EP0538519B2 - Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés - Google Patents

Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés Download PDF

Info

Publication number
EP0538519B2
EP0538519B2 EP91309686A EP91309686A EP0538519B2 EP 0538519 B2 EP0538519 B2 EP 0538519B2 EP 91309686 A EP91309686 A EP 91309686A EP 91309686 A EP91309686 A EP 91309686A EP 0538519 B2 EP0538519 B2 EP 0538519B2
Authority
EP
European Patent Office
Prior art keywords
temperature
anneal
silicon steel
conducting
soak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91309686A
Other languages
German (de)
English (en)
Other versions
EP0538519A1 (fr
EP0538519B1 (fr
Inventor
Jerry W. Schoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armco Inc
Original Assignee
Armco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8208430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0538519(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Armco Inc filed Critical Armco Inc
Priority to DE1991628624 priority Critical patent/DE69128624T3/de
Priority to EP91309686A priority patent/EP0538519B2/fr
Priority to CN 91108401 priority patent/CN1033653C/zh
Publication of EP0538519A1 publication Critical patent/EP0538519A1/fr
Application granted granted Critical
Publication of EP0538519B1 publication Critical patent/EP0538519B1/fr
Publication of EP0538519B2 publication Critical patent/EP0538519B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the invention relates to a process for producing high silicon regular grain oriented electrical steel with low melt carbon and in thicknesses ranging from 14 mils (0.35 mm) to 6 mils (0.15 mm) or less, and more particularly to such a process including an intermediate anneal following the first cold rolling stage having a very short soak time and a two-part temperature-controlled cooling cycle, and preferably an ultra-rapid anneal prior to decarburization.
  • the teachings of the present invention are applied to silicon steel having a cube-on-edge orientation, designated (110) [001] by Miller's Indices.
  • Such silicon steels are generally referred to as grain oriented electrical steels.
  • Grain oriented electrical steels are divided into two basic categories: regular grain oriented and high permeability grain oriented.
  • Regular grain oriented electrical steel utilizes manganese and sulfur (and/or selenium) as the principle grain growth inhibitor and generally has a permeability at 796 A/m of less than 1870.
  • High permeability electrical steel relies on aluminum nitrides, boron nitrides or other species known in the art made in addition to or in place of manganese sulphides and/or selenides as grain growth inhibitors and has a permeability greater than 1870.
  • the teachings of the present invention are applicable to regular grain oriented silicon steel.
  • Conventional processing of regular grain oriented electrical steel comprises the steps of preparing a melt of electrical steel in conventional facilities, refining and casting the electrical steel in the form of ingots or strand cast slabs.
  • the cast electrical steel preferably contains in weight percent less than about 0.1% carbon, 0.025% to 0.25% manganese, 0.01% to 0.035% sulfur and/or selenium, 2.5% to 4.0% silicon with an aim silicon content of about 3.15%, less than 50 ppm nitrogen and less than 100 ppm total aluminum, the balance being essentially iron. Additions of boron and/or copper can be made, if desired.
  • the steel is hot rolled into slabs or directly rolled from ingots to strip. If continuous cast, the slabs may be pre-rolled in accordance with U.S. Patent 4,718,951. If developed commercially, strip casting would also benefit from the process of the present invention.
  • the slabs are hot rolled at about 2550° F (1400° C) to hot band thickness and are subjected to a hot band anneal of about 1850° F (1010° C) with a soak of about 30 seconds.
  • the hot band is air cooled to ambient temperature.
  • the material is cold rolled to intermediate gauge and subjected to an intermediate anneal at a temperature of about 1740° F (950° C) with a 30 second soak and is cooled as by air cooling to ambient temperature.
  • electrical steel is cold rolled to final gauge.
  • the electrical steel at final gauge is subjected to a conventional decarburizing anneal which serves to recrystallize the steel, to reduce the carbon content to a non-aging level and to form a fayalite surface oxide.
  • the decarburizing anneal is generally conducted at a temperature of from 1525° F to 1550° F (830° C to 845° C) in a wet hydrogen bearing atmosphere for a time sufficient to bring the carbon content down to about 0.003% or lower.
  • the electrical steel is coated with an annealing separator such as magnesia and is final annealed at a temperature of about 2200° F (1200° C) for twenty-four hours. This final anneal brings about secondary recrystallization.
  • a forsterite or "mill” glass coating is formed by reaction of the fayalite layer with the separator coating.
  • the present invention is based upon the discovery that in the production of regular grain oriented electrical steel the nature of the intermediate anneal following first stage of cold rolling, and its cooling cycle, have a marked effect on the magnetic quality of the final product.
  • the volume fraction of austenite formed during the anneal, the austenite decomposition product and the carbide precipitate formed during cooling are all of significant importance.
  • a cooling rate after the intermediate anneal which does not allow for austenite decomposition subsequent to the precipitation of fine iron carbide produces lower permeability, less stable secondary grain growth, and/or an enlarged secondary grain size.
  • the present invention is directed to the production of regular grain oriented silicon steel starting with a melt chemistry having a silicon content of from 3% to 45% and a low carbon content of less than 0 07%
  • the routing of The present invention follows the conventional routing given above with two exceptions
  • the present invention contemplates a modified intermediate anneal procedure following the first stage of cold rolling
  • the modified intermediate anneal procedure preferably has a short soak at a lower temperature than the typical prior art intermediate anneal and includes a temperature controlled two-stage cooling cycle, as will be fully described hereinafter.
  • the intermediate anneal cooling practice of the present invention provides for austenite decomposition in the first slow stage of cooling prior to precipitation of fine iron carbide in the second rapid stage of cooling.
  • the short soak feature and austenite decomposition are facilitated by the low melt carbon
  • the routing of the present invention preferably includes an ultra-rapid annealing treatment prior to decarburization.
  • the ultra-rapid annealing treatment improves the overall magnetic quality by improving the recrystallization texture
  • the ultra-rapid annealing treatment is of the type set forth in U S Patent 4,898,626.
  • U.S Patent 4,898,626 teaches that the ultra-rapid annealing treatment is performed by heating the electrical steel at a rate in excess ot 180° F (100° C) per second to a temperature above the recrystallization temperature. nominally 1250° F (675° C)
  • the ultra-rapid annealing treatment can be performed at any point in the routing after at least a first stage of cold rolling and before the decarburization anneal preceding the final anneal. A preferred point in the routing is after the completion of cold rolling and before the decarburization anneal.
  • the ultra-rapid annealing treatment may be accomplished either prior to the decarburization anneal. or may be incorporated into the decarburization anneal as a heat-up portion thereof
  • US-A-3 929 522 discloses first, slow and second, fast, coding stages, the second stage being made by water quenching, wherein the second stage produces a high permeability silicon steel.
  • a method for processing regular grain onented silicon steel naving a thickness in the range of from 14 mils (0.35 mm) to 6 mils (0.15 mm) or less comprising the steps or providing electrical steel consisting of, in weight percent, less than 0 07% carbon, 0 025% to 0 25% manganese, 0.01% to 0.035% sulfur and/or selenium. 3.0% to 4 5% silicon, less than 100 ppm total aluminum, less than 50 ppm nitrogen the balance being iron and impurities. Additions of boron and/or copper can be made, if desired.
  • hot band the starting material referred to as "hot band” can be produced by a number of methods known in the an such as ingot casting/continuous casting and hot rolling, or by strip casting.
  • the hot band is subjected to an anneal at about 1850° F (1010° C) for a soak time of about 30 seconds, followed by air cooling to ambient temperature it has been found that this not band anneal can be omitted, particularly when making a regular grain oriented electrical steel having a silicon content at the lower portion or the range.
  • the electrical steel is cold rolled to intermediate gauge.
  • the cold rolled intermediate thickness electrical steel is subjected to an intermediate anneal at 1650° F to 2100° F (900° C to 1150° C) and preferably from 1650° F to 1700° F (from 900° C to 930° C) for a soak time of from 1 to 30 seconds, and preferably from 3 to 8 seconds Following this soak, the electrical steel is cooled in two stages.
  • the first is a slow cooling stage from soak temperature to a temperature of from 1000° F to 1200° F (540° C to 650° C), and preferably to a temperature of 1100° F ⁇ 50° F (595° C ⁇ 30° C) at a rate less than 1500° F (835° C) per minute, and preferably at a rate of from 500° F (280° C) to 1050° F (585°C) per minute.
  • the second stage is a last cooling stage at a rate of greater than 1500° F (835° C) per minute and preferably at a rate of 2500° F to 3500° F (1390° C to 1945° C) per minute, followed by a water quench at 600° F to 1000° F (315° C to 540° C). Following the intermediate anneal, the electrical steel is cold rolled to final gauge. decarburized, coated with an annealing separator, and subjected to a final anneal to effect secondary recrystallization
  • the electrical steel is subjected to an ultra-rapid annealing treatment of the type described above This can be performed at any point in the routing after at least a first stage of cold rolling, and before decarburization. It is generally preferred to perform the ultra-rapid annealing treatment upon completion of cold rolling and before the decarburization anneal. As indicated above, the ultra-rapid anneal may be incorporated into the decarburization annealing step as a heat-up portion thereof
  • the Figure is a graph illustrating the intermediate anneal time/temperature cycle of the present invention and of a typical prior an intermediate anneal
  • the routing for the high silicon, low melt carbon regular grain oriented electrical steel is conventional and is essentially the same as that given above with three exceptions.
  • the first exception is that the hot band anneal can be omitted, if desired. Where equipment and conditions permit, the practice of a hot band anneal is recommended since it makes the high silicon regular grain oriented electrical steel less brittle and more amenable to cold rolling. Furthermore, it tends to contribute to more stable secondary recrystallization.
  • a hot band anneal is provided at a temperature of about 1850°F (1010° C) at a soak time of about 30 seconds. The hot band anneal is followed by air cooling to ambient temperature.
  • the second exception is the development of the intermediate anneal and cooling practice of the present invention following the first stage of cold rolling.
  • the third exception is the optional, but preferred, use of an ultra-rapid annealing treatment prior to decarburization.
  • the silicon steel is subjected to an intermediate anneal in accordance with the teachings of the present invention.
  • the Figure also shows, with a broken line, the time/temperature cycle for a typical, prior art intermediate anneal.
  • a primary thrust of the present invention is the discovery that the intermediate anneal and its cooling cycle can be adjusted to provide a fine carbide dispersion.
  • the anneal and its cooling cycle overcome the adverse effects of a higher silicon content, described above.
  • recrystallization occurs at about 1250° F (675° C), roughly 20 seconds after entering the furnace, after which normal grain growth occurs.
  • the start of recrystallization is indicated at “O” in the Figure.
  • carbides will begin dissolving, as indicated at "A” in the Figure. This event continues and accelerates as the temperature increases.
  • 1650° F (900° C) a small amount of ferrite transforms to austenite. The austenite provides for more rapid solution of carbon and restricts normal grain growth, thereby establishing the intermediate annealed grain size.
  • Prior art intermediate anneal practice provided a soak at about 1740° F (950° C) for a period of at least 25 to 30 seconds.
  • the intermediate anneal procedure of the present invention provides a soak time of from 1 to 30 seconds, and preferably from 3 to 8 seconds.
  • the soak temperature has been determined not to be critical.
  • the soak can be conducted at a temperature of from 1650° F (900° C) to 2100° F (1150° C).
  • the soak is conducted at a temperature of from 1650° F (900° C) to 1700° F (930° C), and more preferably at about 1680° F (915° C).
  • the shorter soak time and the lower soak temperature are preferred because less austenite is formed.
  • the austenite present in the form of dispersed islands at the prior ferrite grain boundaries is finer.
  • the austenite is easier to decompose into ferrite with carbon in solid solution for subsequent precipitation of fine iron carbide.
  • To extend either the soak temperature or time results in the enlargement of the austenite islands which rapidly become carbon-rich compared to the prior ferrite matrix. Both growth and carbon enrichment of the austenite hinder its decomposition during cooling.
  • the desired structure exiting the furnace consists of a recrystallized matrix of ferrite having less than about 5% austenite uniformly dispersed throughout the material as fine islands. At the end of the anneal, the carbon will be in solid solution and ready for reprecipitation on cooling.
  • the primary reason behind the redesign of the intermediate anneal time and temperature at soak is the control of the growth of the austenite islands.
  • the lower temperature reduces the equilibrium volume fraction of austenite which forms.
  • the shorter time reduces carbon diffusion, thereby inhibiting growth and undue enrichment of the austenite.
  • the lower strip temperature, the reduced volume fraction and the finer morphology of the austenite make it easier to decompose during the cooling cycle.
  • the cooling cycle of the present invention contemplates two stages.
  • the first stage extending from soak to the point "E" on the Figure is a slow cool from soak temperature to a temperature of from 1000° F (540° C) to 1200° F (650° C) and preferably to 1100° ⁇ 50° F (595° C ⁇ 30° C).
  • This first slow cooling stage provides for the decomposition of austenite to carbon-saturated ferrite. Under equilibrium conditions, austenite decomposes to carbon-saturated ferrite between from about 1650° F (900° C) and 1420° F (770° C). However, the kinetics of the cooling process are such that austenite decomposition does not begin in earnest until the mid 1500° F (815° C) range and continues somewhat below 1100° F (595° C).
  • Martensite if present, will cause an enlargement of the secondary grain size, and the deterioration of the quality of the (110)[001] orientation. Its presence adversely affects energy storage in the second stage of cold rolling, and results in poorer and more variable magnetic quality of the final electrical steel product. Lastly, martensite degrades the mechanical properties, particularly the cold rolling characteristics. Pearlite is more benign, but still ties up carbon in an undesired form.
  • austenite decomposition begins at about point “C” in the Figure and continues to about point “E”.
  • fine iron carbide begins to precipitate from the carbon-saturated ferrite.
  • carbides begin to precipitate from carbon-saturated ferrite at temperatures below 1280° F (690° C).
  • the actual process requires some undercooling to start precipitation, which begins in earnest at about 1200° F (650° C).
  • the carbide is in two forms. It is present as an intergranular film and as a fine intragranular precipitate. The former precipitates at temperatures above about 1060° F (570° C).
  • the slow cooling first stage extending from point "C” to point “E” of the Figure has a cooling rate of less than 1500° F (835° C) per minute, and preferably from 500° F to 1050° F (280° C to 585° C) per minute.
  • the second stage of the cooling cycle begins at point "E” in the Figure and extends to point "G" between 600° F and 1000° F (315° C and 540° C) at which point the strip can be water quenched to complete the rapid cooling stage.
  • the strip temperature after water quenching is 150° F (65° C) or less, which is shown in the Figure as room temperature (75° F or 25° C).
  • the cooling rate is preferably from 2500° F to 3500° F (1390° C to 1945° C) per minute and preferably greater than 3000° F (1665° C) per minute. This assures the precipitation of fine iron carbide.
  • the typical prior art cycle time shown in the Figure required at least 3 minutes, terminating in a water bath, not shown, at a strip speed of about 220 feet per minute (57 meters per minute).
  • the intermediate anneal cycle time of the present invention requires about 2 minutes, 10 seconds which enabled a strip speed of about 260 feet per minute (80 meters per minute) to be used. It will therefore be noted that the annealing cycle of the present invention enables greater productivity of the line. No aging treatment after the anneal is either needed or desired, since it has been found to cause the formation of an enlarged secondary grain size which degrades the magnetic quality of the final electrical steel product.
  • the intermediate anneal is followed by the second stage of cold rolling reducing the electrical steel to the desired final gauge.
  • the electrical steel can be decarburized, coated with an annealing separator and subjected to a final anneal to effect secondary recrystallization.
  • the electrical steel is given an ultra-rapid annealing treatment after cold reduction and prior to decarburization.
  • the electrical steel at final gauge is heated at a rate above 180° F (100° C) per second to a temperature above 1250° F (675° C).
  • the electrical steel is heated at a rate of 1000° F (540° C) per second.
  • the ultra-rapid annealing treatment be performed as a heat-up portion of the decarburizing anneal.
  • the preferred chemistry of the present invention in weight % is as follows: less than 0.05% carbon, 0.04% to 0.08% manganese, 0.015% to 0.025% sulfur and/or selenium, 3.25% to 3.75% silicon, less than 100 ppm aluminum, less than 50 ppm nitrogen, additions of boron and/or copper, can be made if desired, the balance being essentially iron.
  • the ultra-rapid annealing treatment improves the recrystallization texture after decarburization by creating more (110)[001] primary grains. It also contributes to smaller secondary grain size.
  • an ultra-rapid annealing treatment is incorporated into the process, the process is less sensitive to intermediate and final gauge variations and the magnetic characteristics of the regular grain oriented silicon steel are improved and more consistent.
  • the heats were prepared by continuous casting into 8" (200 mm) thick slabs, prerolling the 8" thick slabs to 6" (150 mm), reheating to 2550° F (1400° C) and hot rolling to 0.084" (2.1 mm) hot bands for subsequent processing.
  • the plant processing followed a routing using a 1850° F (1010° C) hot band annealing treatment and cold rolling to various intermediate thicknesses; however, Heats A and B were processed using a typical prior art intermediate anneal with a 1740° F (950° C) soak for 25-30 seconds followed by normal ambient cooling while Heats C and D were intermediate annealed according to the practice of the present invention.
  • the materials were cold rolled to final thicknesses of 7-mils (0.18 mm) and 9-mils (0.28 mm). After completing cold rolling, the materials were decarburized at 1525° F (830° C) in a wet hydrogen-bearing atmosphere, MgO coated and given a final anneal at 2200° F (1200° C). The resulting magnetic quality obtained in these trials are summarized in Table III.
  • the materials were cold rolled to 7-mils (0.18 mm) final thickness and decarburized at 1525° F (830° C) in a wet hydrogen-bearing atmosphere using either conventional techniques and ultra-rapid annealing treatment during heating. After decarburization, the samples were MgO coated and given a final anneal at 2200° F (1200° C). The results of these runs are summarized in Table III.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Claims (17)

  1. Procédé de production d'acier électrique ordinaire à haute teneur en silicium, à faible teneur en carbone fondu et à grains orientés ayant une épaisseur de 0,35 mm (14 mils) à 0,15 mm (6 mils) ou moins, comprenant les étapes consistant à mettre en oeuvre une bande chaude d'acier au silicium, dans lequel ledit acier au silicium comprend, en pourcentage en poids, moins de 0,07 % de carbone, 0,025 à 0,25 % de manganèse, 0,01 à 0,035 % de soufre et/ou de sélénium, 3,0 à 4,5 % de silicium, moins de 100 ppm d'aluminium, moins de 50 ppm d'azote, des additions de bore et/ou de cuivre, si on le souhaite, le reste étant essentiellement du fer, à recuire ladite bande chaude, à éliminer la calamine de la bande chaude si c'est nécessaire, à laminer à froid à un calibre intermédiaire, à soumettre ledit matériau à calibre intermédiaire à un recuit intermédiaire à une température de trempe de 900 °C (1 650 °F) à 1 150 °C (2 100 °F) pendant une période de trempe de 1 à 30 secondes, à réaliser une étape de refroidissement lente à partir de ladite température de trempe jusqu'à une température de 540 °C (1 000 °F) à 650 °C (1 200 °F) à une cadence de refroidissement inférieure à 835 °C (1 500 °F) par minute, à réaliser ensuite une étape de refroidissement rapide jusqu'à une température de 315 °C (600 °F) à 540 °C (1 000 °F) à une cadence supérieure à 835 °C (1 500 °F) par minute, le tout étant suivi d'une trempe à l'eau, à laminer à froid ledit acier au silicium jusqu'au calibre final, à soumettre ledit acier de silicium au calibre final à un recuit de décarburation, à revêtir ledit acier au silicium décarburé par un séparateur de recuit et à soumettre ledit acier de silicium à un recuit final pour effectuer une recristallisation secondaire.
  2. Procédé selon la revendication 1, dans lequel ladite teneur en silicium est de 3,25 à 3,75 % en poids.
  3. Procédé selon la revendication 1, dans lequel ledit recuit de la bande chaude est réalisé à une température d'environ 1 010 °C (1 850 °F) avec une durée de trempe d'environ 30 secondes et un refroidissement à l'air jusqu'à la température ambiante.
  4. Procédé selon la revendication 1, comprenant l'étape consistant à soumettre ledit acier au silicium, au calibre final et avant décarburation, à un traitement de recuit ultra-rapide jusqu'à une température supérieure à 675 °C (1 250 °F) à une cadence de chauffage supérieure à 100 °C (180 °F) par seconde.
  5. Procédé selon la revendication 1, comprenant l'étape consistant à réaliser ledit recuit intermédiaire avec une durée de trempe de 3 à 8 secondes.
  6. Procédé selon la revendication 1, comprenant l'étape consistant à réaliser ledit recuit intermédiaire à une température de trempe de 900 °C (1 650 F) à 930 °C (1 700 °F).
  7. Procédé selon la revendication 1, comprenant l'étape consistant à réaliser ledit recuit intermédiaire à une température de trempe d'environ 915 °C (1 680 °F).
  8. Procédé selon la revendication 1, comprenant l'étape consistant à terminer ladite étape de refroidissement lente à une température de 595 °C plus ou moins 30 °C (1 100 °F plus ou moins 50 °F).
  9. Procédé selon la revendication 1, comprenant l'étape consistant à effectuer ladite étape de refroidissement lente à une cadence de refroidissement de 280 °C (500 °F) à 585 °C (1 050 °F) par minute.
  10. Procédé selon la revendication 1, comprenant l'étape consistant à réaliser ladite étape de refroidissement rapide à une cadence de refroidissement de 1 390 °C (2 500 °F) à 1 945 °C (3 500 °F) par minute.
  11. Procédé selon la revendication 1, comprenant les étapes consistant à effectuer ledit recuit intermédiaire à une température de trempe d'environ 915 °C (1 680 °F) pendant une période de trempe de 3 à 8 secondes, à réaliser ladite étape de refroidissement lente à une cadence de refroidissement de 280 °C (500 °F) à 585 °C (1 050 °F) à la minute, à terminer ladite étape de refroidissement lente à une température de 595 °C plus ou moins 30 °C (1 100 °F plus ou moins 50 °F) et à réaliser ladite étape de refroidissement rapide à une cadence de 1 390 °C (2 500 °F) à 1 945 °C (3 500 °F) par minute.
  12. Procédé selon la revendication 1, comprenant l'étape consistant à soumettre ledit acier au silicium, au calibre final et avant décarburation, à un traitement de recuit ultra-rapide jusqu'à une température supérieure à 675 °C (1 250 °F) à une cadence de chauffage supérieure à 100 °C (180 °F) par seconde.
  13. Procédé selon la revendication 11, dans lequel ledit recuit de la bande chaude est réalisé à une température d'environ 1 010 °C (1 850 °F) avec une période de trempe d'environ 30 secondes et un refroidissement à l'air jusqu'à la température ambiante.
  14. Procédé selon la revendication 12, comprenant l'étape consistant à effectuer ledit traitement de recuit ultra-rapide en tant que partie de réchauffement dudit recuit de décarburation.
  15. Procédé selon la revendication 13, comprenant l'étape consistant à soumettre ledit acier au silicium, au calibre final et avant décarburation, à un traitement de recuit ultra-rapide jusqu'à une température supérieure à 675 °C (1 250 °F) à une cadence de chauffage supérieure à 100 °C (180 °F) par seconde.
  16. Procédé selon la revendication 15, comprenant l'étape consistant à effectuer ledit traitement de recuit ultra-rapide en tant que partie de réchauffement dudit recuit de décarburation.
  17. Procédé selon la revendication 1, dans lequel ledit acier au silicium comprend, en pourcentage en poids, moins de 0,05 % de carbone, 0,04 à 0,08 % de manganèse, 0,015 à 0,025 % de soufre et/ou de sélénium et 3,25 à 3,75 % de silicium.
EP91309686A 1991-10-21 1991-10-21 Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés Expired - Lifetime EP0538519B2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1991628624 DE69128624T3 (de) 1991-10-21 1991-10-21 Verfahren zum Herstellen von normal kornorientiertem Stahl mit hohem Silizium- und niedrigem Kohlenstoffgehalt
EP91309686A EP0538519B2 (fr) 1991-10-21 1991-10-21 Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés
CN 91108401 CN1033653C (zh) 1991-10-21 1991-10-29 高硅低碳规则晶粒取向硅钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP91309686A EP0538519B2 (fr) 1991-10-21 1991-10-21 Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés

Publications (3)

Publication Number Publication Date
EP0538519A1 EP0538519A1 (fr) 1993-04-28
EP0538519B1 EP0538519B1 (fr) 1998-01-07
EP0538519B2 true EP0538519B2 (fr) 2001-06-13

Family

ID=8208430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91309686A Expired - Lifetime EP0538519B2 (fr) 1991-10-21 1991-10-21 Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés

Country Status (3)

Country Link
EP (1) EP0538519B2 (fr)
CN (1) CN1033653C (fr)
DE (1) DE69128624T3 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665178A (en) * 1995-02-13 1997-09-09 Kawasaki Steel Corporation Method of manufacturing grain-oriented silicon steel sheet having excellent magnetic characteristics
JP3275712B2 (ja) * 1995-10-06 2002-04-22 日本鋼管株式会社 加工性に優れた高珪素鋼板およびその製造方法
CN100447262C (zh) * 2005-10-31 2008-12-31 宝山钢铁股份有限公司 一种普通取向硅钢的制造方法
DE102005059308A1 (de) * 2005-12-09 2007-06-14 Thyssenkrupp Steel Ag Verfahren zum Wärmebehandeln eines Stahlbands
CN100436631C (zh) * 2006-05-18 2008-11-26 武汉科技大学 一种低碳高锰取向电工钢板及其制造方法
CN100436630C (zh) * 2006-05-18 2008-11-26 武汉科技大学 一种采用薄板坯工艺制造低碳高锰取向电工钢板的方法
CN101748258B (zh) * 2008-12-12 2011-09-28 鞍钢股份有限公司 提高低温go取向硅钢磁性能的生产方法
DE102010012830B4 (de) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
KR101223115B1 (ko) 2010-12-23 2013-01-17 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
CN102330021B (zh) * 2011-09-16 2013-03-27 刘鹏程 低温取向硅钢生产全工艺
CN103725995B (zh) * 2013-12-27 2016-01-20 东北大学 一种取向高硅电工钢的制备方法
CN115449696A (zh) * 2022-08-30 2022-12-09 武汉钢铁有限公司 一种提高低温高磁感取向硅钢磁感强度的生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2550426C2 (fr) 1974-11-18 1987-12-23 Allegheny Ludlum Steel Corp., Pittsburgh, Pa., Us

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855020A (en) * 1973-05-07 1974-12-17 Allegheny Ludlum Ind Inc Processing for high permeability silicon steel comprising copper
US4202711A (en) * 1978-10-18 1980-05-13 Armco, Incl. Process for producing oriented silicon iron from strand cast slabs
JPS5920745B2 (ja) * 1980-08-27 1984-05-15 川崎製鉄株式会社 鉄損の極めて低い一方向性珪素鋼板とその製造方法
US4797167A (en) * 1986-07-03 1989-01-10 Nippon Steel Corporation Method for the production of oriented silicon steel sheet having excellent magnetic properties
US4898626A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2550426C2 (fr) 1974-11-18 1987-12-23 Allegheny Ludlum Steel Corp., Pittsburgh, Pa., Us

Also Published As

Publication number Publication date
EP0538519A1 (fr) 1993-04-28
DE69128624T3 (de) 2002-05-29
CN1071960A (zh) 1993-05-12
DE69128624D1 (de) 1998-02-12
EP0538519B1 (fr) 1998-01-07
DE69128624T2 (de) 1998-04-23
CN1033653C (zh) 1996-12-25

Similar Documents

Publication Publication Date Title
EP0334223B1 (fr) Procédé pour produire des tÔles en acier électrique à grains orientés par un chauffage rapide
KR100441234B1 (ko) 높은체적저항률을갖는결정립방향성전기강및그제조방법
EP0538519B2 (fr) Procédé de fabrication d'acier ordinaire à haute teneur en silicium, à basse teneur en carbone et à grains orientés
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH10259424A (ja) 珪素−クロム粒子方向性珪素鋼の製造方法
US5061326A (en) Method of making high silicon, low carbon regular grain oriented silicon steel
US4319936A (en) Process for production of oriented silicon steel
CN114867872A (zh) 取向电工钢板及其制造方法
EP0124964B1 (fr) Procédé de production d'acier au silicium à grain orienté
EP0537398B2 (fr) Procédé pour la fabrication d'acier au silicium ordinaire à grains orientés sans recuit de la tôle laminée à chaud
RU2041268C1 (ru) Способ получения высококремнистой электротехнической стали
CA2054395C (fr) Methode servant a faire de l'acier au silicium ordinaire, a haute teneur en silicium, a faible teneur en carbone et a grains orientes
JP2693327B2 (ja) 標準高珪素低炭素結晶粒配向珪素鋼の製造方法
KR0169992B1 (ko) 고 규소, 저 융점 탄소, 및 규칙적 입자 배향 규소 강의 제조방법
US4596614A (en) Grain oriented electrical steel and method
RU2038389C1 (ru) Способ производства кремнистой текстурованной стали
JP2653948B2 (ja) 熱鋼帯焼なましなしの標準結晶粒配向珪素鋼の製法
KR100347597B1 (ko) 고자속밀도방향성전기강판의제조방법
KR950014313B1 (ko) 소량의 보론첨가로 입자-방향성 규소강을 제조하는 방법
KR0169318B1 (ko) 고온 밴드 어닐없는 규칙적 입자배향 규소강철의 제조방법
JP2562254B2 (ja) 薄手高磁束密度一方向性電磁鋼板の製造方法
JPS61149432A (ja) 磁束密度が高く鉄損の低い一方向性珪素鋼板の製造方法
WO2023129259A1 (fr) Procédé amélioré de production d'acier électrique à grains orientés à haute perméabilité contenant du chrome
JPH05279742A (ja) 高い磁束密度を有する珪素鋼板の製造方法
KR100270394B1 (ko) 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19931004

17Q First examination report despatched

Effective date: 19951016

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69128624

Country of ref document: DE

Date of ref document: 19980212

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981022

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: EBG GESELLSCHAFT FUER ELEKTROMAGNETISCHE WERKSTOFF

Effective date: 19981006

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

EUG Se: european patent has lapsed

Ref document number: 91309686.3

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20010613

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT SE

ET3 Fr: translation filed ** decision concerning opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101105

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101027

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101028

Year of fee payment: 20

Ref country code: GB

Payment date: 20101025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69128624

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69128624

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111022