EP0542871B1 - Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften von fluidisierten krackkatalysatoren - Google Patents

Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften von fluidisierten krackkatalysatoren Download PDF

Info

Publication number
EP0542871B1
EP0542871B1 EP91915205A EP91915205A EP0542871B1 EP 0542871 B1 EP0542871 B1 EP 0542871B1 EP 91915205 A EP91915205 A EP 91915205A EP 91915205 A EP91915205 A EP 91915205A EP 0542871 B1 EP0542871 B1 EP 0542871B1
Authority
EP
European Patent Office
Prior art keywords
slurry
clay
particles
zeolite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91915205A
Other languages
English (en)
French (fr)
Other versions
EP0542871A1 (de
EP0542871A4 (en
Inventor
Joseph C. S. Shi
Edwin W. Dr. Albers
Geoffrey R. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thiele Kaolin Co
Original Assignee
Thiele Kaolin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thiele Kaolin Co filed Critical Thiele Kaolin Co
Publication of EP0542871A1 publication Critical patent/EP0542871A1/de
Publication of EP0542871A4 publication Critical patent/EP0542871A4/en
Application granted granted Critical
Publication of EP0542871B1 publication Critical patent/EP0542871B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates

Definitions

  • This invention relates to a process for preparing fluid cracking catalysts (FCC). Particularly, this invention relates to a process for preparing sol-based fluid cracking catalysts by adding acid or alkaline stable surfactants to the component streams prior to the spray drying.
  • Catalyst manufacturers are continuously seeking methods to lower the cost of producing catalysts. Catalyst producers, typically, search for processes to lower the cost of raw materials or utilities, to build higher efficiency equipment or equipment with higher through-put and lower maintenance, or to provide better utilization of zeolite, binder, clay, or added alumina. All of these factors contribute to the direct manufacturing costs of catalysts.
  • the "CSS process" for producing fluid cracking catalysts involves a continuous mode of preparation of a clay-silicate-slurry using concentrated sodium silicate, high solids kaolin slurry, and process water to achieve the proper concentration of silicate expressed as the percent of Si0 2 .
  • the resulting clay-silicate-slurry is continuously metered against a stream of acidified alum such as 12.5 percent H 2 SO 4 and 3.0 percent Al 2 O 3 .
  • both streams are fed simultaneously into a suction-side of a centrifugal pump or high shear low volume mixer to produce a usable binder.
  • the discharge from the mixing device is then metered continuously against metered streams of zeolite and, in some instances, a stream of alumina depending on the functionality desired for the finished catalyst.
  • the first molecular sieve-type cracking catalysts incorporated rare earth-stabilized faujasite with silica-alumina in ratios between 2.5 and 3.0. These early formulations were simple admixtures of zeolite-molecular sieves with the amorphous silica-alumina and clay-synthetic gel materials that were previously used alone as cracking catalysts. The molecular sieve component of these catalysts was, typically, added prior to spray drying to the gel slurry. The rapid initial success of these catalysts, because of their increased yield and operational benefits, resulted in the petroleum refining industry demanding fluid cracking catalysts that contained molecular sieves with high silica-alumina ratios.
  • sol bound catalysts provided catalysts having significant improvements in density and hardness.
  • examination of these catalyst by Scanning Electron Microscopy (SEM) revealed that almost every microspheriodal fluid cracking catalyst particle possessed a "blow-hole” or a cavernous region which caused the particle to be more likely to break into two or more smaller fragments during the FCC operation.
  • SEM Scanning Electron Microscopy
  • the smaller particle fragments are almost instantly lost through a regenerator flue gas stack. If the particle breakage occurs on the reactor side of the equipment, the slurry oil stream becomes over-loaded with catalyst dust referred to as "fines.” This condition can result in the total suspension of the operation of the FCC unit.
  • the invention is a process for manufacturing a fluid cracking catalyst.
  • the process includes adding an effective amount of an alkaline stable surfactant to a slurry of clay particles and sodium silicate particles.
  • the process then includes forming a sol binder and spray drying the particles. Forming of the dried particles into a catalyst product then occurs.
  • the invention is a process for manufacturing a fluid cracking catalyst.
  • the process includes adding an effective amount of an alkaline stable surfactant to a slurry of clay particles and sodium silicate particles.
  • the process then includes forming a sol binder and spray drying the particles. Forming of the dried particles into a catalyst product then occurs.
  • Desirable embodiments of the invention are provided by using a silica-sol binder system buffered with acidified alum as described in U.S. Patent Number 3,957,689.
  • the process of the invention provides fluid cracking catalysts with significantly improved morphology, selectivity, and attrition resistance when compared to catalysts prepared by the same process, but without the surfactant.
  • Typical preparations of silica sol binder for use with the invention use a silica hydrosol.
  • the silica hydrosol contains, nominally, about 12 percent solids consisting of about 10 percent silica, and about 2 percent alumina from an acidified alum that buffers the sol.
  • the preferred surface active agents or surfactants for most applications are effective in very low concentrations of about 50 to about 1000 parts per million or about 0.005 to about 0.1 percent. This concentration of surfactant is cost effective for fluid cracking catalyst manufacturing processes.
  • the acid stable surfactant can be added to all component streams before final slurring and spray drying.
  • the addition to a single component of the catalyst formulation, however, at a nominal loading of about one pound per 2.5 tons (O.45 kilograms per 907 kilograms) of finished catalyst gives improved attrition resistance and catalytic selectivity compared to catalysts prepared by the prior art processes.
  • Patent Number 4,946,814 or an alkaline stable surfactant according to this invention almost completely eliminates the occurrence of "blow-holes" in catalyst particles.
  • Microtome analysis of catalyst particles made according to the invention demonstrates improved dispersion of individual component particles comprising the microspheres themselves.
  • the invention provides a catalyst that has superior density and hardness characteristics.
  • Acid stable surfactants can be added into any of the component streams of a fluid cracking catalyst manufacturing process, but the greatest improvement in properties of the catalyst are achieved when the surfactant is added to all component streams prior to spray drying.
  • Alkaline stable surfactants are added to the clay and sodium silicate slurry before a sol binder is formed.
  • the invention of a process using an acid stable surfactant is the subject of the inventors previous U.S. Patent Number 4,946,814.
  • the inventors have also discovered that the clay and dilute sodium silicate slurry of fluid cracking catalyst manufacturing processes can be mixed together, prior to the formation of the silica sol, with a similar anionic fluorohydrocarbon surfactant to that disclosed in their earlier application.
  • the anionic fluorohydrocarbon surfactant is stable in a strongly alkaline environment.
  • the commercial surfactant sold by DuPont under the trade name Zonyl FSA is the preferred alkaline stable surfactant for use with this invention.
  • the formation of the clay-silicate-sol binder slurry is very acidic.
  • the other components of the catalyst, such as the zeolite and alumina slurries, can be treated either singly or collectively with another anionic fluorohydrocarbon surfactant after the formation of the clay-silicate-sol binder.
  • the second anionic fluorohydrocarbon surfactant is stable in a relatively strong acid environment having a pH of about 3.0.
  • the use of the second anionic fluorohydrocarbon surfactant provides further improvement in attrition resistance of the final catalyst.
  • a preferred process adds the acid stable surfactant to the spray drier feed slurry after all components have been thoroughly mixed.
  • the preferred acid stable surfactant is sold by DuPont under the trade name Zonyl TBS.
  • An essential feature of the invention is the mixing of clay and sodium silicate slurry followed by the addition of an alkaline stable surfactant to this slurry before forming the sol binder.
  • Any alkaline stable surfactant provides satisfactory results when used with the invention.
  • the preferred surfactants are the fluorohydrocarbon surfactants.
  • the current invention includes processes using combinations of surfactants wherein one surfactant functions as a specific ionic entity and the other as a non-ionic block/co-polymer.
  • Ionic surfactants and, in particular, the fluorohydrocarbon surfactants are relatively expensive when compared to other surfactants.
  • the combination of these surfactants allows for a reduction in the use of the fluorohydrocarbon surfactant and provides equally effective results for improving the attrition of catalysts prepared with only fluorohydrocarbons surfactants.
  • the preferred alkaline stable surface active agents are effective in very low, cost effective concentrations of about 50 to about 1000 parts per million or about 0.005 to about 0.1 percent.
  • the surfactant can be added to all component streams before final slurring and spray drying. The addition to a single component of the catalyst formulation, however, at a nominal loading of about one pound per 2.5 tons of finished catalyst provides improved catalyst attrition resistance and catalytic selectivity when compared to catalysts prepared by the prior art processes.
  • Surfactant concentrations for use with this invention can vary significantly. Any concentration of surfactant that is sufficient to improve the physical and catalytic properties of a fluid cracking catalyst and not adversely effect those properties can be used.
  • a suitable concentration of surfactant is between 0.25 grams per 5 kilograms of spray dried product and 4 grams per 5 kilograms of spray dried product. Desirable concentrations of surfactant are provided with 1 to 2 grams of surfactant per 5 kilograms of spray dried product. The higher concentrations of surfactants do not proportionately improve the characteristics of the resulting product.
  • the resulting catalysts have dramatically improved particle morphology with virtual no "blow-holes.”
  • the absence of "blow-holes" in the catalyst particles improves the catalyst hardness-attrition resistance.
  • the improved distribution of the various component materials such as molecular sieves, clay, and alumina that comprise the microspheroidal catalyst particles results in improved activity and selectivity for the catalyst when compared with identical formulation made under identical conditions, but without the addition or incorporation of any of these surfactants.
  • Anionic surfactants are the most effective surfactants in acid-sol systems, but combinations of anionic and cationic surfactants for specific components can also be effective.
  • a specific embodiment is the combination of anionic fluorohydrocarbon surfactant in combination with an acid stable non-anionic block co-polymer.
  • the use has been normalized against the clay level at approximately one pound per ton of clay. Higher loading than this can be used and can be required to impart maximum benefit in the catalytic and selectivity properties for a catalyst manufacturing system.
  • the porotectosilicates utilized as additive promoters with this invention constitute an unusual class of natural and synthetic materials. They are characterized by having a rigid crystalline framework structure composed generally of an assembly of atoms other than those of oxygen, each surrounded by a tetrahedron of shared oxygen atoms, and a precisely defined pore structure. Desirable crystalline porous tectosilicate additives for use in this invention are described in U.S. Patent Number 4,521,298 to Rosinski et al. Faujasite is used in the preferred embodiment and throughout the examples below. However, numerous zeolites and molecular sieves are suitable for use with this invention. Molecular sieves such as aluminum-phosphorous-oxide (ALPO) and silica-phosphorous-oxide (SAPO) sold by the Union Carbide Corporation are also suitable for use with this invention.
  • APO aluminum-phosphorous-oxide
  • SAPO silica-phosphorous-oxide
  • Additive promoters suitable for use with this invention include aluminosilicates, gallosilicates, ferrosilicates, borosilicates, chromosilicates, aluminogermanates, phosphosilicates, and galoaluminosilicates.
  • the additive promoter can be an aluminosilicate, but aluminum can be replaced in part on in entirely by gallium, iron, boron, phosphorus, chromium or mixtures thereof or even eliminated entirely. Silicon can be replaced, in part or in entirety by germanium.
  • a first step of the process is the preparation of the aluminum sulfate or "alum" silica sol component.
  • this step of the process about 0.4 to 0.46 kilograms (kg) of alum is dissolved in 1.7 to 1.8 kilograms of water in a suitable reactor.
  • a quantity of about 0.28 to 0.29 kilograms of concentrated sulfuric acid is added to the solution.
  • the acidified solution is cooled to room temperature and a quantity of sodium silicate, containing about 12.4 weight percent (wt%) silicon dioxide is added with constant stirring.
  • the silicate addition is adjusted to achieve a pH of between about 2.8 and about 3.05 in the resulting slurry.
  • the clay slurry is prepared in a second step of the process.
  • a sufficient quantity or selected amount of kaolin clay is added to a quantity of water sufficient to prepare a slurry containing about 70 percent solids.
  • the clay is dispersed by adding a dispersant such as tetrasodium pyrophosphate in an admixture with sodium polyacrylate.
  • a desirable aqueous slurry has about 70 percent solids clay slurry for dilution of the sodium silicate to a concentration of about 12.4 weight percent silicon dioxide, thus forming a clay-silicate slurry.
  • an alkaline stable surfactant Prior to adding this slurry to the acidified aluminum sulfate or alum an alkaline stable surfactant is first added to the clay-silicate slurry (CSS).
  • SCS clay-silicate slurry
  • the most desirable surfactants are those that are only stable in an alkaline environment. Alkaline stable surfactants are commercially available.
  • the preparation of the clay-silicate slurry is added with constant stirring to the previously prepared alum solution.
  • the clay-silicate slurry addition is adjusted to achieve a pH of about 2.8 to 3.05 in the resulting slurry.
  • the zeolite slurry is prepared in a third step of the process.
  • a sufficient quantity of, desirably, faujasite is added to a quantity of water sufficient to prepare a slurry containing about 30 percent solids.
  • the pH of the slurry is adjusted to about 4.5 to 4.8 with a 20 percent solution of sulfuric acid. Any faujasite having a "silica to alumina ratio" of about 5 can be used.
  • the faujasite sold under the trade name PQ Valfor CP 300-63 provides satisfactory results.
  • An alumina slurry is then prepared by adding dry alumina powder to a sufficient quantity of water to prepare a slurry containing about 20 to 25 weight percent solids.
  • the alumina slurry is added to the other ingredients already in the mixing tank to prepare the final spray dryer slurry.
  • the addition of the surfactant to any one of the component slurries is critical to the invention.
  • the addition is preferably made in the third step of the process, but the surfactant can be added to any one or more of the component slurries individually or after all other components have been combined.
  • the surfactant is preferably diluted from a stock solution before it is used and added as about a 1 percent by weight solution.
  • a final step of the invention is the spray drying step.
  • Spray drying is a well known and a well established drying procedure for drying slurries. This procedure is accomplished by feeding the slurry to a conventional spray dryer. Desirable drying is provided by feeding the slurry to a spray dryer employing a "spinning wheel atomizer" operated at an atomizer wheel speed of 10,000 revolutions per minute (rpm).
  • the spray dryer is preferably operated at an inlet temperature of 260°C (500° Fahrenheit) and an outlet temperature of 121°C (250° Fahrenheit).
  • the sodium associated with the zeolite and the occluded salts resulting from the addition of a binder must be removed.
  • One technique to effect removal of the binder is a "pre-exchange" of the zeolite.
  • low sodium content binders such as silica sol, silica - alumina sol, or alumina sol are used to avoid washing and/or exchanging with ammonium salts or rare earth salt solutions.
  • washing, exchanging, and often intermediate calcination at 538 to 593°C (1000 to 1100°F) are required to adequately reduce the sodium to levels that do not impair the function of a given catalyst formulation.
  • This technology can be applied to fluid cracking catalyst additives also.
  • the replacement of the faujasite component in a typical fluid cracking catalyst formulation with a pentasil zeolite, such as that sold under the trade name ZSM-5, in a concentration of 15 to 25 percent results in an octane additive with substantially improved attrition resistance. Since these types of additives are much more expensive to produce than a conventional fluid cracking catalyst and, therefore, more costly for a refiner to use, better unit retention provided by the improved attrition resistance enables a refiner to operate with this type of additive with significant improvement in his over all catalyst costs.
  • Additives having blends of clays with kaolin in the absence of zeolite also perform well as metal "getters” or SOX-type additives.
  • these same combinations of clays have been tried without success, not because of their lack of functionality as metal “gettering” or SOX reduction, but simply because the attrition resistance of the fluid additive particles was poor.
  • the invention provides desirable fluid cracking catalysts as well as desirable hydrocracking and hydrotreating catalysts or non-catalytic or separation-type materials.
  • Other notable benefits of the invention include the control of particle size and improved randomization of individual component particles in binding ceramics and superconducting formulations based on a variety of inorganic oxide systems which contain identical or similar oxide components to those used in the production of FCC catalysts and additives.
  • the invention improves any system wherein the electrical charge distribution of individual components, under normal processing, prevents or hinders the integrity and functionality of the final material being processed, the application of the invention changes the charge distribution of the individual component particles, such that the obtained materials, so treated, have improved integrity and functionality.
  • the zeolite content of catalyst particles can be increased by the invention to a 50 percent level without a major loss in the integrity of the catalyst particle.
  • This technology in catalyst formulations based on 50 percent zeolite input enables the production of catalysts which can operate in a commercial unit.
  • High doses or the correct level and combination of one or more surfactants can achieve attrition resistance values for catalysts that are comparable to the standard catalyst formulations that are currently used by the industry.
  • the examples describe below are operable in a commercial unit.
  • Examples 1 through 2 represent the process of the invention that utilizes alkaline stable surfactants.
  • the process described above is used to prepare a faujasite containing rare earth containing catalyst.
  • the novel process can also be used to prepare amorphous gel-based catalysts.
  • the calcination temperature in step 8 can be performed at temperatures between 1000 and 1500 degrees F (538 degrees C and 816 degrees C) depending on the type of hydrogen Y catalyst being prepared.
  • the attrition test is similar to that described in U.S. Patent 4,010,116.
  • the procedure for the measurement is as follows.
  • ATTRITION INDEX (AI) at 5 hours - This value is the total amount of fines expressed as a weight percent (%), collected in the fines collection thimble after exactly 5.0 hours. The collection of data at a time not corresponding exactly to hourly intervals was corrected either graphically or by linear regression fitting. This parameter is an indicator of short term catalyst loss in the commercial operation.
  • a hard catalyst is considered to have an AI of 7 or lower. Values of 12 and lower are commercially acceptable.
  • An acid/alum solution was prepared by mixing the following components in the ratios shown to the volume needed.
  • a quantity of 0.454 kilograms (kg) of aluminum sulfate was mixed well with 1.79 kg of water. The mixture was agitated well until all the aluminum sulfate had been dissolved. After the sulfate had been dissolved .029 kg of 95-98% sulfuric acid was added. This solution was then cooled to at least 86 degrees F (30 degrees C) before it was used.
  • the acidified alum solution was pumped into a high shear mix pump and simultaneously a stream of sodium silicate, containing 12.4 wt% silica, was also pumped into the mix pump. The silicate flow rate is adjusted to achieve a pH in the mixing pump. The silicate flow is rate adjusted to achieve a pH in the mixing pump discharge in the range of 2.80-3.05.
  • a 3:1 flow of silicate to acidified alum was typically required to achieve the desired pH range.
  • a slurry of Kaolin clay was made up to a 70% solids slurry, measured by O'Haus moisture balance, using as dispersing agents TSPP and sodium polyacrylate (NaPa) slurry make-up water in the following proportions, 0.24% TSPP predissolved in hot water to a 10% solution, and 0.25% NaPa, based on the weight of as is air float clay.
  • the dispersant is first added to the make-up water followed by the dry clay which is added under high shear agitation.
  • Table 1 indicates typical results obtained when catalysts were prepared by the prior art procedure. Catalyst hardness as expressed by the CAI index were in excess of 6 weight percent per hour and the attrition in excess of 1.3 weight percent per hour on a rate basis. Run No. 167 185 NaY 2636(25) 2636(25) Alumina 526(10) 526(10) Silica sol 11500(23) 11500(23) Clay 3545(42) 3545(42) Sol pH 2.93 2.97 Sol Temp./C 33 31 Feed pH 3.27 3.29 CAI 9.83 9.03 Att./Rate 1.97 1.80 Notes No additives were used in these runs. Component inputs are shown as weight in grams and the number in ( ) is the percent material on a silica/alumina basis.
  • This example uses a major portion of the dilution water for preparing the dilute sodium silicate that is supplied by the kaolin slurry.
  • the kaolin slurry is comprised of approximately 70 percent solids as described in Comparative Example A.
  • the resulting clay-silicate-slurry component is then fed directly to the suction-side of a centrifugal pump which simultaneously draws a stream of acid-alum as described in Comparative Example A.
  • the clay-silicate-slurry flow is adjusted to achieve a pH in the discharge of the pump between 2.80 and 3.05.
  • the flow of CSS to acidified was adjusted to achieve the desired pH range.
  • Table 2 presents the data obtained when the clay-silicate-slurry is treated with an alkaline stable anionic surfactant alone and in combination with an acid stable surfactant such as DuPont Zonyl TBS wherein the Zonyl TBS is added either to the zeolite component, the acid-alum, or the spray drier feed tank.
  • an acid stable surfactant such as DuPont Zonyl TBS
  • the preferred addition point for the Zonyl TBS is the spray drier feed tank.
  • the improvement in attrition resistance is substantial when preparing catalysts in the CSS mode using the combination of anionic, alkaline, and acid stable surfactants.
  • Table 2B presents the attrition response using another anionic surfactant, which is stable both in strong acid and alkaline environments and in combination with a second anionic acid stable surfactant that is added only to the strong acid components.
  • the surfactant sold under the trade name Zonyl UR is stable in either an acid or alkaline slurry.
  • the surfactant is added to the CSS alone and then in combination with Zonyl TBS to either the spray drier feed tank or to the acid-alum before forming the binder slurry. All examples show a marked improvement in attrition resistance compared with any of the blank examples that are provided for comparison purposes.
  • This example illustrates that an alkali stable anionic surfactant function in an over-all strong acid environment and result in catalysts with improved attrition resistance, but at much higher usage levels.
  • the attrition response is summarized in Table 3.
  • This example demonstrates the vulnerability of surfactants in general whereby their functionality can be reduced either through instability in the presence of strong acids or bases or precipitation by ionic species such as calcium and/or magnesium salts. In most instances, adequate functionality is achieved, but at the expense of higher catalyst usage and increased processing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (28)

  1. Verfahren zur Verbesserung der physikalischen und katalytischen Eigenschaften eines flüssigen Crackkatalysators, dadurch gekennzeichnet, daß das Verfahren zur Herstellung des Katalysators folgende Stufen umfaßt:
    Mischen einer Aufschlämmung von Tonteilchen und Natriumsilikatteilchen,
    Zugabe einer wirksamen Konzentration eines alkalibeständigen Tensids zur Aufschlämmung,
    Bildung eines Solbindemittels und
    Zufuhr der Teilchen zu einem Sprühtrockner.
  2. Verfahren nach Anspruch 1, worin die Tonteilchen als Aufschlämmung von Ton vom Kaolintyp, welche die wirksame Konzentration des alkalibeständigen Tensids enthält, bereitgestellt werden.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das verfahren noch folgende Stufen umfaßt:
    Zugabe einer Zeolithaufschlämmung und einer Tonerdeaufschlämmung zur Aufschlämmung aus Ton- und Natriumsilikatteilchen,
    Zufuhr der Teilchen zum Sprühtrockner und
    Waschen, Austausch, Trocknen und Glühen der Teilchen zur Bildung des flüssigen Crackkatalysators.
  4. Verfahren nach Anspruch 3, bei dem das alkalibeständige Tensid den vereinigten dem Sprühtrockner zugeführten Aufschlämmungen zugegeben wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Solbindemittel eine Aufschlämmung aus einem Bindemittel aus saurem Aluminiumsulfat und Kieselerdesol ist, hergestellt durch
    Lösen von 0,40 bis 0,46 kg Aluminiumsulfat in 1,70 bis 1,80 kg Wasser,
    Zugabe von 0,28 bis 0,29 kg konzentrierter Schwefelsäure,
    Abkühlen und
    Mischen mit einer ausreichenden Menge an Natriumsilikat, das 12,4 Gew.-% Kieselerde enthält, zur Einstellung des End-pH der Aufschlämmung auf 2,80 bis 3,05.
  6. Verfahren nach Anspruch 3, bei dem die Tonerdeteilchenaufschlämmung durch Zugabe einer ausreichenden Menge an Kaolinton zu Wasser hergestellt wird, um 65 bis 75 Gew.-% Tonfeststoff zu erhalten.
  7. Verfahren nach Anspruch 3, bei dem die Zeolithaufschlämmung durch Zugabe einer ausreichenden Menge Faujasit zu Wasser hergestellt wird, um 20 bis 25 Gew.-% Faujasitfeststoff und einen pH zwischen 4,5 und 4,8 zu erzielen.
  8. Verfahren nach Anspruch 3, bei dem die Tonerdeaufschlämmung durch Zugabe einer ausreichenden Menge an Tonerde zu Wasser hergestellt wird, um 20 bis 25 Gew.-% Tonerdefeststoff zu erhalten.
  9. Verfahren nach Anspruch 3 oder 4, bei dem eine ausreichende Menge an alkalibeständigem Tensid zugegeben wird, um 0,23 bis 4,55 kg (0,50 bis 10 Pfund) pro 909 kg (US-Tonne) Katalysator zu erzielen.
  10. Verfahren nach Anspruch 3, das außerdem noch dadurch gekennzeichnet ist, daß es folgende Stufen umfaßt:
    Aufschlämmen der sprühgetrockneten Teilchen,
    Filtration der aufgeschlämmten Teilchen,
    Spülen der filtrierten Teilchen mit einer Ammoniumsalzlösung,
    Waschen, Trocknen, Waschen und Austausch der Teilchen gegen eine Seltenerdsalzlösung,
    Waschen, Trocknen, Glühen, Aufschlämmen, Filtration und Spülen der Teilchen mit einer Ammoniumsalzlösung und
    Waschen und Trocknen der Teilchen.
  11. Verfahren nach Anspruch 3, das außerdem noch dadurch gekennzeichnet ist, daß es folgende Stufen umfaßt:
    Aufschlämmen der sprühgetrockneten Teilchen,
    Filtration der aufgeschlämmten Teilchen,
    Spülen der filtrierten Teilchen mit einer Ammoniumsalzlösung,
    Waschen der gespülten Teilchen und
    Trocknen, Glühen, Waschen und Trocknen der Teilchen.
  12. Verfahren nach Anspruch 10 oder 11, bei dem das Glühen bei einer Temperatur von 528 bis 816°C (1000 bis 1500°F) durchgeführt wird.
  13. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Verfahren noch folgende Stufen umfaßt:
    Mischen der Aufschlämmung aus Ton vom Kaolintyp, die das alkalibeständige Tensid enthält, mit Natriumsilikat zur Erzielung einer Ton-Silikat-Aufschlämmung mit 12,4 Gew.-% SiO2,
    Zufuhr der Ton-Silikat-Aufschlämmung in einem Strom aus angesäuertem Alaun zur Erzielung eines gemischten Stroms mit einem pH zwischen 2,80 und 3,05,
    Bereitung einer Zeolith- und Tonerdeaufschlämmung,
    Vereinigung der Zeolith- und Tonerdeaufschlämmung mit dem vereinigten Strom der Ton-Silikat-Aufschlämmung und des Stroms aus angesäuertem Alaun vor dem Trocknen.
  14. Verfahren nach Anspruch 13, das außerdem noch die
    Zugabe eines säurebeständigen Tensids umfaßt, das zumindest einem Vertreter der Gruppe zugesetzt wird, die aus der Ton-Silikat-Aufschlämmung, dem Strom aus angesäuertem Alaun und dem vereinigten Strom aus der Ton-Silikat-Aufschlämmung und dem Strom aus angesäuertem Alaun besteht.
  15. Verfahren nach Anspruch 13, bei dem die Tonteilchenaufschlämmung 70 Gew.-% Tonfeststoff enthält.
  16. Verfahren nach Anspruch 15, bei dem die Tonteilchenaufschlämmung einen Ton enthält, ausgewählt aus der Gruppe, bestehend aus Kaolinit, Montmorillonit, Metakaolin, geglühtem Kaolinit, Talk und Gemischen davon.
  17. Verfahren nach Anspruch 15, bei dem die Tonaufschlämmung ein Tongemisch enthält, ausgewählt aus der Gruppe, bestehend aus (i) Kaolinit und Montmorillonit, (ii) Kaolinit und Metakaolin, (iii) Kaolinit und geglühtem Kaolinit und (iv) Kaolinit und Talk.
  18. Verfahren nach Anspruch 13, bei dem die Zeolithaufschlämmung einen Zeolith enthält, ausgewählt aus der Gruppe, bestehend aus Faujasit und Pentasilzeolith.
  19. Verfahren nach Anspruch 18, bei dem die Zeolithaufschlämmung 30 Gew.-% Zeolithfeststoff und einen pH von 4,5 bis 4,8 aufweist.
  20. Verfahren nach Anspruch 13, bei dem das alkalibeständige Tensid ein anionisches Fluorkohlenwasserstofftensid ist.
  21. Verfahren nach Anspruch 13, bei dem das alkalibeständige Tensid mit wenigstens einem anionischen säurebeständigen Blockcopolymer gemischt wird.
  22. Verfahren nach Anspruch 13, bei dem 35 bis 96 Gew.-% Tonteilchen in der Tonaufschlämmung einen Durchmesser von unter 2 µm aufweisen.
  23. Verfahren nach Anspruch 13, bei dem die wirksame Menge des alkalibeständigen Tensids ca. 0,45 kg (1,0 Pfund) pro 2.272,5 kg (2,5 US-Tonnen) Katalysator beträgt.
  24. Verfahren nach Anspruch 13, das außerdem noch dadurch gekennzeichnet ist, daß es außerdem noch die Zugabe eines Octanzusatzes vor der Trocknung des vereinigten Stroms umfaßt.
  25. Verfahren nach Anspruch 24, bei dem der Octanzusatz ein Pentasilzeolith ist.
  26. Verfahren nach Anspruch 25, bei dem der Pentasilzeolith in einer Konzentration von 15 bis 25 Gew.-% des Katalysators vorliegt.
  27. Verfahren nach Anspruch 18, bei dem vor dem Trocknen des vereinigten Stroms ein Zeolith zur Gewährleistung einer Konzentration von bis zu 50 Gew.-% des Katalysators zugesetzt wird.
  28. Verfahren nach Anspruch 27, bei dem der Zeolith zur Gewährleistung einer Konzentration von 35 Gew.-% des Katalysators zugesetzt wird.
EP91915205A 1990-08-06 1991-08-05 Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften von fluidisierten krackkatalysatoren Expired - Lifetime EP0542871B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US562905 1990-08-06
US07/562,905 US5135756A (en) 1989-03-10 1990-08-06 Process for improving the physical and catalytic properties of a fluid cracking catalyst
PCT/US1991/005560 WO1992002299A1 (en) 1990-08-06 1991-08-05 Process for improving the physical and catalytic properties of fluid cracking catalysts

Publications (3)

Publication Number Publication Date
EP0542871A1 EP0542871A1 (de) 1993-05-26
EP0542871A4 EP0542871A4 (en) 1993-07-28
EP0542871B1 true EP0542871B1 (de) 1998-07-22

Family

ID=24248289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91915205A Expired - Lifetime EP0542871B1 (de) 1990-08-06 1991-08-05 Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften von fluidisierten krackkatalysatoren

Country Status (10)

Country Link
US (1) US5135756A (de)
EP (1) EP0542871B1 (de)
JP (1) JP2918335B2 (de)
AT (1) ATE168588T1 (de)
AU (1) AU658367B2 (de)
BR (1) BR9103379A (de)
DE (1) DE69129854T2 (de)
FI (1) FI930517L (de)
NZ (1) NZ239272A (de)
WO (1) WO1992002299A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330943A (en) * 1989-03-10 1994-07-19 Thiele Kaolin Company Process for improving the physical and catalytic properties of a fluid cracking catalyst
US5711930A (en) * 1989-03-10 1998-01-27 Thiele Kaolin Company Process for improving the phyiscal properties of formed particles
US5866496A (en) * 1989-03-10 1999-02-02 Thiele Kaolin Company Cracking catalyst and process for preparing same
US4946814A (en) * 1989-03-10 1990-08-07 Thiele-Kaolin Company Process for improving the physical and catalytic properties of fluid cracking catalysts
US5114895A (en) * 1990-02-22 1992-05-19 Uop Alumina clay compositions
WO1996009890A1 (en) * 1994-09-26 1996-04-04 Thiele Kaolin Company Cracking catalyst and process for preparing same
US5714431A (en) * 1994-10-19 1998-02-03 Research Triangle Institute Zinc titanate sorbents
US5972835A (en) * 1995-09-13 1999-10-26 Research Triangle Institute Fluidizable particulate materials and methods of making same
US6680271B1 (en) 1997-12-17 2004-01-20 Grace Gmbh & Co. Kg Solid zeolite granulates having improved abrasion resistance, and methods of making them
CN1096296C (zh) * 1998-11-13 2002-12-18 中国石油化工集团公司 一种生产中间馏分油的加氢裂化催化剂及其制备
ES2282488T3 (es) 2001-07-02 2007-10-16 Exxonmobil Chemical Patents Inc. Inhibicion de la formacion de coque en un catalizador en la fabricacion de una olefina.
US6872680B2 (en) 2002-03-20 2005-03-29 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7271123B2 (en) 2002-03-20 2007-09-18 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion process
EP1623965A1 (de) * 2004-07-21 2006-02-08 Walsin Lihwa Corporation Tonmischung und Verfahren zu deren Herstellung
US7309679B2 (en) * 2005-08-08 2007-12-18 Uop Llc Attrition resistant MTO catalyst
KR20090039742A (ko) * 2006-07-06 2009-04-22 더블유.알. 그레이스 앤드 캄파니-콘. 알루미늄 설페이트 결합 촉매
BRPI0820132A2 (pt) * 2007-12-20 2015-05-12 Grace W R & Co Processo de preparação composições inorganicas resistente a altos atritos e composições preparadas do mesmo
JP5628027B2 (ja) * 2008-05-30 2014-11-19 日揮触媒化成株式会社 炭化水素油の流動接触分解触媒及びそれを用いた炭化水素油の流動接触分解方法
CN101733141B (zh) * 2008-11-20 2012-07-04 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法
EP2221285A1 (de) * 2009-02-24 2010-08-25 Ecotech Polka Sp. z.o.o. Zusammensetzung und Verfahren zur Stabilisierung von umweltschädlichen Substanzen, Verwendung von eisenfreien Metallsalzen und -oxiden zur Stabilisierung von umweltschädlichen Substanzen mit kaustischem Magnesiumoxid
US9725335B2 (en) * 2013-03-12 2017-08-08 The Frazer And Cruickshank Living Trust Dated 3/24/1982 Removal of copper from aqueous streams using an iron promoted activated alumina
KR20160071380A (ko) * 2013-10-15 2016-06-21 바스프 코포레이션 탁월한 내마멸성을 갖는 메조다공성 fcc 촉매
EP3700668A1 (de) * 2017-10-24 2020-09-02 Saudi Arabian Oil Company Verfahren zur herstellung sprühgetrockneter metathesekatalysatoren und deren verwendung
CN114433173B (zh) * 2020-10-16 2023-09-05 中国石油化工股份有限公司 一种制备低表观松密度fcc催化剂的方法
WO2023239560A1 (en) 2022-06-09 2023-12-14 Formosa Plastics Corporaton, U.S.A. Clay composite support-activators and catalyst compositions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) * 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3219590A (en) * 1961-08-01 1965-11-23 Union Carbide Corp Bonded molecular sieves
US3436357A (en) * 1962-05-17 1969-04-01 Mobil Oil Corp Catalyst and conversion of organic compounds in the presence thereof
US3425956A (en) * 1964-03-26 1969-02-04 Grace W R & Co Process for preparing molecular sieve containing cracking catalysts
US3140253A (en) * 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US3210267A (en) * 1965-04-20 1965-10-05 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with the use of a crystalline zeolite catalyst containing rare earths and a porous matrix
US3271418A (en) * 1965-06-22 1966-09-06 Mobil Oil Corp Catalytic conversion of hydrocarbons with a crystalline alumino-silicate in a silica-alumina matrix
US3459680A (en) * 1969-01-02 1969-08-05 Mobil Oil Corp Crystalline zeolite composite for catalytic hydrocarbon conversion
US3657151A (en) * 1970-01-15 1972-04-18 Chevron Res Catalyst manufacture
US3844973A (en) * 1972-05-30 1974-10-29 Universal Oil Prod Co Fluidized catalyst regeneration by oxidation in a dense phase bed and a dilute phase transport riser
US3867308A (en) * 1973-12-10 1975-02-18 Grace W R & Co Process for preparing a petroleum cracking catalyst
US4072600A (en) * 1974-02-08 1978-02-07 Mobil Oil Corporation Catalytic cracking process
US3957689A (en) * 1974-08-02 1976-05-18 W. R. Grace & Co. Process for preparing an attrition resistant zeolite hydrocarbon conversion catalyst
US3985846A (en) * 1975-04-16 1976-10-12 W. R. Grace & Co. Ceramic firing process
CA1097308A (en) * 1976-10-15 1981-03-10 Charles J. Plank Method of making fluid catalysts
US4485005A (en) * 1983-04-06 1984-11-27 Uop Inc. Hydrocracking with a zeolite in an alumina binder peptized in the presence of a surfactant
GB8711005D0 (en) * 1987-05-09 1987-06-10 British Petroleum Co Plc Chemical process
US4946814A (en) * 1989-03-10 1990-08-07 Thiele-Kaolin Company Process for improving the physical and catalytic properties of fluid cracking catalysts
JP2546734B2 (ja) * 1990-05-07 1996-10-23 株式会社ジャパンエナジー 触媒用アルミナの製造方法

Also Published As

Publication number Publication date
FI930517A7 (fi) 1993-04-05
DE69129854T2 (de) 1999-03-04
AU8418191A (en) 1992-03-02
WO1992002299A1 (en) 1992-02-20
DE69129854D1 (de) 1998-08-27
EP0542871A1 (de) 1993-05-26
NZ239272A (en) 1994-11-25
BR9103379A (pt) 1992-05-12
AU658367B2 (en) 1995-04-13
FI930517L (fi) 1993-04-05
JPH06501876A (ja) 1994-03-03
EP0542871A4 (en) 1993-07-28
US5135756A (en) 1992-08-04
FI930517A0 (fi) 1993-02-05
ATE168588T1 (de) 1998-08-15
JP2918335B2 (ja) 1999-07-12

Similar Documents

Publication Publication Date Title
EP0542871B1 (de) Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften von fluidisierten krackkatalysatoren
EP0462216B1 (de) Verfahren zur verbesserung der physikalischen und katalytischen eigenschaften eines fluidisierten krackkatalysators
US5739072A (en) Process for improving the physical and catalytic properties of a fluid cracking catalyst
US3867308A (en) Process for preparing a petroleum cracking catalyst
US4086187A (en) Attrition resistant zeolitic catalyst
AU622716B2 (en) Novel zeolite fluid cracking catalysts and preparation thereof from mixtures of calcined clay
US4332699A (en) Catalyst preparation
JPS5838209B2 (ja) 耐摩損性ゼオライト炭化水素転化触媒の製法
US4198319A (en) Method of producing zeolitic catalysts with silica alumina matrix
JPH0214102B2 (de)
US4142995A (en) Method of producing zeolitic catalysts with silica alumina matrix
US5866496A (en) Cracking catalyst and process for preparing same
US4100108A (en) Zeolitic catalysts and method of producing same
WO1996009890A1 (en) Cracking catalyst and process for preparing same
JPS62155942A (ja) 触媒組成物
EP0157545B1 (de) Methode zur Herstellung von Katalysatorzusammensetzungen für das katalytische Kracken von Kohlenwasserstoffen
US4240932A (en) Exchanged mordenite catalysts and processes for producing the same
JPS6241782B2 (de)
US4325845A (en) Zeolite catalysts and method of producing the same
CA2055938A1 (en) Process for improving the physical and catalytic properties of fluid cracking catalysts
CN117946725B (zh) Y型分子筛合成滤液的利用方法
JPH0273886A (ja) ゼオライトl及びゼオライトyの混合物を用いる炭化水素の接触分解
CN117946725A (zh) Y型分子筛合成滤液的利用方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19930608

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19941118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980722

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980722

REF Corresponds to:

Ref document number: 168588

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980805

REF Corresponds to:

Ref document number: 69129854

Country of ref document: DE

Date of ref document: 19980827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981022

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981022

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020827

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020829

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021029

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030805

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301