out in the cavity via a bore in the eccentric disc, the mouth of which is arranged radially outside the axis of rotation of the drive shaft.
  • the oil removal and, if necessary, the air removal takes place jointly via a longitudinal bore branching off the cavity and lying in the axis of rotation of the drive shaft.
  • the cavity in the eccentric disc causes a reduction in the rotating mass;
  • the drive shaft becomes lighter overall and less centrifugal force has to be compensated, which in turn leads to lighter compensating masses.
  • a channel is arranged in the area of the radial plane of the lubrication gap, which extends in the circumferential direction of the lubrication gap from the cavity and against the direction of rotation of the drive shaft, a simple means is created to direct the air-free lubricating oil to the most heavily loaded point of the eccentric bearing.
  • a clear space on the circumference of the eccentric disc which extends between the shaft sealing rings and which connects the oil spaces on both sides of the shaft sealing rings with the cavity.
  • This clear space is preferably of a crescent shape, the center line of the sickle being like that of the cavity in the angular plane in which the eccentric disc is at its greatest distance from the axis of rotation (34),
  • Fig. 1 the housing with the delivery rooms and the inserted displacer is shown.
  • the rotor of the machine is designated as a whole by 1.
  • two spiral-shaped displacers are arranged, which are offset by 180 ° to one another. These are strips 3a, 3b which are held vertically on the pane 2.
  • the spirals themselves are formed from a plurality of circular arcs adjoining one another.
  • 4 denotes the hub with which the disk 2 over the slide bearing 22nd is mounted on an eccentric disk 23. This eccentric disk is in turn part of the drive shaft 24.
  • FIG. 1 shows the housing half 7a shown on the left in FIG. 2 of the machine housing which is composed of two halves 7a, 7b and is connected to one another via fastening eyes 8 for receiving screw connections.
  • 11a and 11b denote the two delivery spaces, each offset by 180 °, which are worked into the two housing halves in the manner of a spiral slot. They each run from an inlet 12a, 12b arranged on the outer circumference of the spiral in the housing to an outlet 13 provided in the interior of the housing and common to both delivery spaces (FIG. 2). They have essentially parallel, uniformly spaced cylinder walls 14a, 14b, 15a, 15b, which in the present case, like the displacer bodies of the disk 2, comprise a spiral of approximately 360 °.
  • the displacers 3a, 3b engage between these cylinder walls, the curvature of which is dimensioned such that the strips almost touch the inner and outer cylinder walls of the housing at several, for example at two points each.
  • seals 49 are inserted in corresponding grooves. With them, the working rooms against the side walls of the housing respectively. sealed against the displacement disc.
  • the drive and the guide of the rotor 1 are provided by the two spaced-apart eccentric arrangements 23, 24 and. 26, 27.
  • the drive shaft 24 is mounted on the drive side in a roller bearing 17 and on the air side in a slide bearing 18. At its end protruding from the housing half 7a, it is provided with a V-belt pulley 19 for the drive.
  • Counterweights 20 are arranged on the drive shaft 24 to compensate for the inertial forces arising when the rotor is eccentrically driven.
  • the guide shaft 27 is inserted within the housing half 7a in a slide bearing 28, which is sealed on both sides with ring seals 39. In order to achieve clear guidance of the rotor in the dead center positions, the two eccentric arrangements are synchronized with a precise angle via a toothed belt drive 16.
  • This double eccentric drive ensures that all points of the rotor disc and thus also all points of the two strips 3a and 3b perform a circular displacement movement.
  • crescent-shaped workrooms enclosing the working medium result on both sides of the strips, which are displaced by the delivery chambers in the direction of the outlet during the drive of the rotor disk.
  • the volumes of these working spaces decrease and the pressure of the working fluid is increased accordingly.
  • a common system is provided for lubricating the bearings accommodated in the housing 7a, 7b and the main eccentric bearing 22.
  • Lubricant preferably oil
  • a lubricant source not shown
  • the oil is collected on both sides of this bearing and guided through a bore 30 into the area of the drive shaft 24 between the roller bearing 17 and the associated drive-side shaft sealing ring 50. From there, the oil penetrates and lubricates the roller bearing 17 and reaches an annular space 51, which is laterally closed by another shaft sealing ring 52.
  • This bearing is designed as a simple slide bearing and is sealed against the interior of the machine via shaft sealing rings 32, as can be seen in FIG.
  • air already contained in the oil would impair its lubricity; on the other hand, additional air can flow into the storage space via the shaft sealing rings provided on both sides of the bearing. This is because the interior of the machine - in which the eccentric drive is located - beyond the shaft seals is under pressure during operation.
  • the lubricant is accordingly fed into the lubrication gap in the middle of the bearing. This is done via a straight oblique bore 31 in the eccentric disc.
  • the oblique bore communicates on the drive side with the annular space 51 and opens into a cavity 33 within the disk.
  • the cavity is open to the lubrication gap.
  • the opening of the cavity extends over a circumferential area X (FIG. 1) and is located in the angular plane in which the eccentric disc has its largest radial dimension.
  • the mouth of the oblique bore 31 is arranged in a radial plane which is located outside the axis of rotation 34 of the drive shaft.
  • the oil flowing into the cavity is thrown outward into the peripheral region X due to centrifugal force. If there is air in the oil, it is separated from the oil under the action of the centrifuge. This air flows radially inwards into the center of rotation of the cavity, which coincides with the axis of rotation 34 of the drive shaft coincides. The air and the oil not required for lubrication are then discharged from the cavity 33 via a longitudinal bore 53 arranged centrally in the drive shaft.
  • the eccentric disk is pierced in the area of the shaft sealing rings in order to form a crescent-shaped space 35 (FIG. 4).
  • This space is located in the same angular plane as the circumferential area X and extends axially between the two shaft sealing rings 32. It connects the oil spaces 58 arranged on both sides of the shaft sealing rings to the cavity 33.
  • This space 35 is produced in a simple manner by the eccentric disk is ground at the corresponding point from the axis of rotation as the center with the radius of the eccentric disc.
  • air which penetrates the highly loaded shaft sealing rings 32 orbiting with the eccentricity passes directly from the oil spaces 58 into this space 35 bypassing the lubrication gap and then flows radially inwards along the wall of the cavity 33 its center of rotation.
  • the reaction force of the eccentric disc caused by the centrifugal force is designated F.
  • the reaction force caused by the drive of the rotor is labeled A.
  • the resulting reaction force is shown with the arrow R. This resultant causes the highest load in the Y bearing area. In relation to the eccentric disc, this area Y is always in the same place.
  • a recess is formed on the outer circumference of the eccentric disk, which forms a channel 40 connecting the cavity 33 and the region Z. As can be seen in FIG. 4, this channel runs counter to the direction of rotation of the drive shaft.
  • the air-free oil thus freshly fed into the peripheral area Z from the peripheral area X easily retains its load-bearing capacity and lubricity right up to the endangered peripheral area Y.
  • the drive shaft 24 is shown in FIG rotated by 180 ° in Fig. 2, d. H. the drive side is in the right part of the figure.
  • the balancing weight 20 shown hatched in FIG. 2 is also not attached to the shaft shown in FIG. 3 in the preassembled state.
  • the oil flowing out of the longitudinal bore 53 on the air-side end face of the drive shaft still has the task of lubricating the less loaded air-side shaft bearing 18.
  • This bearing is designed as a plain bearing and is provided on both sides with oil spaces 54, 55, which are sealed off from the outside.
  • the oil space 55 on the drive side is delimited by a shaft sealing ring 56 acting against the drive shaft.
  • the opposite oil chamber 54, in which the longitudinal bore 53 opens, is closed by the wall of the housing part 7a.
  • the two oil spaces 54, 55 are connected to one another via a channel 57.
  • this channel is designed as a depression in the bearing 18. The channel is open towards the drive shaft 24 along its entire axial length, as a result of which the bearing 18 is fed uniformly.

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft eine Verdrängermaschine für kompressible Medien mit mehreren in einem feststehenden Gehäuse angeordneten spiralförmigen Förderräumen und mit einem den Förderräumen zugeordneten Verdrängerkörper, der auf einem gegenüber dem Gehäuse exzentrisch antreibbaren scheibenförmigen Läufer derart gehalten ist, dass während des Betriebes jeder seiner Punkte eine von den Umfangswänden der Verdrängerkammer begrenzte Kreisbewegung ausführt, wozu auf der Antriebswelle eine Exzenterscheibe angeordnet ist, auf welcher der Läufer mittels einer ölgeschmierten Lagerung gelagert ist.The invention relates to a displacement machine for compressible media with a plurality of spiral-shaped conveying spaces arranged in a fixed housing and with a displacer assigned to the conveying spaces, which is held on a disk-shaped rotor which can be driven eccentrically relative to the housing in such a way that each of its points has one of the circumferential walls during operation the displacement chamber performs limited circular movement, for which purpose an eccentric disk is arranged on the drive shaft, on which the rotor is mounted by means of an oil-lubricated bearing.

Stand der TechnikState of the art

Verdrängermaschinen der Spiralbauart sind beispielsweise durch die DE-C-26 03 462 bekannt. Ein nach diesem Prinzip aufgebauter Verdichter zeichnet sich durch eine nahezu pulsationsfreie Förderung des beispielsweise aus Luft oder einem Luft-Kraftstoff-Gemisch bestehenden gasförmigen Arbeitsmittels aus und könnte daher unter anderem auch für Aufladezwecke von Brennkraftmaschinen mit Vorteil herangezogen werden. Während des Betriebes eines solchen Kompressors werden entlang der Verdrängerkammer zwischen dem spiralförmig ausgebildeten Verdrängerkörper und den beiden Umfangswänden der Verdrängerkammer mehrere, etwa sichelförmige Arbeitsräume eingeschlossen, die sich von dem Einlass durch die Verdrängerkammer hindurch zum Auslass hin bewegen, wobei ihr Volumen ständig verringert und der Druck des Arbeitsmittels dementsprechend erhöht wird.Displacement machines of the spiral type are known for example from DE-C-26 03 462. A compressor constructed according to this principle is characterized by an almost pulsation-free conveyance of the gaseous working medium, which consists, for example, of air or an air-fuel mixture, and could therefore also be used with advantage for charging purposes of internal combustion engines, among other things. During the operation of such a compressor are spiraled along the displacement chamber between the Trained displacement body and the two circumferential walls of the displacement chamber including several, approximately crescent-shaped work spaces that move from the inlet through the displacement chamber to the outlet, their volume constantly being reduced and the pressure of the working medium being increased accordingly.

Eine Maschine der eingangs genannten Art ist bekannt aus der EP 0 354 342. Bei dieser Maschine sowie im übrigen bei allen bekannten Spiralverdichtern, bei denen zur translatorischen Führung des Läufers eine mit der Antriebswelle winkelsynchron laufende Führungswelle vorgesehen ist, erfolgt die Lagerung der Antriebswelle in Wälzlagern. Dies ist besonders gut ersichtlich bei der Verdrängermaschine nach EP 0 354 342, bei welcher die Antriebswelle im Gehäuse in zwei Kugellagern und der auf der Antriebswelle angeordnete Exzenterbund über ein Nadellager gelagert ist.A machine of the type mentioned at the outset is known from EP 0 354 342. In this machine and in all the other known scroll compressors, in which a guide shaft which is angularly synchronous with the drive shaft is provided for translatory guiding of the rotor, the drive shaft is mounted in roller bearings . This is particularly evident in the displacement machine according to EP 0 354 342, in which the drive shaft is mounted in the housing in two ball bearings and the eccentric collar arranged on the drive shaft is supported by a needle bearing.

Diese Art der Abstützung beziehungsweise Lagerung des Läufers ist relativ kostspielig, da aus Platzgründen ein Nadellager ohne inneren Laufring zum Einsatz kommt. Dies erfordert jedoch, dass die Abrollbahn auf dem Exzenterbund gehärtet sein muss, was wiederum die Auswahl für ein günstiges Herstellverfahren der Exzenterwelle einschränkt. Ein günstiges Verfahren ist das Gussverfahren, wenn Sphäroguss verwendet wird. Sphäroguss ist zwar härtbar; es wird indessen nicht die für einen hochbelasteten Wälzlagerbetrieb notwendige Festigkeit in der Laufbahn erzielt, wie dies beispielsweise beim Wälzlagerstahl der Fall ist.This type of support or mounting of the rotor is relatively expensive, since for reasons of space a needle bearing without an inner race is used. However, this requires that the rolling path on the eccentric collar must be hardened, which in turn limits the selection for a cheap manufacturing method for the eccentric shaft. A convenient method is the casting process if nodular cast iron is used. Ductile iron is hardenable; However, the strength required for a heavily loaded rolling bearing operation is not achieved in the raceway, as is the case, for example, with rolling bearing steel.

Da überdies infolge der hohen Fliehkraftbelastung und der exzentrischen Bewegung eine Fettdauerschmierung des Wälzlagers ausscheidet, sind diese bekannnten hochbelasteten Nadellager ölgeschmiert, wobei das Öl dem Lager über ein Bohrungssystem in der Antriebswelle zugeleitet wird.Since, in addition, due to the high centrifugal force and the eccentric movement, permanent grease lubrication of the rolling bearing is eliminated, these known, highly loaded needle bearings are oil-lubricated, the oil being supplied to the bearing via a bore system in the drive shaft.

Darstellung der ErfindungPresentation of the invention

Ausgehend von der Erkenntnis, dass in Folge der hohen thermischen und mechanischen Belastungen beim Hauptexzenterlager ohne dessen kontinuierliche Schmierung mit einem flüssigen Schmiermittel nicht auszukommen ist, liegt der Erfindung die Aufgabe zugrunde, das Lagerkonzept der Verdrängungsmaschine hinsichtlich einer Kostenoptimierung zu vereinfachen.Based on the knowledge that, as a result of the high thermal and mechanical loads on the main eccentric bearing, it is not possible to do without a continuous lubrication with a liquid lubricant, the object of the invention is to simplify the bearing concept of the displacement machine with regard to cost optimization.

Die Aufgabe wird dadurch gelöst, dass für den orbitierenden Läufer auf der rotierenden Exzenterscheibe ein Gleitlager vorgesehen ist, wobei die Ölzufuhr und die Ölabfuhr über eine Bohrung in der Exzenterscheibe erfolgt, und dass innerhalb der Exzenterscheibe Mittel zur luftfreien Ölzufuhr in den Gleitlagerspalt angeordnet sind.The object is achieved in that a sliding bearing is provided for the orbiting rotor on the rotating eccentric disc, the oil supply and oil discharge being effected via a bore in the eccentric disc, and in that means for air-free oil supply in the sliding bearing gap are arranged within the eccentric disc.

Abgesehen von der Verbilligung der Maschine dadurch, dass neben dem Ersatz eines Wälzlagers durch eine Gleitlager auch dessen geringere radiale Abmessungen zu einer Erhöhung des für die Luftströmung notwendigen Freiraumes führt, ist der besondere Vorteil darin zu sehen, dass durch diese Massnahme auf eine gehärtete Oberfläche der Exzenterscheibe verzichtet werden kann. Die indirekte Beaufschlagung des Schmierspaltes mit Öl über Entgasungsmittel gestattet es, auf einfache Art luftfreies Öl für das hochbelastete Exzenterlager bereitzustellen
Es ist zweckmässig, wenn ein zum Schmierspalt hin offener Hohlraum in der Exzenterscheibe angeordnet ist, und zwar in der Winkelebene, in welcher die Exzenterscheibe ihren grössten Abstand zur Rotationsachse aufweist. Die Ölzufuhr erfolgt vorzugsweise in den Hohlraum über eine Bohrung in der Exzenterscheibe, deren Mündung radial ausserhalb der Rotationsachse der Antriebswelle angeordnet ist. Die Ölabfuhr und gegebenenfalls die Luftabfuhr erfolgt gemeinsam über eine aus dem Hohlraum abzweigende, in der Rotationsachse der Antriebswelle liegende Längsbohrung. Durch diese Massnahme wird das in den Hohlraum einströmende Öl infolge der Fliehkraftwirkung in den Schmierspalt geschleudert, während allenfalls im Öl vorhandene Luft durch die Wirkung dieser Zentrifuge ausgeschieden wird und über die Längsbohrung aus dem Hohlraum abströmt. Daneben bewirkt der Hohlraum in der Exzenterscheibe eine Verkleinerung der rotierenden Masse; Die Antriebswelle wird insgesamt leichter und es ist weniger Fliehkraft auszugleichen, was wiederum zu leichteren Ausgleichmassen führt.
Apart from the fact that the machine is cheaper because, in addition to replacing a rolling bearing with a plain bearing, its smaller radial dimensions also increase the free space required for the air flow, the particular advantage is that this measure results in a hardened surface of the Eccentric disc can be dispensed with. The indirect application of oil to the lubrication gap via degassing agent makes it possible to provide air-free oil for the highly loaded eccentric bearing in a simple manner
It is expedient if a cavity which is open towards the lubrication gap is arranged in the eccentric disc, specifically in the angular plane in which the eccentric disc is at its greatest distance from the axis of rotation. The oil supply is preferably carried out in the cavity via a bore in the eccentric disc, the mouth of which is arranged radially outside the axis of rotation of the drive shaft. The oil removal and, if necessary, the air removal takes place jointly via a longitudinal bore branching off the cavity and lying in the axis of rotation of the drive shaft. As a result of this measure, the oil flowing into the cavity is thrown into the lubricating gap as a result of the centrifugal force, while any air present in the oil is expelled by the action of this centrifuge and flows out of the cavity via the longitudinal bore. In addition, the cavity in the eccentric disc causes a reduction in the rotating mass; The drive shaft becomes lighter overall and less centrifugal force has to be compensated, which in turn leads to lighter compensating masses.

Wenn im Bereich der Radialebene des Schmierspaltes ein Kanal angeordnet ist, der sich in Umfangsrichtung des Schmierspaltes vom Hohlraum aus erstreckt und zwar entgegen der Drehrichtung der Antriebswelle, so ist ein einfaches Mittel geschaffen, um das luftfreie Schmieröl auf direktestem Weg an die am höchsten belastete Stelle des Exzenterlagers zu leiten.If a channel is arranged in the area of the radial plane of the lubrication gap, which extends in the circumferential direction of the lubrication gap from the cavity and against the direction of rotation of the drive shaft, a simple means is created to direct the air-free lubricating oil to the most heavily loaded point of the eccentric bearing.

Um eventuell durch die hochbelasteteten Wellendichtringe beidseits des Gleitlagers eindringende Luft abzuführen, ist es angebracht, am Umfang der Exzenterscheibe einen lichten Raum anzuordnen, der sich zwischen den Wellendichtringen erstreckt und der die Ölräume beidseits der Wellendichtringe mit dem Hohlraum verbindet. Dieser lichte Raum ist vorzugsweise von sichelförmiger Form, wobei die Mittellinie der Sichel sich wie jene des Hohlraumes in der Winkelebene befindet, in welcher die Exzenterscheibe ihren grössten Abstand zur Rotationsachse (34) aufweist,In order to remove any air that may penetrate through the highly loaded shaft sealing rings on both sides of the plain bearing, it is appropriate to arrange a clear space on the circumference of the eccentric disc, which extends between the shaft sealing rings and which connects the oil spaces on both sides of the shaft sealing rings with the cavity. This clear space is preferably of a crescent shape, the center line of the sickle being like that of the cavity in the angular plane in which the eccentric disc is at its greatest distance from the axis of rotation (34),

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt.In the drawing, an embodiment of the invention is shown schematically.

Es zeigt:

Fig. 1
einen Querschnitt durch das antriebsseitige Gehäuseteil der Verdrängermaschine nach Linie I-I in Fig. 2;
Fig. 2
einen Längsschnitt durch die Verdrängermaschine nach Linie II-II in Fig. 1;
Fig. 3
eine unbestückte Antriebswelle;
Fig. 4
einen Querschnitt durch die Antriebswelle nach Linie IV-IV in Fig. 3;
Fig. 5
einen Teilquerschnitt durch die Exzenterlagerung.
It shows:
Fig. 1
a cross section through the drive-side housing part of the displacement machine according to line II in Fig. 2;
Fig. 2
a longitudinal section through the displacement machine according to line II-II in Fig. 1;
Fig. 3
a bare drive shaft;
Fig. 4
a cross section through the drive shaft according to line IV-IV in Fig. 3;
Fig. 5
a partial cross section through the eccentric bearing.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Zwecks Erläuterung der Funktionsweise des Verdichters, welche nicht Gegenstand der Erfindung ist, wird auf die bereits genannte DE-C3-2 603 462 verwiesen. Nachstehend wird nur der für das Verständnis notwendige Maschinenaufbau und Prozessablauf kurz beschrieben.In order to explain the operation of the compressor, which is not the subject of the invention, reference is made to the already mentioned DE-C3-2 603 462. In the following, only the machine structure and process flow necessary for understanding are briefly described.

In Fig. 1 ist das Gehäuse mit den Förderräumen und dem eingelegten Verdränger gezeigt. Mit 1 ist der Läufer der Maschine insgesamt bezeichnet. An beiden Seiten der Scheibe 2 sind je zwei, um 180° zueinander versetzte, spiralförmig verlaufende Verdrängerköper angeordnet. Es handelt sich um Leisten 3a, 3b, die senkrecht auf der Scheibe 2 gehalten sind. Die Spiralen selbst sind im gezeigten Beispiel aus mehreren, aneinander anschliessenden Kreisbögen gebildet. Mit 4 ist die Nabe bezeichnet, mit welcher die Scheibe 2 über dem Gleitlager 22 auf einer Exzenterscheibe 23 gelagert ist. Diese Exzenterscheibe ist ihrerseits Teil der Antriebswelle 24.In Fig. 1, the housing with the delivery rooms and the inserted displacer is shown. The rotor of the machine is designated as a whole by 1. On both sides of the disc 2, two spiral-shaped displacers are arranged, which are offset by 180 ° to one another. These are strips 3a, 3b which are held vertically on the pane 2. In the example shown, the spirals themselves are formed from a plurality of circular arcs adjoining one another. 4 denotes the hub with which the disk 2 over the slide bearing 22nd is mounted on an eccentric disk 23. This eccentric disk is in turn part of the drive shaft 24.

Mit 5 ist ein radial ausserhalb der Leisten 3a, 3b angeordnetes Auge bezeichnet für die Aufnahme eines Führungslagers 25, welches auf einem Exzenterbolzen 26 aufgezogen ist. Dieser ist seinerseits Teil einer Führungswelle 27. Am Spiralende sind in der Scheibe vier Durchtrittsfenster 6, 6' vorgesehen, damit das Medium von einer Scheibenseite zur andern gelangen kann, beispielsweise um in einem nur einseitig angeordneten zentralen Auslass abgezogen zu werden.5 with a radially outside the strips 3a, 3b arranged eye is designated for receiving a guide bearing 25 which is mounted on an eccentric bolt 26. This is in turn part of a guide shaft 27. At the spiral end, four passage windows 6, 6 'are provided in the disk so that the medium can get from one disk side to the other, for example to be drawn off in a central outlet arranged only on one side.

In Fig. 1 ist die in Fig. 2 links dargestellte Gehäusehälfte 7a des aus zwei Hälften 7a, 7b zusammengesetzten, über Befestigungsaugen 8 zur Aufnahme von Verschraubungen miteinander verbundenen Maschineßgehäuses gezeigt. 11a und 11b bezeichnen die zwei jeweils um 180° gegeneinander versetzten Förderräume, die nach Art eines spiralförmigen Schlitzes in die beiden Gehäusehälften eingearbeitet sind. Sie verlaufen von je einem am äusseren Umfang der Spirale im Gehäuse angeordneten Einlass 12a, 12b zu einem im Gehäuseinneren vorgesehenen, beiden Förderräumen gemeinsamen Auslass 13 (Fig. 2). Sie weisen im wesentlichen parallele, in gleichbleibendem Abstand zueinander angeordnete Zylinderwände 14a, 14b, 15a, 15b auf, die im vorliegenden Fall wie die Verdrängerkörper der Scheibe 2 eine Spirale von ca. 360° umfassen. Zwischen diesen Zylinderwänden greifen die Verdrängerkörper 3a,3b ein, deren Krümmung so bemessen ist, dass die Leisten die inneren und die äusseren Zylinderwände des Gehäuses an mehreren, beispielsweise an jeweils zwei Stellen nahezu berühren. An den freien Stirnseiten der Leisten 3a, 3b und der Stege 45, 46 sind Dichtungen 49 in entsprechenden Nuten eingelegt. Mit ihnen werden die Arbeitsräume gegen die Seitenwände des Gehäuses resp. gegen die Verdrängerscheibe gedichtet.1 shows the housing half 7a shown on the left in FIG. 2 of the machine housing which is composed of two halves 7a, 7b and is connected to one another via fastening eyes 8 for receiving screw connections. 11a and 11b denote the two delivery spaces, each offset by 180 °, which are worked into the two housing halves in the manner of a spiral slot. They each run from an inlet 12a, 12b arranged on the outer circumference of the spiral in the housing to an outlet 13 provided in the interior of the housing and common to both delivery spaces (FIG. 2). They have essentially parallel, uniformly spaced cylinder walls 14a, 14b, 15a, 15b, which in the present case, like the displacer bodies of the disk 2, comprise a spiral of approximately 360 °. The displacers 3a, 3b engage between these cylinder walls, the curvature of which is dimensioned such that the strips almost touch the inner and outer cylinder walls of the housing at several, for example at two points each. On the free end faces of the strips 3a, 3b and the webs 45, 46, seals 49 are inserted in corresponding grooves. With them, the working rooms against the side walls of the housing respectively. sealed against the displacement disc.

Den Antrieb und die Führung des Läufers 1 besorgen die zwei beabstandeten Exzenteranordnungen 23, 24 resp. 26, 27. Die Antriebswelle 24 ist antriebsseitig in einem Wälzlager 17 und luftseitig in einem Gleitlager 18 gelagert. An ihrem aus der Gehäusehalfte 7a herausragenden Ende ist sie mit einer Keilriemenscheibe 19 für den Antrieb versehen. Auf der Antriebswelle 24 sind Gegengewichte 20 angeordnet zum Ausgleich der beim exzentrischen Antrieb des Läufers entstehenden Massenkräfte. Die Führungswelle 27 ist innerhalb der Gehäusehälfte 7a in ein Gleitlager 28 eingelegt, welches beidseitig mit Ringdichtungen 39 abgedichtet ist. Um in den Totpunktlagen eine eindeutige Führung des Läufers zu erzielen, werden die beiden Exzenteranordnungen über einen Zahnriemenantrieb 16 winkelgenau synchronisiert. Dieser Doppelexzenterantrieb sorgt dafür, dass alle Punkte der Läuferscheibe und damit auch alle Punkte der beiden Leisten 3a und 3b eine kreisförmige Verschiebebewegung ausführen. Infolge der mehrfachen abwechselnden Annäherungen der Leisten 3a,3b an die inneren und äusseren Zylinderwände der zugeordneten Förderkammern ergeben sich auf beiden Seiten der Leisten sichelförmige, das Arbeitsmedium einschliessende Arbeitsräume, die während des Antriebs der Läuferscheibe durch die Förderkammern in Richtung auf den Auslass verschoben werden. Hierbei verringern sich die Volumina dieser Arbeitsräume und der Druck des Arbeitsmittels wird entsprechend erhöht.The drive and the guide of the rotor 1 are provided by the two spaced-apart eccentric arrangements 23, 24 and. 26, 27. The drive shaft 24 is mounted on the drive side in a roller bearing 17 and on the air side in a slide bearing 18. At its end protruding from the housing half 7a, it is provided with a V-belt pulley 19 for the drive. Counterweights 20 are arranged on the drive shaft 24 to compensate for the inertial forces arising when the rotor is eccentrically driven. The guide shaft 27 is inserted within the housing half 7a in a slide bearing 28, which is sealed on both sides with ring seals 39. In order to achieve clear guidance of the rotor in the dead center positions, the two eccentric arrangements are synchronized with a precise angle via a toothed belt drive 16. This double eccentric drive ensures that all points of the rotor disc and thus also all points of the two strips 3a and 3b perform a circular displacement movement. As a result of the multiple alternating approaches of the strips 3a, 3b to the inner and outer cylinder walls of the associated delivery chambers, crescent-shaped workrooms enclosing the working medium result on both sides of the strips, which are displaced by the delivery chambers in the direction of the outlet during the drive of the rotor disk. The volumes of these working spaces decrease and the pressure of the working fluid is increased accordingly.

Zur Schmierung der in dem Gehäuse 7a, 7b untergebrachten Lager sowie des Hauptexzenterlagers 22 ist ein gemeinsames System vorgesehen. Aus einer nicht dargestellten Schmiermittelquelle wird Schmiermittel, vorzugsweise Oel, über eine Bohrung 29 in der Gehäusehälfte 7b zum Gleitlager 28 geleitet. Beidseits dieses Lagers wird das Oel aufgefangen und über eine Bohrung 30 in den Bereich der Antriebswelle 24 geführt zwischen das Wälzlager 17 und den zugehörigen antriebsseitigen Wellendichtring 50. Von dort durchdringt und schmiert das Öl das Wälzlager 17 und gelangt in einen Ringraum 51, welcher seitlich durch einen weiteren Wellendichtring 52 abgeschlossen ist.A common system is provided for lubricating the bearings accommodated in the housing 7a, 7b and the main eccentric bearing 22. Lubricant, preferably oil, is passed from a lubricant source (not shown) to the slide bearing 28 via a bore 29 in the housing half 7b. The oil is collected on both sides of this bearing and guided through a bore 30 into the area of the drive shaft 24 between the roller bearing 17 and the associated drive-side shaft sealing ring 50. From there, the oil penetrates and lubricates the roller bearing 17 and reaches an annular space 51, which is laterally closed by another shaft sealing ring 52.

Aus diesem Ringraum 51 wird nunmehr das Exzenterlager 22 angespeist. Dieses Lager ist als einfaches Gleitlager ausgebildet und ist gegen den Innenraum der Maschine über Wellendichtringe 32 abgedichtet, wie dies in Fig.5 erkennbar ist.The eccentric bearing 22 is now fed from this annular space 51. This bearing is designed as a simple slide bearing and is sealed against the interior of the machine via shaft sealing rings 32, as can be seen in FIG.

Eine direkte Ölzufuhr über Radialbohrungen in der Exzenterscheibe zu den beiden Lagerseiten, wie sie beispielsweise aus der eingangs genannten EP 0 354 342 bekannt ist, wäre im vorliegenden Fall nachteilig. Zum einen würde bereits im Öl enthaltene Luft dessen Schmierfähigkeit beeinträchtigen; zum andern kann zusätzliche Luft über die beidseitig des Lagers vorgesehenen Wellendichtringe in den Lagerraum einströmen. Dies, weil der Innenraum der Maschine - in welchem sich der Exzentertrieb befindet - jenseits der Wellendichtringe während des Betriebes unter Überdruck steht.A direct oil supply via radial bores in the eccentric disk to the two bearing sides, as is known, for example, from EP 0 354 342 mentioned at the outset, would be disadvantageous in the present case. On the one hand, air already contained in the oil would impair its lubricity; on the other hand, additional air can flow into the storage space via the shaft sealing rings provided on both sides of the bearing. This is because the interior of the machine - in which the eccentric drive is located - beyond the shaft seals is under pressure during operation.

Wie aus den Fig. 2 bis 5 ersichtlich, wird das Schmiermittel demzufolge in der Lagermitte in den Schmierspalt eingespeist. Dies geschieht über eine gerade Schrägbohrung 31 in der Exzenterscheibe. Die Schrägbohrung kommuniziert antriebseitig mit dem Ringraum 51 und mündet innerhalb der Scheibe in einen Hohlraum 33. Der Hohlraum ist zum Schmierspalt hin offen. Die Öffnung des Hohlraumes erstreckt sich über einen Umfangsbereich X (Fig. 1) und befindet sich in der Winkelebene, in welcher die Exzenterscheibe ihre grösste radiale Abmessung aufweist. Die Mündung der Schrägbohrung 31 ist in einer Radialebene angeordnet, welche sich ausserhalb der Rotationsachse 34 der Antriebswelle befindet. Anlässlich der Drehung wird das in den Hohlraum einströmende Öl infolge Fliehkraft nach aussen in den Umfangsbereich X geschleudert. Sofern sich Luft im Öl befindet, wird dieses unter der Wirkung der Zentrifuge aus dem Öl ausgeschieden. Diese Luft strömt radial einwärts in das Rotationszentrum des Hohlraumes, welches mit der Rotationsachse 34 der Antriebswelle zusammenfällt. Die Luft und das nicht für die Schmierung benötigte Öl werden sodann über eine zentral in der Antriebswelle angeordnete Längsbohrung 53 aus dem Hohlraum 33 abgeführt.As can be seen from FIGS. 2 to 5, the lubricant is accordingly fed into the lubrication gap in the middle of the bearing. This is done via a straight oblique bore 31 in the eccentric disc. The oblique bore communicates on the drive side with the annular space 51 and opens into a cavity 33 within the disk. The cavity is open to the lubrication gap. The opening of the cavity extends over a circumferential area X (FIG. 1) and is located in the angular plane in which the eccentric disc has its largest radial dimension. The mouth of the oblique bore 31 is arranged in a radial plane which is located outside the axis of rotation 34 of the drive shaft. On the occasion of the rotation, the oil flowing into the cavity is thrown outward into the peripheral region X due to centrifugal force. If there is air in the oil, it is separated from the oil under the action of the centrifuge. This air flows radially inwards into the center of rotation of the cavity, which coincides with the axis of rotation 34 of the drive shaft coincides. The air and the oil not required for lubrication are then discharged from the cavity 33 via a longitudinal bore 53 arranged centrally in the drive shaft.

Nun sind selbstverständlich auch Vorkehrungen gegen seitlich durch die Wellendichtringe 32 eintretende Luft zu treffen. Hierzu wird die Exzenterscheibe im Bereich der Wellendichtringe eingestochen zwecks Bildung eines sichelförmigen Raumes 35 (Fig. 4). Dieser Raum befindet sich in der gleichen Winkelebene wie der Umfangsbereich X und erstreckt sich axial zwischen den beiden Wellendichtringen 32. Dabei verbindet er die beidsseits der Wellendichtringe angeordneten Ölräume 58 mit dem Hohlraum 33. Dieser Raum 35 wird auf einfache Weise dadurch hergestellt, dass die Exzenterscheibe an der entsprechenden Stelle von der Rotationsachse als Zentrum mit dem Radius der Exzenterscheibe geschliffen wird. Wie aus Fig.5 ersichtlich, gelangt Luft, welche die hochbelasteten, mit der Exzentrizität e orbitierenden Wellendichtringe 32 durchdringt, damit unter Umgehung des Schmierspaltes direkt aus den Ölräumen 58 in diesen Raum 35 und strömt dann an der Wandung des Hohlraumes 33 entlang radial einwärts in dessen Rotationszentrum.Now, of course, precautions are also to be taken against air entering laterally through the shaft sealing rings 32. For this purpose, the eccentric disk is pierced in the area of the shaft sealing rings in order to form a crescent-shaped space 35 (FIG. 4). This space is located in the same angular plane as the circumferential area X and extends axially between the two shaft sealing rings 32. It connects the oil spaces 58 arranged on both sides of the shaft sealing rings to the cavity 33. This space 35 is produced in a simple manner by the eccentric disk is ground at the corresponding point from the axis of rotation as the center with the radius of the eccentric disc. As can be seen from FIG. 5, air which penetrates the highly loaded shaft sealing rings 32 orbiting with the eccentricity passes directly from the oil spaces 58 into this space 35 bypassing the lubrication gap and then flows radially inwards along the wall of the cavity 33 its center of rotation.

Im Umfangsbereich X befindet somit quasi luftfreies Öl, welches den Schmierspalt des Gleitlagers beaufschlagt. Es gilt nunmehr, das Öl an jene Lagerstellen heranzuführen, die am höchsten belastet sind.In the peripheral area X there is thus virtually air-free oil, which acts on the lubricating gap of the plain bearing. It is now important to bring the oil to those bearing points that are most heavily contaminated.

In Fig. 1 ist die durch die Fliehkraft hervorgerufene Reaktionskraft der Exzenterscheibe mit F bezeichnet. Die durch den Antrieb des Läufers verursachte Reaktionskraft ist mit A bezeichnet. Die daraus resultierende Reaktionskraft ist mit dem Pfeil R dargestellt. Diese Resultante bewirkt im Gleitlagerspalt im Bereich Y die höchste Belastung. Auf die Exzenterscheibe bezogen, ist dieser Bereich Y immer am selben Ort.In Fig. 1, the reaction force of the eccentric disc caused by the centrifugal force is designated F. The reaction force caused by the drive of the rotor is labeled A. The resulting reaction force is shown with the arrow R. This resultant causes the highest load in the Y bearing area. In relation to the eccentric disc, this area Y is always in the same place.

Verschiebungen nach oben oder nach unten treten allenfalls durch eine variierende Antriebsleistung respektiv Fliehkraftbelastung auf.At most, shifts up or down occur due to a varying drive power or centrifugal force.

Bei freier Ölführung in einer Exzenterscheibe hat das Öl die Tendenz, bedingt durch das Fliehkraftfeld, in den Bereich X geschleudert zu werden. Dies ist unabhängig von der neuen Massnahme der Hohlraumanordnng. Da bei Exzenterlagerungen das Schmiermittel entgegen der Drehrichtung im Schmierspalt strömt, könnte die Gefahr bestehen, dass aufgrund des langen zurückzulegenden Weges das Öl den Bereich Y ungenügend versorgt. Versuche haben nunmehr ergeben, dass eine genügende Ölversorgung im hochbelasteten Bereich Y dann gegeben ist, wenn das öl in den in Fig. 1 mit Z bezeichneten Bereich eingespeist wird. Bezogen auf das Rotationszentrum und in Drehrichtung gesehen, liegt dieser Bereich Z etwa 90° vor dem höchstbelasteten Bereich Y.With free oil flow in an eccentric disc, the oil tends to be thrown into area X due to the centrifugal force field. This is independent of the new measure of the cavity arrangement. Since the lubricant flows in the lubrication gap counter to the direction of rotation in the case of eccentric bearings, there could be a risk that the oil will not adequately supply area Y due to the long distance to be covered. Experiments have now shown that there is sufficient oil supply in the heavily loaded area Y when the oil is fed into the area designated Z in FIG. 1. Relative to the center of rotation and seen in the direction of rotation, this area Z lies approximately 90 ° in front of the most heavily loaded area Y.

Um diese Ölversorgung sicherzustellen, wird am Aussenumfang der Exzenterscheibe eine Vertiefung angebracht, die einen den Hohlraum 33 und den Bereich Z verbindenden Kanal 40 bildet. Dieser Kanal verläuft, wie in Fig. 4 erkennbar, entgegen der Drehrichtung der Antriebswelle. Das derart aus dem Umfangsbereich X frisch in den Umfangsbereich Z eingespeiste luftfreie Öl behält seine Trag- und Schmierfähigkeit ohne weiteres bis hin in den gefährdeten Umfangsbereich Y. Um den Kanal 40 besser darstellen zu können, ist in Fig. 3 die Antriebswelle 24 gegenüber der Darstellung in Fig. 2 um 180° gedreht, d. h. die Antriebsseite befindet sich im rechten Figurenteil. Auf der in Fig. 3 in vormontiertem Zustand gezeigten Welle ist ebenfalls das in Fig. 2 schraffiert dargestellte Ausgleichgewicht 20 nicht aufgesteckt.In order to ensure this oil supply, a recess is formed on the outer circumference of the eccentric disk, which forms a channel 40 connecting the cavity 33 and the region Z. As can be seen in FIG. 4, this channel runs counter to the direction of rotation of the drive shaft. The air-free oil thus freshly fed into the peripheral area Z from the peripheral area X easily retains its load-bearing capacity and lubricity right up to the endangered peripheral area Y. In order to better illustrate the channel 40, the drive shaft 24 is shown in FIG rotated by 180 ° in Fig. 2, d. H. the drive side is in the right part of the figure. The balancing weight 20 shown hatched in FIG. 2 is also not attached to the shaft shown in FIG. 3 in the preassembled state.

Das aus der Längsbohrung 53 an der luftseitigen Stirnseite der Antriebswelle abströmende Öl hat noch die Aufgabe, das weniger belastete luftseitige Wellenlager 18 zu schmieren.The oil flowing out of the longitudinal bore 53 on the air-side end face of the drive shaft still has the task of lubricating the less loaded air-side shaft bearing 18.

Dieses Lager ist als Gleitlager ausgebildet und ist beidseitig mit Ölräumen 54, 55 versehen, welche nach aussen dicht abgeschlossen sind. Hierzu wird der antriebsseitige Ölraum 55 durch einen gegen die Antriebswelle wirkenden Wellendichtring 56 begrenzt. Der gegenüberliegende Ölraum 54, in welchen die Längsbohrung 53 mündet, ist durch die Wandung des Gehäuseteils 7a verschlossen. Die beiden Ölräume 54, 55 sind über einen Kanal 57 miteinander verbunden. Hierzu ist dieser Kanal als Vertiefung im Lager 18 ausgebildet. In seiner ganzen axialen Länge ist der Kanal gegen die Antriebswelle 24 hin offen, wodurch das Lager 18 gleichmässig angespeist wird.This bearing is designed as a plain bearing and is provided on both sides with oil spaces 54, 55, which are sealed off from the outside. For this purpose, the oil space 55 on the drive side is delimited by a shaft sealing ring 56 acting against the drive shaft. The opposite oil chamber 54, in which the longitudinal bore 53 opens, is closed by the wall of the housing part 7a. The two oil spaces 54, 55 are connected to one another via a channel 57. For this purpose, this channel is designed as a depression in the bearing 18. The channel is open towards the drive shaft 24 along its entire axial length, as a result of which the bearing 18 is fed uniformly.

Claims (8)

  1. Displacement machine for compressible media, having a plurality of spiral-shaped delivery chambers (11a, 11b) disposed in a fixed housing (7a, 7b) and having a displacement body (1-4) assigned to the delivery chambers, which displacement body is held in such a way on a disc-shaped rotor (1), which can be driven eccentrically relative to the housing, that, during running, each of its points performs a circular motion limited by the peripheral walls of the delivery chambers, for which purpose there is disposed on the drive shaft (24) an eccentric disc (23) on which the rotor (1) is mounted by means of an oil-lubricated mounting, characterized in that, for the orbiting rotor (1), a slide bearing (22) is provided on the rotating eccentric disc (23), the supply of oil and evacuation of oil being effected via a bore (31 and 53 respectively) in the eccentric disc, and in that within the eccentric disc there are disposed means for the air-free supply of oil into the slide bearing gap.
  2. Displacement machine according to Claim 1, characterized in that the means for the air-free supply of oil into the slide bearing gap essentially comprise a cavity (33), which is disposed in the eccentric disc (24) and is open towards the lubricating gap, to be precise in the angular plane in which the eccentric disc exhibits its greatest distance to the rotational axis (34), the supply of oil being effected into the cavity (33) and the evacuation of oil and, where appropriate, the evacuation of air being jointly effected via a longitudinal bore (53) which branches off from the cavity (33) and lies in the rotational axis (34) of the drive shaft (24).
  3. Displacement machine according to Claim 2, characterized in that the mouth of the oil-supplying bore (31) into the cavity (33) is disposed radially outside the rotational axis (34) of the drive shaft (24), and in that the mouth of the oil-evacuating bore (53) from the cavity (33) is disposed in the rotational axis (34) of the drive shaft (24).
  4. Displacement machine according to Claim 2, characterized in that on the periphery of the eccentric disc (23) there is provided a clear space (35), which extends between the rotary shaft seals (32) disposed on both sides of the bearing (18) and which connects the oil chambers (58) on both sides of the rotary shaft seals (32) to the cavity (33).
  5. Displacement machine according to Claim 4, characterized in that the clear space (35) is crescent-shaped, and in that the centre line of the crescent is located in the angular plane in which the eccentric disc exhibits its greatest distance to the rotational axis (34).
  6. Displacement machine according to Claim 2, characterized in that in the region of the radial plane of the lubricating gap a duct (40) is disposed, which duct extends from the cavity (33) in the peripheral direction of the lubricating gap, to be precise, counter to the direction of rotation of the drive shaft (24).
  7. Displacement machine according to Claim 6, characterized in that the duct (40) is configured as a recess on the outer periphery of the eccentric disc (23).
  8. Displacement machine according to Claim 2, characterized in that the oil flowing from the longitudinal bore (53) on the air-side end face of the drive shaft (24) is guided into a shaft bearing (18) configured as a slide bearing, which bearing is closed off at its two axial ends by oil chambers (54, 55), and in that the two oil chambers (54, 55) communicate with each other via a duct (57), the duct being open, in its axial extent, towards the drive shaft (24).
EP92120868A 1991-12-16 1992-12-08 Positive displacement machine of the spiral principle Expired - Lifetime EP0547470B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3714/91 1991-12-16
CH371491 1991-12-16

Publications (2)

Publication Number Publication Date
EP0547470A1 EP0547470A1 (en) 1993-06-23
EP0547470B1 true EP0547470B1 (en) 1995-08-23

Family

ID=4261932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120868A Expired - Lifetime EP0547470B1 (en) 1991-12-16 1992-12-08 Positive displacement machine of the spiral principle

Country Status (4)

Country Link
US (1) US5318425A (en)
EP (1) EP0547470B1 (en)
JP (1) JPH05248376A (en)
DE (1) DE59203379D1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614012B1 (en) * 1993-01-19 1996-09-18 AGINFOR AG für industrielle Forschung Scroll type positive displacement machine
DE29516780U1 (en) * 1995-10-24 1995-12-07 Truninger Ag Gear pump or motor
ES2164398T3 (en) * 1997-08-26 2002-02-16 Crt Common Rail Tech Ag SPIRAL DISPLACEMENT MACHINES FOR COMPRESSIBLE MEDIA.
FI107285B (en) 1998-02-26 2001-06-29 Ahlstrom Paper Group Oy Replacement pump, procedure for improving its function and use of the pump
CN101784754B (en) * 2007-08-22 2012-07-25 斯宾勒工程公司 Spiral-type extruder
DE102011103165A1 (en) * 2010-07-02 2012-01-05 Handtmann Systemtechnik Gmbh & Co. Kg Charging device for compressing charge air for an internal combustion engine
JP5931564B2 (en) * 2012-04-25 2016-06-08 アネスト岩田株式会社 Double-rotating scroll expander and power generation device including the expander
JP6235857B2 (en) * 2013-10-18 2017-11-22 株式会社Soken Scroll compressor
KR102234708B1 (en) * 2014-08-06 2021-04-01 엘지전자 주식회사 compressor
US11867357B1 (en) * 2022-09-09 2024-01-09 Pratt & Whitney Canada Corp. Deaeration conduit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB225432A (en) * 1924-02-28 1924-12-04 Noel Banner Newton Method of and means for lubricating engine crank pins
DE1527508B2 (en) * 1964-07-24 1971-07-22 PROCESS FOR HARDENING A CRANKSHAFT
DE2739404C2 (en) * 1977-09-01 1986-07-03 Klöckner-Humboldt-Deutz AG, 5000 Köln Crankshaft of an internal combustion engine
JPS6220689A (en) * 1985-07-19 1987-01-29 Mitsubishi Electric Corp Scroll compressor
US4832586A (en) * 1987-06-26 1989-05-23 Volkswagen Ag Drive assembly with different eccentricities
EP0354342B1 (en) * 1988-08-03 1994-01-05 AGINFOR AG für industrielle Forschung Scroll-type fluid displacement machine
DE3928870A1 (en) * 1988-09-08 1990-03-15 Volkswagen Ag Grease lubrication system for spiral compressor - incorporates ventilation hole which prevents pressure build=up

Also Published As

Publication number Publication date
US5318425A (en) 1994-06-07
JPH05248376A (en) 1993-09-24
EP0547470A1 (en) 1993-06-23
DE59203379D1 (en) 1995-09-28

Similar Documents

Publication Publication Date Title
EP0354342B1 (en) Scroll-type fluid displacement machine
DE3345073C2 (en)
EP0614012B1 (en) Scroll type positive displacement machine
EP0392975B1 (en) Rotary scroll supercharger for compressible media
DE2801206A1 (en) SPIRAL DEVICE WITH A FIXED CRANE DRIVE MECHANISM
DE2735663A1 (en) SPIRAL DEVICE WITH A HYDRODYNAMIC AXIAL BEARING
EP0547470B1 (en) Positive displacement machine of the spiral principle
EP0371305B1 (en) Excentric shaft with a counter weight
EP0899423B1 (en) Scroll compressible fluid displacement machine
DE4134964C2 (en) Scroll compressor
EP0201774B1 (en) Rotary piston positive-displacement machine
EP0362133A1 (en) Fluid machine for incompressible mediums
EP0545190B1 (en) Scroll-type fluid displacement machine
WO2000049275A1 (en) Displacement machine based on the spiral principle
EP0557598B1 (en) Scroll type fluid machinery
DE1653921B2 (en) Rotary piston pump
DE4422315C2 (en) Scroll compressor
EP0899424A1 (en) Scroll compressible fluid displacement machine
EP0545191B1 (en) Scroll-type fluid displacement machine
EP0616117B1 (en) Internal combustion engine with supercharger of the positive displacement type
EP0597804B1 (en) Fluid displacement apparatus with a spiral element
DE3913989A1 (en) WING PUMP
EP0545187B1 (en) Scroll type fluid displacement machine
DE2233580C3 (en) Rotary piston compressor with radially movable working slides
EP0462924B1 (en) Scroll type fluid machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGINFOR AG FUER INDUSTRIELLE FORSCHUNG

17P Request for examination filed

Effective date: 19931208

17Q First examination report despatched

Effective date: 19950208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59203379

Country of ref document: DE

Date of ref document: 19950928

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001204

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011120

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011208

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208