EP0545768A1 - Procédé et dispositif de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants - Google Patents

Procédé et dispositif de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants Download PDF

Info

Publication number
EP0545768A1
EP0545768A1 EP92403141A EP92403141A EP0545768A1 EP 0545768 A1 EP0545768 A1 EP 0545768A1 EP 92403141 A EP92403141 A EP 92403141A EP 92403141 A EP92403141 A EP 92403141A EP 0545768 A1 EP0545768 A1 EP 0545768A1
Authority
EP
European Patent Office
Prior art keywords
temperature
strip
zone
furnace
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92403141A
Other languages
German (de)
English (en)
Other versions
EP0545768B1 (fr
Inventor
Frédéric Parant
Frédéric Racle
Jean-Michel Walter
Jean Drykoningen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0545768A1 publication Critical patent/EP0545768A1/fr
Application granted granted Critical
Publication of EP0545768B1 publication Critical patent/EP0545768B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Definitions

  • the present invention relates to a process for the automatic control of a continuous annealing furnace with radiation by radiant tubes of the type comprising several heating zones at distinct temperatures, used in particular for carrying out different continuous heat treatments of strips connected together and requiring specific annealing operations.
  • the strips are welded together before passing into the continuous annealing furnace.
  • Strips of different types, different widths, different thicknesses can thus follow one another at the entrance to the oven. These bands may require different heat treatments in order to obtain their own characteristics. In this case it is then necessary to quickly vary the temperature of the different zones of the oven to adapt to the new incoming strip.
  • the thermal inertia of the oven being relatively large, it is impossible to vary this temperature immediately for the heat treatment of the next strip.
  • the thermal inertia of a radiant tube furnace can be three degrees Celsius per minute; if one wants to go from a 750 ° regime to an 800 ° regime, this results in a variation of 50 °, which requires a transition time of 15 to 20 minutes. If the strip circulates, for example, at 100 meters / minute, this corresponds to a length of 2 km of strip.
  • intermediate bands are currently introduced between two bands requiring different heat treatments. It is during the passage of these intermediate strips that the oven temperature is caused to vary so as to be at the correct temperature when the next strip arrives. The intermediate strip is then decommissioned and can be reused for similar purposes, except in the case where the strip has been continuously coated after heat treatment.
  • the temperature control of the various zones of the oven is also managed by the operator, who, depending on the characteristics of the bands present in the oven and arriving from a control panel, sets the temperature set points for each of the oven areas.
  • This solution has the drawback of requiring the use of intermediate strips which represent a large amount of lost metal, of not using the oven continuously, in particular during the passage of these intermediate strips, and of not optimizing the quantity of energy expended to power the ovens, since an operator indicates the heating instructions for each of the zones of the oven empirically.
  • the object of the invention is to propose a method for automatically operating a continuous annealing furnace with radiation by radiant tubes, making it possible to avoid the use of intermediate bands, without using a device with forced convection.
  • the subject of the invention is a process for the automatic control of a continuous annealing furnace with radiation by radiant tubes of the type comprising several successive zones of heating at different temperatures, used in particular for carrying out different heat treatments in continuous of strips connected to each other and requiring specific annealing operations, characterized in that the position of the ends of the strips, the speed of advancement of the strip, the temperature of the strip and the temperature of the oven in each are determined of the zones of the oven, and that the evolution of the temperature of each of the zones of the oven and of the speed of advance over time are determined from the measured results and from the characteristics of the strip having just entered the oven and its next, so that the temperature in the different areas of the oven is always greater than or equal to the values required for the line thermally and that the speed of the strip is adapted to the treatment time required in each zone as a function of the temperature of said zone.
  • oven temperature we actually designate either the temperature of the oven atmosphere or the temperature heat exchange on a standard surface, for example 1 m2. This oven temperature must be distinguished from a temperature resulting from radiation from the strip or from the walls of the oven.
  • a process for automatic control of the continuous annealing furnace according to the invention manages for each of the zones of the furnace the modification of two types of parameters.
  • the method consists in determining the speed of the strip in the oven and the speed at which it must scroll in the case of a speed change, and the moment from which the speed setpoints must be modified is calculated.
  • the area of the oven is called each part of the oven which can be individually controlled, that is to say having its own adjustment means making it possible to modify the temperature conditions in this zone without modifying the conditions in the neighboring zones.
  • the method acquires the value of the target speed to be reached and the instant when the speed must be reached, determines the transient parameters in speed and in temperature to be applied so that the change of speed does not affect the heat treatment of the belts.
  • the transient parameters in speed and temperature are determined taking into account any transients due to changes in the thermal cycle in progress or planned.
  • the maximum time is equal to the time of passage of the product to which this transition is applied and, on the other hand, the instructions relating to a transition are determined with an anticipation equivalent to the dead time and the establishment time between the initial state and the final state.
  • the method according to the invention provides for the calculation of the oven temperature set points which will be applied to the different zones of the oven. during the transition and in particular the duration and the slope of the temperature ramps.
  • Two cases are possible during a temperature change to treat two successive coils or bands. Either the temperature is caused to be increased, for example due to the increase in the thickness of the strip, or on the contrary it is caused to be decreased.
  • the date of the start of variation of the setting instructions is determined at the passage of the solder between the two strips at the exit of said zone of the oven. From this date, the temperature is lowered according to a parameterized variation law referring to a class of products and based on portions of linear variation with variable duration and slope, up to the processing temperature of the second strip.
  • the heat treatment temperature of a metal can be higher than the target temperature without damage to it, as long as one remains within the limits provided for by metallurgical criteria, while a lower temperature does not meet the conditions for a good course of treatment.
  • Information relating to the specific characteristics of each band is provided by a management computer system and transmitted directly to the appropriate computers which generate instructions to be applied to the equipment.
  • automats as well as the various measurement sensors, distributed along the line in particular in each zone of the oven provide information on the progress of the strip, which makes it possible to monitor each product while along the line from the input pads to the output pads.
  • Figure 3 shows the evolution of the temperature setpoint of an oven zone whose output is marked by line 13 (Figure 1) from time I between temperatures T1 and T2 with T1 higher at T2 taking into account an additional anticipation corresponding to the dead time due to the inertia of the furnace. It can be seen that the ramp of negative slope begins at the passage of the connection point between the strips 11 and 12 at the instant I corresponding to a distance Dm before the end of the zone of the oven whose temperature is sought to be controlled. The progressive drop in temperature takes place during the passage of the strip 12 requiring the lowest temperature T2 over a distance De after the exit from said zone.
  • the time interval LA corresponds to the dead time due to the inertia of the oven and the time interval AB to the time of establishment of the new oven temperature.
  • the distances Dm and De correspond respectively to these time intervals.
  • FIGS. 4 and 5 The opposite situation is described in FIGS. 4 and 5 since it involves the passage from a strip of thin thickness denoted 11 to a strip of greater thickness denoted 12.
  • the strip 11 requires heat treatment at temperature T1 and the strip 12 a heat treatment at the temperature T2 with T1 lower than T2.
  • FIG. 4 represents the position of the two respective bands at three separate instants, the initial instant A, the intermediate instant B and the final instant F corresponding to the end of the transition.
  • the temperature transition takes place at time A, that is to say when the strip 12 is at a distance De + Dm from the entrance to the zone.
  • the intermediate instant B represents the end of the dead time while the weld is at the distance De from the entry of the zone.
  • the final instant F is such that during the passage of the weld between the strip 11 and the strip 12, taking into account an additional anticipation to take into account the delay due to the dead time, at the entry of the zone of the oven, the oven has already acquired the temperature T2 necessary for the processing of the strip 12.
  • the variation of the temperature of the zone is therefore effected by the application of temperature setpoints increasing continuously from time A of temperature T1 to temperature T2.
  • the time interval AB corresponds to the dead time and the time interval BF to the establishment time. It can be seen that the corresponding dead time distances Dm and establishment time De are distributed differently since in this case, it is necessary that at the final instant F, the new higher set temperature is obtained.
  • the method according to the invention here provides for determining from the speed of advancement of the strip and the characteristics of the oven and the class of the product, the date of the start of the temperature ramp as well as the value of its slope.
  • the values of the main characteristic elements of the strip and of the installation are recorded periodically. heat treatment and in particular the speed of the strip, the condition of the line, the temperature of the strip and the temperature of the oven in each of the zones, to refine the temperature and speed setpoints applied to the installation.
  • the method calculates the law of variation of the temperature to be applied for the transition between the next strip and the strip still after and possibly restores causes the previously calculated transition between the strip leaving the oven zone and the next strip, in particular when the latter must cause a drop in temperature.
  • the process acquires the value of the target speed to be reached and the instant where the target speed must be reached.
  • the computer determines the transient in speed and in temperature to be applied so that the speed change does not affect the heat treatment of the strips, that is to say the start time of the temperature and speed changes. and the laws of speed and temperature modifications.
  • the method makes it possible to trigger a transient on the temperature to adapt to the new speed.
  • FIG. 1 we can see the diagram of a device for implementing the method according to the invention comprising a continuous annealing furnace 1 consisting of six distinct zones 1A to 1F through which passes a strip 2 shown in progress treatment, followed by a strip 3 welded to the strip 2 according to a weld zone 4.
  • This weld zone 4 comprises a hole 5 opening out on each side of the strip and allowing the location thereof, at particular points of the line, during its running, by means of sensors 6.
  • the position as well as the speed of the strip are determined by measuring sensors 22 installed on the different rollers 23 of the line and which, taking into account the speed of travel of the strip and the radius of the rollers which drive it, integrate the abscissa of the strip.
  • These sensors are connected to the information processing unit 7.
  • Strip temperature sensors 8 are placed in each of the different zones of the oven. The information collected by these sensors 8 is transmitted to the information processing unit 7. Information and program storage means 9 are also provided and connected to the information processing unit 7. This unit 7 controls devices 10 for adjusting the temperature of each of the zones of the oven, as well as a device for adjusting the speed of advance of the strip, not shown in FIG. 1. A device 21 for viewing the information collected at the level of the oven and at the level of the strips is also provided to inform the operator and allow him to control the installation in certain particular circumstances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Looms (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Procédé de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants du type comprenant plusieurs zones successives de chauffage à des températures distinctes, utilisé notamment pour effectuer des traitements thermiques différents en continu de bandes raccordées entre elles et nécessitant des opérations de recuit spécifiques, dans lequel on détermine la position des extrémités de bandes, la vitesse d'avancement de la bande, la température dans chacune des zones du four, caractérisé en ce que l'on détermine l'évolution de la température de chacune des zones du four et de la vitesse d'avancement au cours du temps à partir des résultats mesurés et des caractéristiques de la bande venant d'entrer dans le four et de sa suivante, de telle sorte que la température dans les différentes zones du four soit toujours supérieure ou égale aux valeurs nécessaires au traitement thermique et que la vitesse de la bande soit adaptée au temps de traitement nécessaire dans chaque zone en fonction de la température de ladite zone. <IMAGE>

Description

  • La présente invention concerne un procédé de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants du type comprenant plusieurs zones de chauffage à des températures distinctes utilisé notamment pour effectuer des traitements thermiques différents en continu de bandes raccordées entre elles et nécessitant des opérations de recuit spécifiques.
  • Actuellement la méthode de recuit continu s'impose au détriment des recuits bases. L'une des principales raisons est la réduction des délais de fabrication, de quelques jours à quelques dizaines de minutes. L'objectif actuel est d'améliorer encore la productivité de telles installations. Pour y parvenir il est nécessaire de contrôler en permanence la vitesse de défilement des bandes ainsi que la température dans chacune des zones du four.
  • Dans l'état de la technique, les bandes sont soudées les unes aux autres avant de passer dans le four de recuit continu. Des bandes de nature différente, largeur différente, épaisseur différente, peuvent ainsi se succéder à l'entrée du four. Ces bandes peuvent nécessiter des traitements thermiques différents afin d'obtenir des caractéristiques propres. Dans ce cas il est alors nécessaire de faire varier rapidement la température des différentes zones du four pour s'adapter à la nouvelle bande arrivante. L'inertie thermique du four étant relativement importante il est impossible de faire varier cette température de façon immédiate pour le traitement thermique de la bande suivante.
  • A titre d'exemple, l'inertie thermique d'un four à tubes radiants peut être de trois degrés Celsius par minute ; si l'on veut passer d'un régime de 750° à un régime de 800°, il en résulte une variation de 50°, ce qui nécessite un temps de transition de 15 à 20 minutes. Si la bande circule, par exemple, à 100 mètres/minute, cela correspond à une longueur de 2 km de bande.
  • Afin de résoudre ce problème, des bandes intermédiaires sont actuellement introduites entre deux bandes nécessitant des traitements thermiques différents. C'est lors du passage de ces bandes intermédiaires que la température du four est amenée à varier de façon à être à la bonne température lors de l'arrivée de la bande suivante. La bande intermédiaire est alors déclassée et peut être réutilisée à des fins similaires, sauf dans le cas où la bande a été revêtue en continu après traitement thermique.
  • La commande de la température des différentes zones du four est d'autre part gérée par l'opérateur, qui en fonction des caractéristiques des bandes présentes dans le four et arrivant règle à partir d'un tableau de commande les consignes de température pour chacune des zones du four.
  • Cette solution présente l'inconvénient de nécessiter l'utilisation de bandes intermédiaires qui représentent une grande quantité de métal perdu, de ne pas utiliser le four en permanence, en particulier lors du passage de ces bandes intermédiaires, et de ne pas optimiser la quantité d'énergie dépensée pour alimenter les fours, puisqu'un opérateur indique les consignes de chauffe de chacune des zones du four de façon empirique.
  • Pour éviter l'utilisation de bandes intermédiaires, il est convenu de modifier le four de recuit continu et de lui adjoindre des unités de préchauffage contrôlables individuellement qui injectent un gaz de chauffage directement sur la bande, permettant ainsi des variations de température dans le four de l'ordre de 100° par seconde.
  • On obtient alors un four mixte à rayonnement par tubes radiants et à convexion forcée par jets de gaz.
  • Outre le coût d'installation d'un tel four de recuit, son coût d'exploitation est très élevé et un tel taux de variation de température appliqué localement sur une partie de la bande, en particulier sur le joint soudé entre deux bandes peut entraîner, du fait des transformations que subit le métal, des problèmes en aval du recuit continu, par exemple lors du traitement au skin-pass.
  • Le but de l'invention est de proposer un procédé de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants permettant d'éviter l'utilisation de bandes intermédiaires, sans pour autant utiliser de dispositif à convexion forcée.
  • A cet effet, l'invention a pour objet un procédé de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants du type comprenant plusieurs zones successives de chauffage à des températures distinctes, utilisé notamment pour effectuer des traitements thermiques'différents en continu de bandes raccordées entre elles et nécessitant des opérations de recuit spécifiques, caractérisé en ce que l'on détermine la position des extrémités des bandes, la vitesse d'avancement de la bande, la température de la bande et la température du four dans chacune des zones du four, et que l'on détermine l'évolution de la température de chacune des zones du four et de la vitesse d'avancement au cours du temps à partir des résultats mesurés et des caractéristiques de la bande venant d'entrer dans le four et de sa suivante, de telle sorte que la température dans les différentes zones du four soit toujours supérieure ou égale aux valeurs nécessaires au traitement thermique et que la vitesse de la bande soit adaptée au temps de traitement nécessaire dans chaque zone en fonction de la température de ladite zone.
  • Par température du four, on désigne en fait soit la température de l'atmosphère du four soit la température de l'échange thermique sur une surface étalon, par exemple de 1 m². Il faut distinguer cette température du four d'une température résultant d'un rayonnement de la bande ou des parois du four.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 représente un schéma d'un dispositif dans la mise en oeuvre du procédé ;
    • la figure 2 représente un schéma de la position de trois bandes successives de section décroissante à deux instants donnés ;
    • la figure 3 représente le schéma de l'évolution des consignes et de températures d'une zone d'un four en fonction du temps ;
    • la figure 4 représente un schéma de la position de trois bandes successives de section croissante à deux instants donnés ; et
    • la figure 5 représente le schéma de l'évolution des consignes et de températures d'une zone du four en fonction du temps correspondant à la situation de la figure 4.
  • Un procédé de conduite automatique du four de recuit continu conforme à l'invention gère pour chacune des zones du four la modification de deux types de paramètres.
  • Il permet d'une part de gérer les changements de produits, qu'il s'agisse de la géométrie de la bande, ou du cycle de chauffe nécessaire au traitement thermique de ladite bande, d'autre part il permet l'adaptation de la température des différentes zones du four à des modifications de la vitesse de la ligne due à des impératifs techniques ou suite aux ordres de l'opérateur, par exemple lorsque le four de recuit est disposé avant une ligne de revêtement, qui impose la vitesse de défilement de la bande.
  • Dans le cas d'un changement de produit, c'est-à-dire lorsqu'il se succède dans le four deux bandes de nature différente ou nécessitant des traitements thermiques différents, ou des vitesses de traitement différentes, le procédé selon l'invention consiste pour chaque zone du four contrôlable individuellement :
    • à déterminer les caractéristiques géométriques de la bande qui entre dans la zone du four, en particulier son épaisseur et sa largeur, le cycle thermique à lui faire subir et les consignes de température à appliquer à la zone du four pour réaliser le cycle thermique, ainsi que les caractéristiques géométriques de la bande suivant celle qui est dans la zone du four et le cycle thermique à lui faire subir ;
    • à calculer au moyen d'une loi de commande en fonction des conditions de la bande dans la zone du four, des conditions de la suivante et des contraintes dues aux caractéristiques du four, la durée de transition optimale pour que la zone du four passe de la température pour réaliser le cycle thermique de la bande qui est dans ladite zone à la température pour réaliser le cycle thermique de la bande suivante, et le moment à partir duquel il faut modifier les consignes de température de la zone du four, pour assurer le cycle thermique de la bande suivant celle située dans la zone du four, sans que la température soit inférieure à la température nécessaire au cycle thermique de la bande située dans ladite zone, ainsi que la loi de variation de la température dans ladite zone ;
    • à envoyer au dispositif de pilotage du four les consignes de variation de température.
  • Parallèlement, le procédé consiste à déterminer la vitesse de la bande dans le four et la vitesse à laquelle elle doit défiler dans le cas d'un changement de vitesse, et on calcule le moment à partir duquel il faut modifier les consignes de vitesse.
  • On appelle zone du four chaque partie du four qui peut être contrôlée individuellement c'est-à-dire disposant de moyens de réglage propres permettant de modifier les conditions de température dans cette zone sans modifier les conditions dans les zones voisines.
  • Dans le cas où il n'y a que des changements de vitesse, le procédé acquiert la valeur de la vitesse cible à atteindre et l'instant où la vitesse doit être atteinte, détermine les paramètres transitoires en vitesse et en température à appliquer pour que le changement de vitesse n'affecte pas le traitement thermique des bandes.
  • Les paramètres transitoires en vitesse et en température sont déterminés en tenant compte des éventuels transitoires dus à des changements de cycle thermique en cours ou prévu.
  • Afin d'adapter la température du four à la bande qui arrive à l'entrée dudit four il est nécessaire que le temps maximal soit égal au temps de passage du produit sur lequel s'applique cette transition et, d'autre part, les consignes relatives à une transition soient déterminées avec une anticipation équivalente au temps mort et au temps d'établissement entre l'état initial et l'état final.
  • En tenant compte du traitement thermique nécessaire à la bande suivant celle en cours de traitement, et la vitesse d'avancement de la ligne, le procédé suivant l'invention prévoit le calcul des consignes de température du four qui seront appliquées aux différentes zones du four pendant la transition et en particulier la durée et la pente des rampes de température.
  • Deux cas sont possibles lors d'un changement de température pour traiter deux bobines ou bandes successives. Soit la température est amenée à être augmentée, du fait par exemple de l'augmentation de l'épaisseur de la bande, soit au contraire elle est amenée à être diminuée.
  • Lorsque la température dans une zone du four doit être diminuée, pour la bande suivante, la date de début de variation des consignes de réglage est déterminée au passage de la soudure entre les deux bandes à la sortie de ladite zone du four. A partir de cette date, la température est abaissée selon une loi de variation paramétrée faisant référence à une classe de produits et basée sur des portions de variation linéaire avec durée et pente variables, jusqu'à la température de traitement de la seconde bande. En effet, la température de traitement thermique d'un métal peut être supérieure à la température visée sans dommage pour celui-ci, tant que l'on reste dans les limites prévues par les critères métallurgiques, alors qu'une température inférieure ne remplit pas les conditions pour un bon déroulement du traitement.
  • Les informations relatives aux caractéristiques spécifiques de chaque bande sont fournies par un système informatique de gestion et transmises directement aux calculateurs adéquats qui génèrent des consignes à appliquer aux équipements.
  • Par ailleurs, les automates ainsi que les différents capteurs de mesure, répartis le long de la ligne en particulier dans chaque zone du four, renseignent sur l'état d'avancement de la bande, ce qui permet de faire un suivi de chaque produit tout au long de la ligne depuis les plots d'entrée jusqu'aux plots de sortie.
  • Comme on peut le voir sur la figure 2, représentant le défilement de deux bandes successives d'épaisseur décroissante, l'une plus épaisse notée 11 et l'autre moins épaisse notée 12 à trois instants donnés, l'un noté I, instant initial, l'instant A correspondant à la sortie de la zone et l'instant B correspondant à la fin de la transition.
  • La figure 3 montre quant à elle l'évolution de la consigne de température d'une zone du four dont la sortie est repérée par la ligne 13 (figure 1) à partir de l'instant I entre les températures T1 et T2 avec T1 supérieur à T2 en tenant compte d'une anticipation supplémentaire correspondant au temps mort dû à l'inertie du four. On constate que la rampe de pente négative commence au passage du point de liaison entre les bandes 11 et 12 à l'instant I correspondant à une distance Dm avant la fin de la zone du four dont on cherche à contrôler la température. La baisse progressive de température s'effectue pendant le passage de la bande 12 nécessitant la plus faible température T2 sur une distance De après la sortie de ladite zone.
  • Sur ces figures, l'intervalle de temps LA correspond au temps mort dû à l'inertie du four et l'intervalle de temps AB au temps d'établissement de la nouvelle température du four. Les distances Dm et De correspondent respectivement à ces intervalles de temps.
  • Cependant, selon la configuration et la charge moyenne de l'installation, il est possible de considérer que l'instant de déclenchement anticipé par rapport à la sortie de la zone peut être identique à un déclenchement synchronisé sur l'entrée dans ladite zone.
  • La situation inverse est décrite sur les figures 4 et 5 puisqu'il s'agit du passage d'une bande de faible épaisseur notée 11 à une bande d'épaisseur supérieure notée 12. La bande 11 nécessite un traitement thermique à la température T1 et la bande 12 un traitement thermique à la température T2 avec T1 inférieur à T2. La figure 4 représente la position des deux bandes respectives à trois instants distincts, l'instant initial A, l'instant intermédiaire B et l'instant final F correspondant à la fin de la transition.
  • Comme on peut le voir sur la figure 5, la transition de température s'effectue à l'instant A, c'est-à-dire lorsque la bande 12 se trouve à une distance De + Dm de l'entrée de la zone. L'instant intermédiaire B représente la fin du temps mort alors que la soudure se trouve à la distance De de l'entrée de la zone. L'instant final F est tel que lors du passage de la soudure entre la bande 11 et la bande 12, en tenant compte d'une anticipation supplémentaire pour prendre en compte le retard dû au temps mort, à l'entrée de la zone du four, le four ait déjà acquis la température T2 nécessaire au traitement de la bande 12. La variation de la température de la zone s'effectue donc par l'application de consignes de température augmentant de façon continue à partir de l'instant A de la température T1 à la température T2.
  • Dans ce deuxième cas d'évolution de la température, l'intervalle de temps AB correspond au temps mort et l'intervalle de temps BF au temps d'établissement. On peut voir que les distances correspondantes de temps mort Dm et de temps d'établissement De se répartissent différemment puisque dans ce cas, il faut qu'à l'instant final F, la nouvelle température de consigne plus élevée soit obtenue.
  • Le procédé suivant l'invention prévoit ici de déterminer à partir de la vitesse d'avancement de la bande et des caractéristiques du four et de la classe du produit, la date du début de la rampe de température ainsi que la valeur de sa pente.
  • Pendant tout le déroulement du traitement thermique, conformément au procédé suivant l'invention, on relève de façon périodique les valeurs des principaux éléments caractéristiques de la bande et de l'installation de traitement thermique et en particulier la vitesse de la bande, l'état de la ligne, la température de la bande et la température du four dans chacune des zones, pour affiner les consignes des températures et de vitesse appliquées à l'installation.
  • Lorsque la bande continue à avancer dans le four et que la bande suivante arrive dans la zone considérée du four, le procédé calcule la loi de variation de la température à appliquer pour la transition entre la bande suivante et la bande encore après et remet éventuellement en cause la transition précédemment calculée entre la bande sortant de la zone du four et la bande suivante, en particulier lorsque celle-ci doit entraîner une baisse de température.
  • Ceci a pour effet d'éviter de trop baisser la température s'il faut la remonter immédiatement après.
  • Lorsque la ligne doit changer de vitesse, par exemple du fait d'une augmentation de vitesse demandée par l'installation de revêtement suivant l'installation de recuit sur la ligne, le procédé acquiert la valeur de la vitesse cible à atteindre et l'instant où la vitesse cible doit être atteinte.
  • Du fait du changement de vitesse de la ligne, il va être nécessaire de modifier les consignes de température du four pour que le cycle thermique de la bande soit respecté avec la nouvelle vitesse.
  • Pour cela, le calculateur détermine le transitoire en vitesse et en température à appliquer pour que le changement de vitesse n'affecte pas le traitement thermique de bandes, c'est-à-dire l'instant de départ des modifications de température et de vitesse et les lois de modifications de vitesse et de température.
  • Ces paramètres sont déterminés en tenant compte des éventuelles transitions dues à des changements de cycle thermique en cours ou prévus, ceci pour éviter par exemple une baisse de température dictée par le changement de vitesse de la ligne suivi d'une baisse de température dictée par le changement de cycle thermique.
  • Dans certains cas d'utilisation, il peut arriver que la vitesse doit être réduite de façon importante avant d'être à nouveau immédiatement augmentée pour reprendre sa valeur initiale. Dans de telles circonstances, il est prévu de ne pas laisser descendre la température du four et de conserver la température présente afin de ne pas consommer d'énergie de manière excessive pour remonter la température à ce même niveau de température par la suite.
  • Dans le cas où le changement de vitesse est subi, c'est-à-dire détecté après coup, le procédé permet après avoir détecté le changement de vitesse de déclencher un transitoire sur la température pour s'adapter à la nouvelle vitesse.
  • Sur la figure 1, on peut voir le schéma d'un dispositif pour la mise en oeuvre du procédé suivant l'invention comprenant un four de recuit continu 1 constitué de six zones distinctes 1A à 1F au travers desquelles passe une bande 2 représentée en cours de traitement, suivie d'une bande 3 soudée à la bande 2 suivant une zone de soudure 4. Cette zone de soudure 4 comprend un trou 5 débouchant de chaque côté de la bande et permettant le repérage de celle-ci, en des points particuliers de la ligne, au cours de son défilement, au moyen de capteurs 6. Sur le reste de la ligne, la position ainsi que la vitesse de la bande sont déterminées par des capteurs de mesure 22 implantés sur les différents rouleaux 23 de la ligne et qui, compte tenu de la vitesse de défilement de la bande et du rayon des rouleaux qui l'entraînent, intègrent l'abscisse de la bande. Ces capteurs sont reliés à l'unité de traitement de l'information 7.
  • Des capteurs de température de la bande 8 sont placés dans chacune des différentes zones du four. Les informations recueillies par ces capteurs 8 sont transmises à l'unité de traitement de l'information 7. Des moyens de stockage d'information et de programmes 9 sont également prévus et reliés à l'unité de traitement de l'information 7. Cette unité 7 commande des dispositifs 10 de réglage de la température de chacune des zones du four, ainsi qu'un dispositif de réglage de la vitesse d'avancement de la bande non représentée sur la figure 1. Un dispositif 21 de visualisation des informations recueillies au niveau du four et au niveau des bandes est également prévu pour informer l'opérateur et lui permettre de commander l'installation dans certaines circonstances particulières.
  • Ainsi l'utilisation d'un tel dispositif pour la mise en oeuvre du procédé permet un traitement thermique de bandes de nature différente sans adjonction de bandes intermédiaires et ni consommation superflue d'énergie pour le chauffage du four, pendant les conditions transitoires, dans la limite où les variations des paramètres de classe de produits sont suffisamment faibles, par exemple en admettant que des variations d'épaisseur ne dépassant pas 20%.

Claims (11)

  1. Procédé de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants du type comprenant plusieurs zones successives de chauffage à des températures distinctes, utilisé notamment pour effectuer des traitements thermiques différents en continu de bandes raccordées entre elles et nécessitant des opérations de recuit spécifiques, dans lequel on détermine la position des extrémités de bandes, la vitesse d'avancement de la bande, la température dans chacune des zones du four, caractérisé en ce que l'on détermine l'évolution de la température de chacune des zones du four et de la vitesse d'avancement au cours du temps à partir des résultats mesurés et des caractéristiques de la bande venant d'entrer dans le four et de sa suivante, de telle sorte que la température dans les différentes zones du four soit toujours supérieure ou égale aux valeurs nécessaires au traitement thermique et que la vitesse de la bande soit adaptée au temps de traitement nécessaire dans chaque zone en fonction de la température de ladite zone.
  2. Procédé de conduite automatique d'un four de recuit continu suivant la revendication 1, caractérisé en ce que pour chaque zone du four :
    - on détermine les caractéristiques géométriques de la bande qui entre dans la zone du four, en particulier son épaisseur et sa largeur, le cycle thermique à lui faire subir et les consignes de température à appliquer à la zone du four pour réaliser le cycle thermique, ainsi que les caractéristiques géométriques de la bande suivant celle qui est dans la zone du four et le cycle thermique à lui faire subir ;
    - on calcule au moyen d'une loi de commande en fonction des conditions de la bande dans la zone du four, des conditions de la bande suivante et des contraintes dues aux caractéristiques du four, la durée de transition optimale pour que la zone du four passe de la température pour réaliser le cycle thermique de la bande qui est dans ladite zone à la température pour réaliser le cycle thermique de la bande suivante, et le moment à partir duquel il faut modifier les consignes de température de la zone du four, pour assurer le cycle thermique de la bande suivant celle située dans la zone du four, sans que la température soit inférieure à la température nécessaire au cycle thermique de la bande située dans ladite zone, ainsi que la loi de variation de la température dans ladite zone ;
    - on envoie au dispositif de pilotage du four les consignes de variation de température ; et
    - parallèlement, le procédé consiste à déterminer la vitesse de la bande dans le four et la vitesse à laquelle elle doit défiler dans le cas d'un changement de vitesse, et on calcule le moment à partir duquel il faut modifier les consignes de vitesse.
  3. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 et 2, caractérisé en ce que le temps maximal d'une transition de température est celui du traitement du produit sur lequel s'applique cette transition et en ce que les consignes relatives à une transition sont déterminées avec une anticipation équivalente au temps d'établissement des températures additionné d'un temps mort dû à l'inertie de la zone dudit four.
  4. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 et 2, caractérisé en ce que l'on contrôle la température des différentes zones du four en appliquant pendant les phases de transition des consignes de température du four dont on calcule la date de déclenchement, la durée et la pente à partir des paramètres mesurés des caractéristiques des bandes, et des autres paramètres provenant des différentes classes de produit.
  5. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 et 2, caractérisé en ce que l'on recalcule périodiquement les conditions de transition pour prendre en compte toute évolution du point de fonctionnement sur le produit en cours par rapport aux prévisions.
  6. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 à 3, caractérisé en ce que l'on applique des rampes de température décroissantes afin d'adapter la température d'une zone du four d'une première valeur à une seconde valeur inférieure lorsque le début de la bande nécessitant la seconde valeur de ladite zone du four, arrive à une distance prévue (Dm) avant la sortie de ladite zone du four. Cependant, selon la configuration et la charge moyenne de l'installation, il est possible de considérer que l'instant de déclenchement anticipé par rapport à la sortie de la zone peut être identique à un déclenchement synchronisé sur l'entrée de ladite zone.
  7. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 à 3, caractérisé en ce que l'on applique par anticipation des rampes de température croissantes afin d'adapter la température d'une zone du four d'une première valeur à une seconde valeur supérieure pendant la présence de la bande précédant celle nécessitant la seconde valeur de température de telle sorte que ladite température soit atteinte lors de l'entrée de ladite bande dans ladite zone du four.
  8. Procédé de conduite automatique d'un four de recuit continu suivant l'une quelconque des revendications précédentes, caractérisé en ce que l'on limite les variations de température des zones du four lorsque l'on note une succession de trois bandes nécessitant respectivement des températures élevées, faibles, puis élevées lors du passage de la bande nécessitant un traitement à faible température.
  9. Procédé de conduite automatique d'un four de recuit continu suivant les revendications 1 et 2, dans lequel la vitesse d'avancement de la bande doit être modifiée, caractérisé en ce que :
    - on acquiert la valeur de la vitesse cible à atteindre et l'instant où la vitesse doit être atteinte;
    - on détermine les paramètres des transitoires en vitesse et en température à appliquer pour que le changement de vitesse n'affecte pas le traitement thermique des bandes.
  10. Procédé de conduite automatique d'un four de recuit continu suivant la revendication 9, caractérisé en ce que les paramètres des transitoires en vitesse et en température sont déterminés en tenant compte des éventuels transitoires dus à des changements de cycle thermique en cours ou prévus.
  11. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, d'une part des détecteurs (6) de trous (5) placés le long du chemin parcouru par la bande et, d'autre part, des capteurs de mesure (22) implantés sur des rouleaux (23) qui entraînent la bande, intègrent le déplacement de celle-ci et effectuent ainsi un suivi dans toute la ligne, des moyens (8) de mesure et de régulation de la température dans chacune des zones du four, des moyens de connaissance des caractéristiques de la bande présente dans le four et de sa suivante, des moyens (9) de stockage d'information et de programmes, des moyens de traitement (7) des informations acquises, et des moyens de visualisation (21) des principaux paramètres de fonctionnement du four.
EP92403141A 1991-11-28 1992-11-20 Procédé et dispositif de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants Expired - Lifetime EP0545768B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9114724A FR2684436B1 (fr) 1991-11-28 1991-11-28 Procede et dispositif de conduite automatique d'un four de recuit continu.
FR9114724 1991-11-28

Publications (2)

Publication Number Publication Date
EP0545768A1 true EP0545768A1 (fr) 1993-06-09
EP0545768B1 EP0545768B1 (fr) 1998-03-04

Family

ID=9419447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403141A Expired - Lifetime EP0545768B1 (fr) 1991-11-28 1992-11-20 Procédé et dispositif de conduite automatique d'un four de recuit continu à rayonnement par tubes radiants

Country Status (5)

Country Link
EP (1) EP0545768B1 (fr)
AT (1) ATE163685T1 (fr)
DE (1) DE69224596T2 (fr)
ES (1) ES2114923T3 (fr)
FR (1) FR2684436B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820148A1 (fr) * 2001-01-31 2002-08-02 Stein Heurtey Perfectionnements apportes aux procedes de chauffage de bandes d'acier dans des fours verticaux
EP1507013A1 (fr) * 2003-08-14 2005-02-16 Carl Prof.Dr.-Ing. Kramer Procédé de régulation pour une installation de recuit en continu à transfert de chaleur par convection forcée
CN116732307A (zh) * 2023-06-15 2023-09-12 宁波固远管件有限公司 一种管件退火方法、系统、存储介质及智能终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115522040B (zh) * 2021-06-25 2024-06-04 宝山钢铁股份有限公司 一种冷轧连续退火炉温度自动控制方法
CN115074496B (zh) * 2022-05-19 2023-08-15 首钢京唐钢铁联合有限责任公司 连续退火炉的控制方法、装置、介质和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2326135A1 (de) * 1973-05-23 1974-12-12 Krupp Gmbh Verfahren zur temperaturregelung in durchlaufwaermeoefen
FR2406667A1 (fr) * 1977-10-20 1979-05-18 Nippon Steel Corp Procede de controle de la temperature d'une bande d'acier dans une installation de chauffage en continu
US4316717A (en) * 1980-10-27 1982-02-23 Midland-Ross Corporation Method of controlling strip temperatures
EP0181830A2 (fr) * 1984-11-08 1986-05-21 Mitsubishi Jukogyo Kabushiki Kaisha Procédé et dispositif pour chauffer un ruban métallique dans un four de recuit continu

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2326135A1 (de) * 1973-05-23 1974-12-12 Krupp Gmbh Verfahren zur temperaturregelung in durchlaufwaermeoefen
FR2406667A1 (fr) * 1977-10-20 1979-05-18 Nippon Steel Corp Procede de controle de la temperature d'une bande d'acier dans une installation de chauffage en continu
US4316717A (en) * 1980-10-27 1982-02-23 Midland-Ross Corporation Method of controlling strip temperatures
EP0181830A2 (fr) * 1984-11-08 1986-05-21 Mitsubishi Jukogyo Kabushiki Kaisha Procédé et dispositif pour chauffer un ruban métallique dans un four de recuit continu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STAHL UND EISEN. vol. 108, no. 1, Janvier 1988, DUSSELDORF DE pages 19 - 24 J.MIGNON ET AL 'Steuerung des Gl}hzyklus einer Durchlaufgl}he' *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820148A1 (fr) * 2001-01-31 2002-08-02 Stein Heurtey Perfectionnements apportes aux procedes de chauffage de bandes d'acier dans des fours verticaux
EP1229138A1 (fr) * 2001-01-31 2002-08-07 Stein Heurtey Perfectionnements apportés aux procédés de chauffage de bandes d'acier dans des fours verticaux
US6761778B2 (en) 2001-01-31 2004-07-13 Stein Heurtey Heating process of steel strips in vertical furnaces
EP1507013A1 (fr) * 2003-08-14 2005-02-16 Carl Prof.Dr.-Ing. Kramer Procédé de régulation pour une installation de recuit en continu à transfert de chaleur par convection forcée
CN116732307A (zh) * 2023-06-15 2023-09-12 宁波固远管件有限公司 一种管件退火方法、系统、存储介质及智能终端

Also Published As

Publication number Publication date
EP0545768B1 (fr) 1998-03-04
FR2684436A1 (fr) 1993-06-04
DE69224596D1 (de) 1998-04-09
ES2114923T3 (es) 1998-06-16
DE69224596T2 (de) 1998-11-12
ATE163685T1 (de) 1998-03-15
FR2684436B1 (fr) 1998-02-06

Similar Documents

Publication Publication Date Title
EP2561343B1 (fr) Methode et installation d&#39;inspection ultrasonore de soudure de raboutage de deux extremites transversales de deux bandes metalliques
EP0545768B1 (fr) Procédé et dispositif de conduite automatique d&#39;un four de recuit continu à rayonnement par tubes radiants
EP3450334A1 (fr) Fonctionnement d&#39;un dispositif de rétraction d&#39;une fardeleuse automatique
WO2010049600A1 (fr) Four pour une installation de traitement thermique d&#39;une bande d&#39;acier en défilement continu et procédé associé
LU83485A1 (fr) Procede et installation pour couler une bande a oreilles en saillie laterale
FR2488423A1 (fr) Procede et dispositif pour la regulation de la temperature d&#39;une feuille de verre dans un four a plusieurs cellules
EP0053551A1 (fr) Procédé et dispositif pour l&#39;alimentation d&#39;un four de chauffage de feuilles de verre
FR3070510A1 (fr) Procede et dispositif de gestion de la temperature d&#39;un module d&#39;une ligne de production
EP3728659A1 (fr) Four comprenant une unité de contrôle associée à des propriétés d&#39;inertie thermique d&#39;éléments constitutifs
FR2534275A1 (fr) Procede de fabrication de toles ou bandes d&#39;acier electromagnetique a grains orientes
WO2012153046A1 (fr) Traitement thermique par injection d&#39;un gaz caloporteur.
CA2917963A1 (fr) Procede de regulation de chauffage electrique en cas d&#39;ouverture de fenetre
FR2566432A1 (fr) Procede et dispositif d&#39;optimisation dans un procede de reduction de la dimension du fleurage d&#39;une bande d&#39;acier galvanise
FR2892037A1 (fr) Procede de soudage par points entre deux toles presentant au moins une surface electriquement isolante et machine pour la mise en oeuvre de ce procede
FR2757614A1 (fr) Procede de regulation du chauffage d&#39;un four mettant en oeuvre la technique de la logique floue
FR2680240A1 (fr) Procede de mesure en continu de l&#39;epaisseur d&#39;un film d&#39;huile sur la surface d&#39;une tole en defilement dans une installation de laminage a froid.
FR2758385A1 (fr) Four bi-energie fonctionnant au gaz ou au fioul et a l&#39;electricite et procede de chauffage de l&#39;enceinte d&#39;un tel four
EP0260291B1 (fr) Procede de conduite du traitement d&#39;un produit fluide, notamment d&#39;un produit alimentaire
WO2024141291A1 (fr) Systeme et procede de guidage d&#39;une bande en defilement dans une ligne continue
EP0746181A1 (fr) Procédé de décongélation automatique d&#39;un aliment placé dans un four à micro-ondes
EP1647604B1 (fr) Procedé et dispositif d&#39;amélioration qualitative et quantitative de la production dans un four vertical de traitement de bandes d&#39;acier ou d&#39;aluminium
FR2595806A1 (fr) Procede et dispositif pour la detection de givre sur un echangeur de chaleur
EP0088717A1 (fr) Procédé pour optimiser le fonctionnement d&#39;un four
EP3502605B1 (fr) Four comprenant un système de contrôle associé à une information relative à une énergie électrique
WO2010029241A1 (fr) Mesure de temperature dans un systeme de soudure par chauffage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19931021

17Q First examination report despatched

Effective date: 19960903

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980304

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980304

REF Corresponds to:

Ref document number: 163685

Country of ref document: AT

Date of ref document: 19980315

Kind code of ref document: T

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980310

REF Corresponds to:

Ref document number: 69224596

Country of ref document: DE

Date of ref document: 19980409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980604

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980604

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2114923

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20031016

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031017

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031107

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031114

Year of fee payment: 12

Ref country code: ES

Payment date: 20031114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031208

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041120

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: *SOLLAC

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041122

BERE Be: lapsed

Owner name: *SOLLAC

Effective date: 20041130