EP0529379B1 - Rotor assembly for turbomachines - Google Patents

Rotor assembly for turbomachines Download PDF

Info

Publication number
EP0529379B1
EP0529379B1 EP92113544A EP92113544A EP0529379B1 EP 0529379 B1 EP0529379 B1 EP 0529379B1 EP 92113544 A EP92113544 A EP 92113544A EP 92113544 A EP92113544 A EP 92113544A EP 0529379 B1 EP0529379 B1 EP 0529379B1
Authority
EP
European Patent Office
Prior art keywords
joining means
fluid flow
threads
flow machine
rotor parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92113544A
Other languages
German (de)
French (fr)
Other versions
EP0529379A1 (en
Inventor
Jörg Urban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP0529379A1 publication Critical patent/EP0529379A1/en
Application granted granted Critical
Publication of EP0529379B1 publication Critical patent/EP0529379B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/063Multi-stage pumps of the vertically split casing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps

Definitions

  • the invention relates to a turbomachine according to the preamble of the protection claim.
  • the connecting screw rings can be designed as a separate component or as an integral part of the rotor part. Of at least two existing thread sections, only one thread section takes over the power transmission, while the other thread section only performs a securing function due to its large play. If the rotor parts are deflected too much, their movement is limited by the flanks of the securing thread. The torque is transmitted through the frictional forces between the centering ring and the rotor parts as well as through the friction in the connecting thread. Despite the high manufacturing costs of this solution, the prestressing forces of the respective connection can only be set very imprecisely due to the frictional forces on the centering ring.
  • the resiliently designed screw rings are designed to compensate for temperature influences on the rotor. This The design principle of only transmitting the torque between the rotor parts to be connected by friction forces makes this solution seem unsuitable in the long term. Machine revisions with disassembly and subsequent assembly of the rotor parts negatively affect the quality of the connection.
  • the object of the invention is to develop a shaftless design of a rotor which can be easily adapted to different operating conditions for multi-stage and highly loaded turbomachines. This object is achieved in accordance with the characterizing part of the main claim. Further configurations of the solution can be found in the subclaims.
  • the advantages of this design are diverse.
  • the centering and form-fitting connection between the impeller parts lying against each other on the front side takes over the torque transmission and centering of the rotor.
  • one impeller part is centered on the adjacent impeller part in a force-transmitting manner.
  • This connection can be made precisely as a toothing or corresponding design with little effort.
  • the joining means that press the impeller parts against each other enable reliable pressing of the parts to be assembled together due to their different threaded sections.
  • the joining means can have a section of smaller diameter and / or wall thickness, which enables a better adjustability of the prestressing forces.
  • the desired bias can be set in the simplest manner for each connection.
  • the threaded sections are arranged so that the direction of rotation of the machine can not loosen the dressing. Additional anti-rotation devices of known design can be used if necessary.
  • the main advantage of this connection is the distribution of the forces to be transmitted.
  • the torque to be transmitted is absorbed exclusively by the positive connection between the hubs of the rotor parts to be connected.
  • the axial forces take over the joining means extending in the same direction.
  • the joining means have in their interior or on their end faces a positive design, which makes it possible to carry out the screwing with the aid of a correspondingly shaped and insertable tool.
  • the fittings are hollow. As a result, part of the conveying means can flow through the shaft assembly in the axial direction and the temperature differences in the area of the joints can thus be reduced.
  • Drive shaft journals or shaft bearing journals can be stored as assemblies with the respective bearing or sealing units so that, if necessary, they can be assembled with the corresponding impeller parts to form a uniform rotor. Any necessary relief water from an axle thrust relief device can also be returned to the side with less pressure by the rotor. External bypass lines are no longer required. At the same time, there is the advantage of rapid and uniform heating or cooling of the entire turbomachine unit.
  • a shaft stub (2) protrudes into the inlet area (1) thereof, which, with a centering and form-fitting design (3) designed as spur toothing, bears against a correspondingly designed spur toothing of a first impeller (4).
  • the first impeller (4) also has a positive-locking design (3) on its back on the pressure side, in which a correspondingly toothed hub of a second impeller (5) engages.
  • the separation point between the impellers (4, 5) lies in the area of the transition from the first to the second stage.
  • the impeller (6) of a fifth stage is shown here at the start of installation.
  • a joining means (7) which is equipped with a contour (8) designed as an internal hexagon, can be set in rotation by a suitably designed tool (9). Any other force-transmitting form of the tool (9) with a correspondingly designed configuration of the joining means is also conceivable.
  • the joining means (7) is inserted at the end of an already installed impeller or a shaft journal and its thread (10) is brought into contact with the thread (11) of the impeller (12) already assembled here.
  • the impeller to be assembled, here (6) is brought into contact with its inner thread (13) on the second thread (14) of the joining means (7).
  • the wheel parts to be connected are held and pulled against each other by a rotational movement of the joining means (7) and clamped together. For example, if the threads (10, 11) are left-hand threads, then the threads (13, 14) are right-hand threads.
  • the reverse arrangement can also be used. This depends on the direction of rotation of the shaft assembly and the load on it.
  • the respective direction of thread rotation is selected so that the most dangerous direction of load rotation has a contracting effect on the threaded connections.
  • the wall thickness of the joining agent and the thread formation are designed in accordance with the axial forces prevailing in the turbomachine.
  • the thread pitch can be the same or different. If, on the other hand, threads with coarse thread sections are to be used for the parts to be connected, then for example the threads (10, 11) must have a smaller diameter and the pitch of the threads (10, 11) must differ from the pitch of the threads (13, 14) his. As a result of the smaller diameters, the joining means can be pushed through the hubs and connected to the adjacent parts. The thread length must be adjusted accordingly.
  • the first three joining means (7) shown in the drawing connect the impeller (4) to the shaft journal (2) and the impellers of the first three stages to one another and have additional sealing elements (15) as examples. These are designed as O-rings and lie sealingly on the inside of the hub. They have the task of sealing the respective stage pressure. Their use may depend on the operating conditions and the requirements placed on the turbomachine.
  • FIG. 2 shows a completely assembled three-stage flow machine in the form of a centrifugal pump.
  • a total of four identical joining means (7) connect three impellers (4, 5, 12) to one another and to a shaft journal (2), which serves here as a drive shaft journal.
  • a smaller joining means (16) which has no throughflow opening, connects in the same way a bearing journal (17) with a relief piston (18) screwed onto the last impeller (12).
  • the bearing journal (17) is drilled through and closed with a stopper (19).
  • the relief water passing the relief piston (18) flows through bores (20, 21) and through the hollow-shaped joining means (7) back to the inlet area (1).
  • toothing as a centering and force-transmitting element and the arrangement of the different threads in the hub areas of the impellers results in a very vibration-resistant rotor that can be used for high loads.
  • a section (22) of lesser wall thickness is present between the threads of the joining means (7). In contrast to the graphical representation chosen here, this can also be arranged in the area of the outer diameter of the joining means (7). This facilitates a more precise setting of the preload forces.

Description

Die Erfindung betrifft eine Strömungsmaschine gemäß dem Oberbegriff des Schutzanspruches.The invention relates to a turbomachine according to the preamble of the protection claim.

Durch die US-A-2 619 317 ist ein derartiger Rotor für Strömungsmaschinen bekannt, wobei auf einem Rezeß geführte Laufräder mit Hilfe von Schraubringen zusammengefügt sind. Infolge von Temperatureinflüssen können im Bereich der Verbindungsstellen plastische Verformungen auftreten, wodurch ein Lösen der Verbindung möglich wird. Die seinerzeitige Verbesserung sah die zusätzliche Verwendung von Zentrierringen vor, die dichtend zwischen den miteinander zu verschraubenden Laufrädern anzuordnen sind.Such a rotor for turbomachines is known from US-A-2 619 317, wherein impellers guided on a recess are joined together with the aid of screw rings. As a result of temperature influences, plastic deformations can occur in the area of the connection points, which enables the connection to be released. The improvement at the time provided for the additional use of centering rings, which are to be arranged sealingly between the impellers to be screwed together.

Die verbindenden Schraubringe können als separates Bauelement oder als integraler Bestandteil des Rotorteiles ausgebildet sein. Von mindestens zwei vorhandenen Gewindeabschnitten, übernimmt nur ein Gewindeabschnitt die Kräfteübertragung, während der andere Gewindeabschnitt durch sein großes Spiel nur eine Sicherungsfunktion ausübt. Bei einer zu großen Auslenkung der Rotorteile wird deren Bewegung durch Anlage der Flanken des Sicherungsgewindes begrenzt. Das Drehmoment wird durch die Reibungskräfte zwischen dem Zentrierring und den Rotorteilen sowie über die Reibung im verbindenden Gewinde übertragen. Trotz des hohen Fertigungsaufwandes dieser Lösung sind die Vorspannkräfte der jeweiligen Verbindung aufgrund der Reibungskräfte am Zentrierring nur sehr ungenau einstellbar. Die elastisch nachgiebig gestalteten Schraubringe sollen auf den Rotor einwirkende Temperatureinflüsse ausgleichen. Dieses Konstruktionsprinzip, das Drehmoment nur durch Reibungskräfte zwischen den zu verbindenden Rotorteilen zu übertragen, läßt diese Lösung langfristig ungeeignet erscheinen. Maschinenrevisionen mit einer Demontage und anschließender Montage der Rotorteile beeinflussen die Qualität der Verbindung negativ.The connecting screw rings can be designed as a separate component or as an integral part of the rotor part. Of at least two existing thread sections, only one thread section takes over the power transmission, while the other thread section only performs a securing function due to its large play. If the rotor parts are deflected too much, their movement is limited by the flanks of the securing thread. The torque is transmitted through the frictional forces between the centering ring and the rotor parts as well as through the friction in the connecting thread. Despite the high manufacturing costs of this solution, the prestressing forces of the respective connection can only be set very imprecisely due to the frictional forces on the centering ring. The resiliently designed screw rings are designed to compensate for temperature influences on the rotor. This The design principle of only transmitting the torque between the rotor parts to be connected by friction forces makes this solution seem unsuitable in the long term. Machine revisions with disassembly and subsequent assembly of the rotor parts negatively affect the quality of the connection.

Einfachere Verbindungsmöglichkeiten mittels Steckverbindungen sind durch die DE-A-23 12 342 sowie die US-A-3 269 323, US-A-3 269 324 und US-A-1 551 402 bekannt. Diese Konstruktionen sind nur verwendbar für geringe Belastungen, d.h. geringe Umfangsgeschwindigkeiten und kleine Drehmomente.Simpler connection options by means of plug connections are known from DE-A-23 12 342 and US-A-3 269 323, US-A-3 269 324 and US-A-1 551 402. These constructions can only be used for low loads, i.e. low peripheral speeds and small torques.

Der Erfindung liegt die Aufgabe zugrunde, für mehrstufige und hochbelastete Strömungsmaschinen einen an verschiedene Einsatzbedingungen einfach anpaßbaren Rotor in wellenloser Ausführung zu entwickeln. Die Lösung dieser Aufgabe erfolgt gemäß dem kennzeichnenden Teil des Hauptanspruches. Weitere Ausgestaltungen der Lösung finden sich in den Unteransprüchen.The object of the invention is to develop a shaftless design of a rotor which can be easily adapted to different operating conditions for multi-stage and highly loaded turbomachines. This object is achieved in accordance with the characterizing part of the main claim. Further configurations of the solution can be found in the subclaims.

Die Vorteile dieser Bauart sind vielfältiger Natur. Die zentrierende und formschlüssige Verbindung zwischen den stirnseitig aneinanderliegenden Laufradteilen übernimmt stirnseitig die Drehmomentübertragung und Zentrierung des Rotors. Hierbei liegt in einer Ebene das eine Laufradteil an dem angrenzenden Laufradteil kräfteübertragend zentrierend an. Diese Verbindung ist mit wenig Aufwand als Verzahnung oder entsprechende Gestaltung präzise herzustellen. Die die Laufradteile gegeneinander pressenden Fügemittel ermöglichen durch ihre unterschiedlichen Gewindeabschnitte ein zuverlässiges Aneinanderpressen der miteinander zu montierenden Teile. Das Fügemittel kann einen Abschnitt geringeren Durchmessers und/oder Wandstärke aufweisen, wodurch eine bessere Einstellbarkeit der Vorspannkräfte ermöglicht wird. Desgleichen kann für jede Verbindung die jeweils gewünschte Vorspannung in einfachster Weise eingestellt werden. In Abhängigkeit von der später Anwendung findenden Drehrichtung des Rotors sind die Gewindeabschnitte so angeordnet, daß die Drehrichtung der Maschine den Verband nicht lösen kann. Zusätzliche Verdrehsicherungen bekannter Bauart sind im Bedarfsfall verwendbar.The advantages of this design are diverse. The centering and form-fitting connection between the impeller parts lying against each other on the front side takes over the torque transmission and centering of the rotor. In this case, one impeller part is centered on the adjacent impeller part in a force-transmitting manner. This connection can be made precisely as a toothing or corresponding design with little effort. The joining means that press the impeller parts against each other enable reliable pressing of the parts to be assembled together due to their different threaded sections. The joining means can have a section of smaller diameter and / or wall thickness, which enables a better adjustability of the prestressing forces. Likewise, the desired bias can be set in the simplest manner for each connection. Depending on the later application The direction of rotation of the rotor, the threaded sections are arranged so that the direction of rotation of the machine can not loosen the dressing. Additional anti-rotation devices of known design can be used if necessary.

Der wesentliche Vorteil dieser Verbindung besteht in der Aufteilung der zu übertragenden Kräfte. Das zu übertragende Drehmoment wird ausschließlich durch die stirnseitige formschlüssige Verbindung zwischen den Naben der zu verbindenden Rotorteile aufgenommen. Die Axialkräfte übernehmen die sich in gleicher Richtung erstreckenden Fügemittel. Die Fügemittel weisen in ihrem Inneren oder an ihren Stirnseiten eine formschlüssige Gestaltung auf, welche es ermöglicht, mit Hilfe eines entsprechend geformten und einführbaren Werkzeuges die Verschraubung vorzunehmen. Um den Einfluß von Temperaturdifferenzen auf die Verbindung gering zu halten, sind die Formstücke hohl ausgebildet. Dadurch kann der Wellenverband in axialer Richtung von einem Teil des Fördermittels durchströmt werden und die Temperaturdifferenzen im Bereich der Fügestellen lassen sich somit reduzieren. Weiterhin besteht der Vorteil, daß keine pumpenstufenabhängige Lagerhaltung von Antriebswellen mehr erforderlich ist. Antriebswellenzapfen bzw. Wellenlagerzapfen können mit den jeweiligen Lager- oder Dichtungseinheiten als Baugruppen bevorratet werden, um im Bedarfsfall mit den entsprechenden Laufradteilen zu einem einheitlichen Rotor zusammengesetzt zu werden. Ein eventuell notwendiges Entlastungswasser einer Achsschubentlastungseinrichtung kann ebenfalls durch den Rotor zur Seite mit geringerem Druck zurückgeführt werden. Außenliegende Umführungsleitungen sind nicht mehr erforderlich. Gleichzeitig ergibt sich hierbei der Vorteil einer schnellen und gleichmäßigen Erwärmung bzw. Abkühlung des gesamten Strömungsmaschinenaggregates.The main advantage of this connection is the distribution of the forces to be transmitted. The torque to be transmitted is absorbed exclusively by the positive connection between the hubs of the rotor parts to be connected. The axial forces take over the joining means extending in the same direction. The joining means have in their interior or on their end faces a positive design, which makes it possible to carry out the screwing with the aid of a correspondingly shaped and insertable tool. In order to keep the influence of temperature differences on the connection low, the fittings are hollow. As a result, part of the conveying means can flow through the shaft assembly in the axial direction and the temperature differences in the area of the joints can thus be reduced. There is also the advantage that it is no longer necessary to store drive shafts depending on the pump stage. Drive shaft journals or shaft bearing journals can be stored as assemblies with the respective bearing or sealing units so that, if necessary, they can be assembled with the corresponding impeller parts to form a uniform rotor. Any necessary relief water from an axle thrust relief device can also be returned to the side with less pressure by the rotor. External bypass lines are no longer required. At the same time, there is the advantage of rapid and uniform heating or cooling of the entire turbomachine unit.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen die

Fig. 1
einen Montageabschnitt beim Zusammenbau einer mehrstufigen Strömungsmaschine und die
Fig. 2
eine vollständig montierte Strömungsmaschine.
Embodiments of the invention are shown in the drawings and are described in more detail below. They show
Fig. 1
an assembly section when assembling a multi-stage fluid machine and the
Fig. 2
a fully assembled turbomachine.

Die Fig. 1 zeigt am Beispiel einer mehrstufigen Kreiselpumpe den Montagevorgang eines wellenlosen Rotors. In deren Einlaufbereich (1) ragt ein Wellenstumpf (2) hinein, der mit einer als Stirnverzahnung ausgebildeten zentrierenden und formschlüssigen Gestaltung (3) an einer entsprechend ausgebildeten Stirnverzahnung eines ersten Laufrades (4) anliegt. Die Habe des ersten Laufrades (4) weist auf ihrer druckseitigen Rückseite ebenfalls eine formschlüssige Gestaltung (3) auf, in die eine entsprechend verzahnte Nabe eines zweiten Laufrades (5) eingreift. Die Trennstelle zwischen den Laufrädern (4, 5) liegt hier im Bereich des Überganges von der ersten zur zweiten Stufe. Das Laufrad (6) einer fünften Stufe ist hier am Montagebeginn gezeigt. Ein Fügemittel (7), welches mit einer als Innensechskant ausgebildeten Kontur (8) ausgestattet ist, kann durch ein entsprechend gestaltetes Werkzeug (9) in Drehbewegung versetzt werden. Es ist auch jede andere kräfteübertragende Form des Werkzeuges (9) mit einer entsprechend ausgebildeten Gestaltung des Fügemittels denkbar.1 shows the assembly process of a shaftless rotor using the example of a multi-stage centrifugal pump. A shaft stub (2) protrudes into the inlet area (1) thereof, which, with a centering and form-fitting design (3) designed as spur toothing, bears against a correspondingly designed spur toothing of a first impeller (4). The first impeller (4) also has a positive-locking design (3) on its back on the pressure side, in which a correspondingly toothed hub of a second impeller (5) engages. The separation point between the impellers (4, 5) lies in the area of the transition from the first to the second stage. The impeller (6) of a fifth stage is shown here at the start of installation. A joining means (7), which is equipped with a contour (8) designed as an internal hexagon, can be set in rotation by a suitably designed tool (9). Any other force-transmitting form of the tool (9) with a correspondingly designed configuration of the joining means is also conceivable.

Für die Montage wird das Fügemittel (7) stirnseitig in ein bereits montiertes Laufrad bzw. einem Wellenzapfen eingeführt und mit seinem Gewinde (10) am Gewinde (11) des hier bereits montierten Laufrades (12) zur Anlage gebracht. Desgleichen wird das zu montierende Laufrad, hier (6), mit seinem inneren Gewinde (13) am zweiten Gewinde (14) des Fügemittels (7) zur Anlage gebracht. Die miteinander zu verbindenden Laufradteile werden festgehalten und durch eine Rotationsbewegung des Fügemittels (7) gegeneinander gezogen und miteinander verspannt. Wenn zum Beispiel die Gewinde (10, 11) als Linksgewinde ausgebildet sind, dann sind die Gewinde (13, 14) als Rechtsgewinde ausgebildet. Es kann aber auch die umgekehrte Anordnung Verwendung finden. Dies ist abhängig von der jeweiligen Drehrichtung des Wellenverbandes sowie der Belastung desselben. Die jeweilige Gewindedrehrichtung wird so gewählt, daß die gefährdetste Belastungsdrehrichtung auf die Gewindeverbindungen zusammenziehend einwirkt. Entsprechend den in der Strömungsmaschine vorherrschenden Axialkräften wird die Wandstärke des Fügemittels sowie die Gewindeausbildung gestaltet. Infolge der hier Anwendung findenden gegenläufigen Gewindeabschnitte kann in einfachster Weise eine zuverlässige und schnelle Montage bzw. Demontage erfolgen.For assembly, the joining means (7) is inserted at the end of an already installed impeller or a shaft journal and its thread (10) is brought into contact with the thread (11) of the impeller (12) already assembled here. Likewise, the impeller to be assembled, here (6), is brought into contact with its inner thread (13) on the second thread (14) of the joining means (7). The wheel parts to be connected are held and pulled against each other by a rotational movement of the joining means (7) and clamped together. For example, if the threads (10, 11) are left-hand threads, then the threads (13, 14) are right-hand threads. However, the reverse arrangement can also be used. This depends on the direction of rotation of the shaft assembly and the load on it. The respective direction of thread rotation is selected so that the most dangerous direction of load rotation has a contracting effect on the threaded connections. The wall thickness of the joining agent and the thread formation are designed in accordance with the axial forces prevailing in the turbomachine. As a result of the opposing threaded sections used here, reliable and quick assembly and disassembly can be carried out in the simplest way.

Bei Verwendung von gegenläufigen Gewinden können die Gewindesteigung gleich oder unterschiedlich sein. Sollen dagegen für die zu verbindenden Teile Gewinde mit gleichläufigen Gewindeabschnitten Verwendung finden, dann müssen beispielsweise die Gewinde (10, 11) einen kleineren Durchmesser aufweisen und die Steigung der Gewinde (10, 11) muß zu der Steigung der Gewinde (13, 14) unterschiedlich sein. Infolge der kleineren Durchmesser können die Fügemittel durch die Naben hindurchgesteckt und mit den benachbarten Teilen verbunden werden. Die Gewindelänge muß entsprechend angepaßt werden.When using opposing threads, the thread pitch can be the same or different. If, on the other hand, threads with coarse thread sections are to be used for the parts to be connected, then for example the threads (10, 11) must have a smaller diameter and the pitch of the threads (10, 11) must differ from the pitch of the threads (13, 14) his. As a result of the smaller diameters, the joining means can be pushed through the hubs and connected to the adjacent parts. The thread length must be adjusted accordingly.

Die in der Zeichnung dargestellten ersten drei Fügemittel (7) verbinden das Laufrad (4) mit dem Wellenzapfen (2) sowie die Laufräder der ersten drei Stufen untereinander und weisen beispielhaft zusätzliche Dichtelemente (15) auf. Diese sind hier als O-Ringe ausgebildet und liegen dichtend an der Nabeninnenseite an. Sie haben die Aufgabe, den jeweiligen Stufendruck abzudichten. Ihre Verwendung kann abhängig sein von den Betriebsbedingungen und den Anforderungen, die an die Strömungsmaschine gestellt werden.The first three joining means (7) shown in the drawing connect the impeller (4) to the shaft journal (2) and the impellers of the first three stages to one another and have additional sealing elements (15) as examples. These are designed as O-rings and lie sealingly on the inside of the hub. They have the task of sealing the respective stage pressure. Their use may depend on the operating conditions and the requirements placed on the turbomachine.

In der Fig. 2 ist eine komplett montierte dreistufige Strömungsmaschine in Form einer Kreiselpumpe gezeigt. Insgesamt vier gleiche Fügemittel (7) verbinden drei Laufrädern (4, 5, 12) untereinander und mit einem Wellenzapfen (2), welcher hier als Antriebswellenzapfen dient. Ein kleineres, keine Durchströmöffnung aufweisendes Fügemittel (16), verbindet in gleicher Weise einen Lagerzapfen (17) mit einem am letzten Laufrad (12) angeschraubten Entlastungskolben (18). Für Montagezwecke ist der Lagerzapfen (17) durchbohrt und mit einem Stopfen (19) verschlossen. Das den Entlastungskolben (18) passierende Entlastungswasser strömt durch Bohrungen (20, 21) und durch die hohl ausgebildeten Fügemittel (7) zurück zum Einlaufbereich (1). Durch die Ausbildung der Verzahnung als zentrierendes und kräfteübertragendes Element sowie durch die Anordnung der unterschiedlichen Gewinde in den Nabenbereichen der Laufräder ergibt sich ein sehr schwingungssteifer, für hohe Belastungen verwendbarer Rotor. Zwischen den Gewinden der Fügemittel (7) ist ein Abschnitt (22) geringerer Wandstärke vorhanden. Dieser kann auch, im Gegensatz zur hier gewählten zeichnerischen Darstellung, im Bereich des Außendurchmessers des Fügemittels (7) angeordnet sein. Damit wird eine genauere Einstellung der Vorspannkräfte erleichtert.2 shows a completely assembled three-stage flow machine in the form of a centrifugal pump. A total of four identical joining means (7) connect three impellers (4, 5, 12) to one another and to a shaft journal (2), which serves here as a drive shaft journal. A smaller joining means (16), which has no throughflow opening, connects in the same way a bearing journal (17) with a relief piston (18) screwed onto the last impeller (12). For assembly purposes, the bearing journal (17) is drilled through and closed with a stopper (19). The relief water passing the relief piston (18) flows through bores (20, 21) and through the hollow-shaped joining means (7) back to the inlet area (1). The design of the toothing as a centering and force-transmitting element and the arrangement of the different threads in the hub areas of the impellers results in a very vibration-resistant rotor that can be used for high loads. A section (22) of lesser wall thickness is present between the threads of the joining means (7). In contrast to the graphical representation chosen here, this can also be arranged in the area of the outer diameter of the joining means (7). This facilitates a more precise setting of the preload forces.

Claims (12)

  1. A multistage fluid flow machine, whose impellers and stub shafts to be connected with same are assembled as a shaftless rotor by internal joining means provided with a thread, characterized in that rotor parts (2, 4, 5, 12, 17 and 18) engaged with each other at their ends are adapted to be coupled using a centering and interlocking form (3) for the transmission of torque, in that the rotor parts (2, 4, 5, 12, 17 and 18) are adapted to be clamped together by joining means (7) adjacent to the hub part and having different threads (10 and 14), such threads (10 and 14) of the joining means (7) fitting into correspondingly differently designed threads (11 and 13) of the rotor parts.
  2. The fluid flow machine as claimed in claim 1, characterized in that the joining means (7) are provided with sealing elements (15) in engagement in the hub part of the rotor parts (2, 4 and 5).
  3. The fluid flow machine as claimed in claim 1 and in claim 2, characterized in that the joining means (7) are provided with a contur (8) adapted for force transmission for a tool (9) able to be connected therewith.
  4. The fluid flow machine as claimed in any one of the claims 1 through 3, characterized in that the threads (10 and 14) of the joining means (7) and the threads (11 and 13) of the rotor parts are of opposite hand.
  5. The fluid flow machine as claimed in claim 4, characterized in that the thread pitches are different.
  6. The fluid flow machine as claimed in any one of the claims 1 through 3, characterized in that the threads (10 and 14) of the joining means (7) and the threads (11 and 13) of the rotor parts are of the same hand and have different pitches.
  7. The fluid flow machine as claimed in claim 3, characterized in that the threads cooperating together have a diameter rendering possible the insertion of the joining means (7)
  8. The fluid flow machine as claimed in any one or more of the claims 1 through 7, characterized in that between the threads (10 and 14) of the joining means (7) a section (22) with a small wall thickness is arranged.
  9. The fluid flow machine as claimed in any one or more of the claims 1 through 8, characterized in that the centering and interlocking form (3) of the rotor parts is in the form of teeth.
  10. The fluid flow machine as claimed in any one or more of the claims 1 through 9, characterized in that the joining means (7) and/or the rotor parts (2 and 17) are provided with passages (20 and 21) for flow therethrough.
  11. The fluid flow machine as claimed in claim 10, characterized in that the rotor parts in the form of stub shafts (2 and 17) are completely or partially hollow.
  12. The fluid flow machine as claimed in claim 10, characterized in that the rotor parts in the form of stub shafts (2 and 17) are able to be connected with a closed joining means (16).
EP92113544A 1991-08-29 1992-08-08 Rotor assembly for turbomachines Expired - Lifetime EP0529379B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4128673 1991-08-29
DE4128673A DE4128673C1 (en) 1991-08-29 1991-08-29

Publications (2)

Publication Number Publication Date
EP0529379A1 EP0529379A1 (en) 1993-03-03
EP0529379B1 true EP0529379B1 (en) 1995-05-17

Family

ID=6439393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92113544A Expired - Lifetime EP0529379B1 (en) 1991-08-29 1992-08-08 Rotor assembly for turbomachines

Country Status (3)

Country Link
EP (1) EP0529379B1 (en)
DE (2) DE4128673C1 (en)
ES (1) ES2073825T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828531B2 (en) 2004-02-13 2010-11-09 Ksb Aktiengesellschaft Vertical centrifugal pump assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI940630A (en) * 1994-02-11 1995-08-12 Ahlstroem Oy centrifugal
DE10248162A1 (en) * 2002-10-16 2004-04-29 Ksb Aktiengesellschaft Element defining a gap to be placed on a shaft
ITCO20130071A1 (en) * 2013-12-18 2015-06-19 Nuovo Pignone Srl METHOD TO ASSEMBLE A SET OF IMPELLERS THROUGH TIE RODS, IMPELLER AND TURBOMACHINE
ITUB20160070A1 (en) * 2016-01-18 2017-07-18 Nuovo Pignone Tecnologie Srl ROTATING MACHINE WITH IMPROVED ROTARY SHAFT WITH THOSE OF TREE READ
CN109630206A (en) * 2018-12-16 2019-04-16 中国航发沈阳发动机研究所 A kind of multistage disk rotors structure
DE202021101195U1 (en) 2021-03-10 2021-05-27 3W Turbo Gmbh Gas-bearing micro-turbo machine
DE102021105732A1 (en) 2021-03-10 2022-09-15 3W Turbo Gmbh Gas-bearing micro-turbo machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1551402A (en) * 1925-08-25 Botob fob elastic-pi
US2422763A (en) * 1944-03-02 1947-06-24 Worthington Pump & Mach Corp Centrifugal compressor
FR937533A (en) * 1946-11-26 1948-08-19 Cem Comp Electro Mec Axial compressor rotor
CH257836A (en) * 1947-08-07 1948-10-31 Sulzer Ag Rotors for centrifugal machines, in particular for gas turbines.
US3269323A (en) * 1964-12-30 1966-08-30 Tait Mfg Co The Pumps
US3269324A (en) * 1964-12-30 1966-08-30 Tait Mfg Co The Pumps
DE1801398A1 (en) * 1968-10-02 1970-10-01 Aeg Kanis Turbinen Runner of an axial flow machine
DD95762A1 (en) * 1972-03-16 1973-02-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828531B2 (en) 2004-02-13 2010-11-09 Ksb Aktiengesellschaft Vertical centrifugal pump assembly

Also Published As

Publication number Publication date
DE4128673C1 (en) 1992-08-06
EP0529379A1 (en) 1993-03-03
DE59202214D1 (en) 1995-06-22
ES2073825T3 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
DE2944756A1 (en) CLAMPING DEVICE FOR THE NUTLESS ARRANGEMENT OF A HUB ON A SHAFT
EP0021223B1 (en) Gearing with axial thrust compensation
WO2009036915A1 (en) Rotor mounting
DE2106208C3 (en)
DE102013224191A1 (en) Shaft-hub joint connection and method of making the same
EP0499163B1 (en) Transmission component with splines
DE2832917A1 (en) CONNECTING ARRANGEMENT
DE2755131C2 (en) Coupling for rigidly connecting two coaxial machine parts suitable for transmitting torque
EP0529379B1 (en) Rotor assembly for turbomachines
DE102004008538B4 (en) Differential with a bolt mounting assembly
DE4302726C2 (en) Toothed shaft connection and method for producing a toothed shaft connection
DE19624083B4 (en) transmission
DE102018129339A1 (en) Device for the rotationally fixed connection of a toothed part to a shaft, method of producing such a device and angular gear
WO2015172968A1 (en) Device for securing a tension element against unintentional release
EP0156010B1 (en) Construction element of polymeric material
DE2649130B2 (en) GEAR PUMP
EP3405692A1 (en) Gear shaft, component pairing and method for operating a gear shaft
DE2830198C3 (en) Splined shaft hub connection
WO2017054927A2 (en) Tensioning unit for rolling bearings on axles and shafts
WO1990008272A1 (en) Torsion-proof flanged connection
DE4308975C2 (en) Shaft-hub connection
DE2751540B2 (en) Clamping connection
EP1318313A1 (en) Connection device
DE3538060C2 (en)
DE2720878C3 (en) Coupling for connecting two machine elements suitable for transmitting torque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19930722

17Q First examination report despatched

Effective date: 19941028

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950517

Ref country code: DK

Effective date: 19950517

REF Corresponds to:

Ref document number: 59202214

Country of ref document: DE

Date of ref document: 19950622

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2073825

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000720

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000811

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000818

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000921

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050808