EP0525325B1 - Process for preparing dense sintered articles - Google Patents

Process for preparing dense sintered articles Download PDF

Info

Publication number
EP0525325B1
EP0525325B1 EP92108827A EP92108827A EP0525325B1 EP 0525325 B1 EP0525325 B1 EP 0525325B1 EP 92108827 A EP92108827 A EP 92108827A EP 92108827 A EP92108827 A EP 92108827A EP 0525325 B1 EP0525325 B1 EP 0525325B1
Authority
EP
European Patent Office
Prior art keywords
binder
mould
green body
process according
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92108827A
Other languages
German (de)
French (fr)
Other versions
EP0525325A1 (en
Inventor
Arie Dr. Ruder
Hans Peter Dr. Buchkremer
Rudolf Prof. Hecker
Detlev Dr. Stöver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0525325A1 publication Critical patent/EP0525325A1/en
Application granted granted Critical
Publication of EP0525325B1 publication Critical patent/EP0525325B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing porous or dense sintered workpieces from metal, a metal alloy or from ceramic materials, in which a green body is first formed from a mixture of the metal present as a powder, the metal alloy or the ceramic material and a binder debindered, sintered and the sintered body is compressed, if necessary, by hot isostatic pressing (HIP process).
  • HIP process hot isostatic pressing
  • a viscous mixture of powder and binder has previously been produced, and this mixture has been pressed into the predetermined shape under a pressure of a few hundred bars. Quite apart from the fact that in this procedure narrow cavities of the form to be filled can be inaccessible to the viscous mass, it also shows that during the subsequent binder removal or sintering process to which the viscous mass filled under pressure is subjected to the binder does not completely escape from the mass or the green body, so that undesired residues can remain in the workpiece.
  • the green body is removed from the mold after drying and is thus ready for further processing.
  • the casting compound is expediently produced in a separate vessel, after which it is poured into the mold through a sprue or a funnel.
  • Adequate filling of the form is achieved by gravitation and can be accompanied by targeted vibration of the form. External vibrations and / or rotations of the shape by hand or mechanically are useful for this.
  • the solvent can be removed from the mass filled into the mold under normal pressure and at room temperature. However, this drying process can also take place at elevated temperature and / or under a slight negative pressure or can be accelerated thereby.
  • the filling can be built up in several steps using different materials.
  • a procedure which is expedient for this is that mixtures formed from different materials are poured into the mold one after the other, so that the poured-in mass and thus also the green body formed thereafter consists of layers of different composition arranged one above the other.
  • a second is poured onto the first. This process is complete Filling of the mold continued, so that a layer system green body composed of different materials with a graduated structure, for example with regard to material, porosity, grain / particle size distribution, arises.
  • Another variant of the method is that the mixture is poured in via / or around a green body previously introduced into the mold or an already finished workpiece.
  • an inner or outer coating (s) or covering of a solid part that has already been produced can be produced, the casting compound being poured into the cavities and the surface to be coated after being introduced into a suitable mold.
  • the casting compound can also be applied with a brush or sprayed on and then further processed with good success.
  • Composite materials or graded materials can be produced by introducing the insert component into the premix or by introducing them into the mold before casting.
  • the general rule is that the proportion of the binder in the mixture should be such that it is sufficient to solidify the mass to form a manageable green body.
  • the amount of binder required for this can easily be determined by means of a few preliminary tests; it is in the range between 2 and 5% by volume.
  • green bodies with a binder content of 0.02 (2.00% by volume) with particle sizes of approx. 20 ⁇ m have considerable strength. However, when using larger particles with the same binder content, the strength is still sufficient to ensure safe handling of the green bodies.
  • the binder content can be varied by controlled addition or evaporation of the liquid, volatile solvent component (carrier). In practice, the maximum volume fraction is limited by the solubility limit of the binder in the solvent or by the relative natural porosity, which is approximately 26% for ideally packed spherical particles.
  • the binder condenses as a thin film on the powder particles during the removal (evaporation) of the solvent (carrier) and a rapid, continuous removal of the solvent (carrier) through the free particle spaces takes place.
  • the final strength of the green body is achieved after the solvent has been completely removed (Carrier) and after the binder has solidified at room temperature (possibly also at elevated temperature) as a solid network with connecting bridges between adjacent powder particles.
  • the green body After the green body has been formed, it is subjected to a thermally activated debinding and sintering treatment.
  • the green body is heated to remove the binder.
  • This debinding process is not limited to a specific time-temperature program (profiles, sequences, cycles), although some sub-steps are required to enable complete binder removal.
  • a typical procedure is for the green body to be heated to a temperature in the range from 280 to 420 ° C. at a rate of 3-10 ° C./min and, depending on the size of the body, to be kept at this temperature until the binder is removed.
  • the body is then heated to sintering temperature up to a rate of> 10 ° C / min.
  • High temperatures promote the rapid splitting of the binder into a vapor that sublimes outside the green body either in the atmosphere or pumped out by a vacuum system. The splitting and removal takes until the binder has burned out.
  • Materials such as superalloys, stainless steel, titanium alloys and aluminum alloys, iron materials, ceramic powders such as zirconium oxide, chromium oxide, lathane oxide, perovskite, aluminum oxide and silicon oxide can be used as the material for the workpieces to be produced be provided.
  • Wax, shellac, PMMA and alcohol, trichlorethylene, toluene (toluene) are mentioned as binders.
  • the sintering of the green bodies produced by the process according to the invention was carried out using specific, known schemes for each material. Density measurements showed that the sinterability of the materials is not affected by the process itself.
  • the end product can be sintered to a closed porosity. The sintered parts with closed porosity can therefore be compacted containerless up to the theoretical density by HIP.
  • Chemical analyzes of end products produced by the method according to the invention showed no increase in the concentration of contaminants related to the chemical composition of the binder, such as oxygen, carbon, nitrogen and hydrogen.
  • the overall composition was within the nominal concentrations of the starting products.
  • the materials were mixed in a tumble mixer for 2 hours.
  • the mixture was poured into a two-part stable Teflon mold, which consisted of two eccentrically arranged cylinders (20 and 10 mm ⁇ and 10 or 15 mm in length).
  • the product reached high strength after 14 hours of drying time in the air or after 4 hours of drying in a desiccator, so that handling is easy.
  • the total process time was 12.4 hours.
  • the density of the sintered part was 96% of the theoretical density (Archimedean method) of the material and the chem. Analysis showed no deviation from the nominal composition of this material.
  • the mixture was poured into a four-part stable Teflon mold, with the dimensions 80x20x1 mm. After 2 hours of drying in air, the product reached high strength, so that handling is possible.
  • the total process time was 4.27 h.
  • the density of the sintered part was 92.5% of the theoretical density of Ti6A14V and the chem. Analysis showed within the measurement accuracy the same composition as that of the starting powder.
  • the mixture was applied to the substrate with a brush.
  • the 50 ⁇ m thick layer produced in this way was then air-dried for half an hour.

Abstract

The invention relates to a process for producing dense sintered articles from metal or ceramic materials. A flowable casting composition consisting of the pulverised material, a binder and a solvent is poured into a predetermined mould and subsequently dried. The binder is removed from the green compact thus formed and the latter is sintered. The proportion of binder in the casting composition should be minimised. Expediently, the mould is vibrated during the casting. Heating control during drying with simultaneous application of a vacuum is advantageous. Multi-layered articles can also be produced by suitable application of the process.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen poräser oder dichter Sinterwerkstücke aus Metall, einer Metallegierung oder aus keramischen Werkstoffen, bei dem zunächst aus einem Gemisch des als Pulver vorliegenden Metalls, der Metallegierung oder des keramischen Werkstoffs und einem Binder ein Grünkörper geformt wird, dieser entbindert, gesintert und der Sinterkörper ggfs. durch Heißisostatisches Pressen (HIP-Verfahren) verdichtet wird. Ein derartiger Herstellungsprozeß ist aus EP-A-0260 101 bekannt.The invention relates to a method for producing porous or dense sintered workpieces from metal, a metal alloy or from ceramic materials, in which a green body is first formed from a mixture of the metal present as a powder, the metal alloy or the ceramic material and a binder debindered, sintered and the sintered body is compressed, if necessary, by hot isostatic pressing (HIP process). Such a manufacturing process is known from EP-A-0260 101.

Dieses bekannte Verfahren, bei dem der Grünkörper z.B. im Vakuum gesintert und anschließend der HIP-Schrift angewandt wird, dient dazu, Werkstücke annähernd auf ihre theoretisch mögliche Werkstoffdichte zu kompaktieren.This known method in which the green body e.g. Sintered in a vacuum and then using the HIP script is used to compact workpieces approximately to their theoretically possible material density.

Zur Herstellung des Grünkörpers wurde bisher ein viskoses Gemisch aus Pulver und Binder (Wachse und Kunststoffe) hergestellt und dieses Gemisch unter Druck von einigen hundert Bar in die vorgestimmte Form gepreßt. Ganz abgesehen davon, daß bei dieser Verfahrensweise enge Hohlräume der zu füllenden Form für die viskose Masse unzugänglich sein können, zeigt sich auch, daß beim anschließenden Binderentfernungs- bzw. Sinterungsvorgang, dem die unter Druck in die Form gefüllte viskose Masse unterworfen wird, der Binder nicht vollständig aus der Masse bzw. dem Grünkörper entweicht, so daß unerwünschte Rückstände im Werkstück verbleiben können.To produce the green body, a viscous mixture of powder and binder (waxes and plastics) has previously been produced, and this mixture has been pressed into the predetermined shape under a pressure of a few hundred bars. Quite apart from the fact that in this procedure narrow cavities of the form to be filled can be inaccessible to the viscous mass, it also shows that during the subsequent binder removal or sintering process to which the viscous mass filled under pressure is subjected to the binder does not completely escape from the mass or the green body, so that undesired residues can remain in the workpiece.

Es ist daher Aufgabe der Erfindung, ein Verfahren der eingangs bezeichneten Art zu schaffen, das die vorgenannten Nachteile weitgehend vermeidet.It is therefore an object of the invention to provide a method of the type described at the outset which largely avoids the aforementioned disadvantages.

Diese Aufgabe wird erfindungsgemäß durch das Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention by the method according to the features of claim 1.

Wie sich gezeigt hat, können durch diese erfindungsgemäße Verfahrensweise, die als "Naß-Pulvergießen" bezeichnet werden kann, aus Pulvern verschiedener Materialien und mit verschiedenen Teilchengrößenverteilungen dreidimensionale, endkonturnahe, feste Körper von vorher entworfener Gestalt und/oder Größe geformt werden. Die rheologischen Eigenschaften der Pulver-Träger-Bindermischung vor dem Gießen werden genutzt, um eine freie (durch Gravitation), ggfs. auch erzwungene Formfüllung zu erreichen, wobei nach der Entfernung des Lösungsmittels (während der Trocknung) das Pulver-Bindergemisch sich in einen festen Grünkörper verfestigt, der die Innenkonturen der Form wiedergibt. Zur erzwungenen Formfüllung werden allenfalls Drücke wenig oberhalb Atomsphärendruck eingesetzt.As has been shown, by this procedure according to the invention, which can be called "wet powder casting", three-dimensional, near-net-shape, solid bodies of a previously designed shape and / or size can be formed from powders of different materials and with different particle size distributions. The rheological properties of the powder-carrier-binder mixture before casting are used to achieve a free (by gravity), possibly also forced mold filling, whereby after the removal of the solvent (during drying) the powder-binder mixture becomes solid Green body solidified, which reflects the inner contours of the shape. At most, pressures slightly above the atomic sphere pressure are used to force the mold to be filled.

Der Grünkörper wird nach dem Trocknen aus der Form entfernt und ist damit bereit für die weitere Bearbeitung.The green body is removed from the mold after drying and is thus ready for further processing.

Die Gießmasse wird zweckmäßigerweise in einem separaten Gefäß hergestellt, wonach sie durch einen Einguß oder einen Trichter in die Form gegossen wird.The casting compound is expediently produced in a separate vessel, after which it is poured into the mold through a sprue or a funnel.

Ein ausreichendes Verfüllen der Form wird durch die Gravitation erreicht und kann durch gezielte Erschütterung der Form begleitet werden. Hierzu sind äußere Vibrationen und/oder Rotationen der Form von hand oder mechanisch dienlich.Adequate filling of the form is achieved by gravitation and can be accompanied by targeted vibration of the form. External vibrations and / or rotations of the shape by hand or mechanically are useful for this.

Die Entfernung des Lösungsmittels aus der in die Form gefüllten Masse kann unter Normaldruck und bei Raumtemperatur erfolgen. Dieser Trocknungsvorgang kann aber auch bei erhöhter Temperatur und/oder unter leichtem Unterdruck stattfinden bzw. dadurch beschleunigt werden.The solvent can be removed from the mass filled into the mold under normal pressure and at room temperature. However, this drying process can also take place at elevated temperature and / or under a slight negative pressure or can be accelerated thereby.

Sollen Werkstücke aus unterschiedlichen Schichtungen (gradierte Werkstoffe) hergestellt werden, so kann der Aufbau der Füllung in mehreren Schritten mit unterschiedlichen Materialien erfolgen. Eine hierfür zweckmäßige Verfahrensweise besteht dabei darin, daß aus unterschiedlichen Materialien gebildete Gemische nacheinander in die Form gegoßen werden, so daß die eingegossene Masse und damit auch der danach gebildete Grünkörper aus übereinanderliegend angeordneten Schichten unterschiedlicher Zusammensetzung besteht.If workpieces are to be produced from different layers (graded materials), the filling can be built up in several steps using different materials. A procedure which is expedient for this is that mixtures formed from different materials are poured into the mold one after the other, so that the poured-in mass and thus also the green body formed thereafter consists of layers of different composition arranged one above the other.

Nach dem Eingießen des ersten Materials mit bestimmter Zusammensetzung wird ein zweites auf das erste gegossen. Dieser Prozeß wird bis zur vollständigen Füllung der Form fortgesetzt, so daß ein aus verschiedenen Materialien aufgebauter Schichtsystem-Grünkörper mit einer abgestuften Struktur, z.B. bezüglich Material, Porosität, Korn/Teilchengrößenverteilung, entsteht.After pouring the first material with a certain composition, a second is poured onto the first. This process is complete Filling of the mold continued, so that a layer system green body composed of different materials with a graduated structure, for example with regard to material, porosity, grain / particle size distribution, arises.

Eine weitere Verfahrensvariante besteht darin, daß das Gemisch über/oder um einen in die Form vorab eingebrachten Grünkörper oder ein bereits fertiges Werkstück eingefüllt wird.Another variant of the method is that the mixture is poured in via / or around a green body previously introduced into the mold or an already finished workpiece.

Auf diese Weise läßt sich eine innere oder äußere Beschichtung(en) oder Umhüllung eines bereits erzeugten, festen Teils herstellen, wobei nach dem Einbringen in eine geeignete Form die Gießmasse in die Hohlräume und die zu beschichtende Oberfläche gegossen wird.In this way, an inner or outer coating (s) or covering of a solid part that has already been produced can be produced, the casting compound being poured into the cavities and the surface to be coated after being introduced into a suitable mold.

Wie sich gezeigt hat, kann die Gießmasse auch mit einem Pinsel aufgetragen oder aufgesprayt und dann mit gutem Erfolg weiterbehandelt werden.As has been shown, the casting compound can also be applied with a brush or sprayed on and then further processed with good success.

Verbundwerkstoffe bzw. gradierte Werkstoffe können hergestellt werden, indem die Einlagekomponente in die Vormischung eingebracht wird oder indem sie vor dem Gießen in die Form eingebracht wird.Composite materials or graded materials can be produced by introducing the insert component into the premix or by introducing them into the mold before casting.

Die erzielte Festigkeit des Grünkörpers hängt im allgemeinen von 2 Parametern ab:

  • a. vom relativen Volumenanteil des Binders im Grünkörpers
    und
  • b. von der mittleren Teilchengröße des verwendeten Pulvers.
The strength of the green body generally depends on two parameters:
  • a. the relative volume fraction of the binder in the green body
    and
  • b. from the average particle size of the powder used.

Generelle Regel ist dabei, daß der Anteil des Binders im Gemisch so zu bemessen ist, daß er gerade zur Verfestigung der Masse zur Bildung eines handhabbaren Grünkörpers ausreicht. Die hierzu erforderliche Menge des Binders ist leicht durch einige Vorversuche zu ermitteln, sie liegt im Bereich zwischen 2 und 5 Vol%.The general rule is that the proportion of the binder in the mixture should be such that it is sufficient to solidify the mass to form a manageable green body. The amount of binder required for this can easily be determined by means of a few preliminary tests; it is in the range between 2 and 5% by volume.

Wie sich gezeigt hat, haben Grünkörper mit einem Binderanteil von 0,02 (2,00 Vol%) mit Teilchengrößen von ca. 20 µm eine beachtliche Festigkeit. Bei der Verwendung von größeren Teilchen mit demselben Binderanteil ist die Festigkeit jedoch immer noch hinreichend, um ein sicheres Handhaben der Grünkörper zu gewährleisten. Der Binderanteil läßt sich durch kontrolliertes Hinzufügen oder Verdampfen des flüssigen, flüchtigen Lösungsmittel-Bestandteils (Träger) variieren. In der Praxis wird der maximale Volumenanteil durch die Löslichkeitsgrenze des Binders im Lösungsmittel oder durch die relative natürliche Porosität begrenzt, die ungefähr 26 % bei ideal gepackten Kugelteilchen beträgt.As has been shown, green bodies with a binder content of 0.02 (2.00% by volume) with particle sizes of approx. 20 µm have considerable strength. However, when using larger particles with the same binder content, the strength is still sufficient to ensure safe handling of the green bodies. The binder content can be varied by controlled addition or evaporation of the liquid, volatile solvent component (carrier). In practice, the maximum volume fraction is limited by the solubility limit of the binder in the solvent or by the relative natural porosity, which is approximately 26% for ideally packed spherical particles.

Da das erfindungsgemäße Verfahren nur verhälnismäßig kleine Bindermengen (2 - 5 Vol.%) verwendet, ist nur ein Teil des Raumes zwischen den Teilchen von Binder erfüllt. Deshalb kondensiert der Binder während der Entfernung (Verdampfung) des Lösungsmittels (Trägers) als dünner Film auf den Pulverteilchen und eine schnelle, kontinuierliche Entfernung des Lösungsmittels (Trägers) durch die freien Teilchenzwischenräume findet statt.Since the method according to the invention uses only relatively small amounts of binder (2-5% by volume), only part of the space between the particles of binder is fulfilled. Therefore, the binder condenses as a thin film on the powder particles during the removal (evaporation) of the solvent (carrier) and a rapid, continuous removal of the solvent (carrier) through the free particle spaces takes place.

Die Endfestigkeit des Grünkörpers wird erreicht nach der vollständigen Entfernung des Lösungsmittels (Trägers) und nach dem Festwerden des Binders bei Raumtemperatur (ggfs. auch bei erhöhter Temperatur) als festes Netzwerk mit Verbindungsbrücken zwischen benachbarten Pulverteilchen.The final strength of the green body is achieved after the solvent has been completely removed (Carrier) and after the binder has solidified at room temperature (possibly also at elevated temperature) as a solid network with connecting bridges between adjacent powder particles.

Die Tatsache, daß die Bindung der Pulverteilchen, eines mit dem anderen, durch die Bildung von lokalen Brücken gewährleistet wird, ist nicht nur vorteilhaft für die Entfernung der Lösungsmittel, sondern ist auch für den anschließenden Prozeß der Sinterung von großer Bedeutung.The fact that the binding of the powder particles, one with the other, is ensured by the formation of local bridges is not only advantageous for the removal of the solvents, but is also of great importance for the subsequent sintering process.

Nach Bildung des Grünkörpers wird dieser einer thermisch aktivierten Entbinderungs- und Sinterbehandlung unterzogen. Dabei wird der Grünkörper zur Entfernung des Binders erhitzt. Dieser Entbinderungsprozeß ist nicht auf ein bestimmtes Zeit-Temperatur-Programm beschränkt (Profile, Zeifolgen, Zyklen), obwohl einige Teilschritte erforderlich sind, um eine vollständige Binderentfernung zu ermöglichen. Eine typische Verfahrensweise besteht darin, daß die Grünkörper mit einer Rate von 3 - 10°C/min auf eine Temperatur im Bereich von 280 bis 420°C aufgeheizt und je nach der Größe des Körpers auf dieser Temperatur bis zur Entfernung des Binders gehalten wird. Anschließend wird der Körper auf Sintertemperatur bis mit einer Rate von > 10°C/min aufgeheizt.After the green body has been formed, it is subjected to a thermally activated debinding and sintering treatment. The green body is heated to remove the binder. This debinding process is not limited to a specific time-temperature program (profiles, sequences, cycles), although some sub-steps are required to enable complete binder removal. A typical procedure is for the green body to be heated to a temperature in the range from 280 to 420 ° C. at a rate of 3-10 ° C./min and, depending on the size of the body, to be kept at this temperature until the binder is removed. The body is then heated to sintering temperature up to a rate of> 10 ° C / min.

Die besten Entbinderungsergebnisse erhält man in der Regel unter Fein- bis Hochvakuumbedingungen, wenn auch ein beachtlicher Entwachsungsumfang bei Atmosphärendruck oder leichtem Vakuum stattfindet. Eine Entbinderung unter strömender Gasatmosphäre ist ebenso möglich.The best debinding results are usually obtained under fine to high vacuum conditions, even if a considerable amount of dewaxing takes place at atmospheric pressure or a light vacuum. Debinding under a flowing gas atmosphere is also possible.

Die Unemfpindlichkeit des Entbinderungsprozesses auf den speziellen thermischen Zyklus als auch die Möglichkeit relativ hohe Heizraten zu verwenden liegt primär an zwei Faktoren:

  • a. der geringe Volumenanteil des Binders hat eine offene Struktur zwischen den Teilchen zur Folge. Diese gewährleistet für die Dämpfe, die von dem sich zersetzenden Binder stammen, einen unbehinderten Weg aus dem Grünkörper.
  • b. die intrinsichen Eigenschaften des Binders, der, wenn er über den Schmelzpunkt erhitzt wird, in ein hoch-viskoses Produkt polymerisiert, so daß die netzwerkartige Struktur zwischen den Teilchen und die damit verbundene Form des Grünkörpers bestehen bleibt.
The insensitivity of the debinding process to the special thermal cycle as well as the possibility to use relatively high heating rates is primarily due to two factors:
  • a. the low volume fraction of the binder results in an open structure between the particles. This guarantees an unobstructed path out of the green body for the vapors that come from the decomposing binder.
  • b. the intrinsic properties of the binder, which, when heated above the melting point, polymerizes into a highly viscous product, so that the network-like structure between the particles and the associated shape of the green body remain.

Hohe Temperaturen fördern das schnelle Aufspalten des Binders in einen Dampf, der außerhalb des Grünkörpers entweder in der Atmosphäre oder abgepumpt von einem Vakuumsystem sublimiert. Das Aufspalten und Entfernen dauert so lange, bis der Binder herausgebrannt ist.High temperatures promote the rapid splitting of the binder into a vapor that sublimes outside the green body either in the atmosphere or pumped out by a vacuum system. The splitting and removal takes until the binder has burned out.

Die Tatsache, daß die Festigkeit des entbinderten Grünkörpers ausreichend ist, um eine weitere Handhabbarkeit zu gewährleisten, liegt an möglichen Binder-Spaltungsrückständen, die die Pulverteilchen in der jeweiligen Lage halten.The fact that the strength of the debindered green body is sufficient to ensure further manageability is due to possible binder cleavage residues that hold the powder particles in their respective positions.

Als Material für die herzustellenden Werkstücke können Materialien, wie Superlegierungen, Edelstahl, Titanlegierungen und Aluminiumlegierungen, Eisenwerkstoffe, keramische Pulver z.B. Zirkonoxid, Chromoxid, Lathanoxid, Perovskite, Aluminiumoxid, Siliziumoxid vorgesehen werden. Als Binder sind Wachs, Schellak, PMMA und als Lösungsmittel Alkohol, Trichlorethylen, Toluen (Toluol) zu nennen.Materials such as superalloys, stainless steel, titanium alloys and aluminum alloys, iron materials, ceramic powders such as zirconium oxide, chromium oxide, lathane oxide, perovskite, aluminum oxide and silicon oxide can be used as the material for the workpieces to be produced be provided. Wax, shellac, PMMA and alcohol, trichlorethylene, toluene (toluene) are mentioned as binders.

Das Sintern der nach dem erfindungsgemäßen Verfahren hergestellten Grünkörper wurde unter Verwendung von spezifischen, bekannten Schemen für jedes Material durchgeführt. Dichtemessungen zeigten, daß die Sinterfähigkeit der Materialien nicht vom Verfahren selbst beeinflußt wird. Das Endprodukt kann bis zur geschlossenen Porosität gesintert werden. Die gesinterten Teile mit geschlossener Porosität können deshalb containerlos bis zur theoretischen Dichte durch HIP kompaktiert werden.The sintering of the green bodies produced by the process according to the invention was carried out using specific, known schemes for each material. Density measurements showed that the sinterability of the materials is not affected by the process itself. The end product can be sintered to a closed porosity. The sintered parts with closed porosity can therefore be compacted containerless up to the theoretical density by HIP.

Chemische Analysen von Endprodukten, die nach dem erfindungsgemäßen Verfahren erzeugt wurden, zeigten keinen Konzentrationsanstieg von Veruneinigungselementen die mit der chemischen Zusammensetzung des Binders in Verbindung standen, wie Sauerstoff, Kohlenstoff, Stickstoff und Wasserstoff. Die gesamte Zusammensetzung lag im Rahmen der nominellen Konzentrationen der Ausgangsprodukte.Chemical analyzes of end products produced by the method according to the invention showed no increase in the concentration of contaminants related to the chemical composition of the binder, such as oxygen, carbon, nitrogen and hydrogen. The overall composition was within the nominal concentrations of the starting products.

Ausführungsbeispiel Nr. 1Embodiment 1 1. Werkstoff1. Material

Pulver:Powder:
Ni-Basis-Superlegierung (2.4636)
Teilchengröße: ≦ 100 µm
Masse: 100 g
Volumen: 12,6 ml (berechnet aus der theor. Dichte)
Ni-based superalloy (2.4636)
Particle size: ≦ 100 µm
Weight: 100 g
Volume: 12.6 ml (calculated from the theoretical density)
Lösungsmittelsolvent
(Träger): Alkohol (Ethanol)
Volumen (20°C): 50 ml
Masse: 39,5g
(Carrier): alcohol (ethanol)
Volume (20 ° C): 50 ml
Weight: 39.5g
Binder:Binder:
Schellack
Masse: 2g
Volumen: 1,8 ml (berechnet)
shellac
Weight: 2g
Volume: 1.8 ml (calculated)
Gewichtsanteil Binder:Binder weight fraction:
0,014 (1.4 %)0.014 (1.4%)
Volumenanteil Binder:Binder volume fraction:
0,028 (2.8 %)0.028 (2.8%)
2. Mischung der Komponenten2. Mixing the components

Die Werkstoffe wurden in einem Taumelmischer für 2 Stunden gemischt.The materials were mixed in a tumble mixer for 2 hours.

3. Gießen (Formfüllung) und Trocknung3. Pouring (mold filling) and drying

Die Mischung wurde in eine zweiteilige stabile Teflonform gegossen, die aus zwei exzentrisch zueinander angeordneten Zylindern (20 und 10 mm ⌀ und 10 bzw. 15 mm Länge) bestand. Das Produkt erreichte nach 14 h Trockenzeit in der Luft oder nach 4 h Trocknung im Exsikkator hohe Festigkeit, so daß die Handhabung gut möglich ist.The mixture was poured into a two-part stable Teflon mold, which consisted of two eccentrically arranged cylinders (20 and 10 mm ⌀ and 10 or 15 mm in length). The product reached high strength after 14 hours of drying time in the air or after 4 hours of drying in a desiccator, so that handling is easy.

4. Entbinderung und Sinterung4. Debinding and sintering

Entbinderung und Sinterung wurden im selben Ofen in einem kontinuierlichen Zyklus folgendermaßen durchgeführt:

  • 1) Aufheizen von Raumtemperatur auf 350°C mit 3°C/min (1,9h).
  • 2) Halten bei 350°C für 3 h.
  • 3) Aufheizen von 350°C auf 900°C mit 10°C/min (0,9 h).
  • 4) Halten bei 900°C für 3 h.
  • 5) Aufheizen von 900°C auf 1265°C mit 10°C/min (0,6 h).
  • 6) Halten bei 1265°C für 3 h.
    Der Druck im Ofen wurde dabei zwischen 10⁻⁵ und 10⁻⁴ mbar gehalten.
Debinding and sintering were carried out in the same furnace in a continuous cycle as follows:
  • 1) Heating from room temperature to 350 ° C at 3 ° C / min (1.9h).
  • 2) Hold at 350 ° C for 3 h.
  • 3) Heating from 350 ° C to 900 ° C at 10 ° C / min (0.9 h).
  • 4) Hold at 900 ° C for 3 h.
  • 5) Heating from 900 ° C to 1265 ° C at 10 ° C / min (0.6 h).
  • 6) Hold at 1265 ° C for 3 h.
    The pressure in the furnace was kept between 10⁻⁵ and 10⁻⁴ mbar.

Die Gesamtprozeßzeit betrug 12,4 h.The total process time was 12.4 hours.

5. Dichte und chem. Analyse5. Density and chem. analysis

Die Dichte des gesinterten Teiles war 96 % der theor. Dichte (Archimedische Methode) des Werkstoffes und die chem. Analyse erbrachte keine Abweichung von der Nominalzusammensetzung dieses Werkstoffes.The density of the sintered part was 96% of the theoretical density (Archimedean method) of the material and the chem. Analysis showed no deviation from the nominal composition of this material.

Ausführungsbeispiel Nr. 2Embodiment No. 2 1. Werkstoff1. Material

Pulver:Powder:
Ti6A14V
Teilchengröße: +53 -180 µm
Masse: 275 g
Volumen: 62.2 ml (berechnet aus der theor. Dichte)
Ti6A14V
Particle size: +53-180 µm
Weight: 275 g
Volume: 62.2 ml (calculated from the theoretical density)
Lösungmittel (Träger):Solvent (carrier):
Alkohol (Ethanol)
Volumen (20°C): 50 ml
Masse: 39.5 g
Alcohol (ethanol)
Volume (20 ° C): 50 ml
Weight: 39.5 g
Binder:Binder:
Schellak
Masse: 3g
Volumen: 2.75 ml (berechnet)
Shellac
Weight: 3g
Volume: 2.75 ml (calculated)
Gewichtsanteil Binder:Binder weight fraction:
0,009 (0.9 %)0.009 (0.9%)
Volumenanteil Binder:Binder volume fraction:
0,027 (2.7 %)0.027 (2.7%)
2. Mischung der Komponenten2. Mixing the components

Wie 2. in Ausführungsbeispiel Nr. 1As 2nd in embodiment number 1

3. Gießen (Formfüllung) und Trocknung3. Pouring (mold filling) and drying

Die Mischung wurde in eine vierteilige stabile Teflonform gegossen, mit den Maßen 80x20x1 mm. Das Produkt erreichte nach 2 h Trockenzeit in Luft hohe Festigkeit, so daß Handhabung gut möglich ist.The mixture was poured into a four-part stable Teflon mold, with the dimensions 80x20x1 mm. After 2 hours of drying in air, the product reached high strength, so that handling is possible.

4. Entbinderung und Sinterung4. Debinding and sintering

  • 1) Aufheizen von Raumtemperatur auf 350°C mit 25°C/min (0,22 h).1) Heating from room temperature to 350 ° C at 25 ° C / min (0.22 h).
  • 2) Halten bei 350°C für 1 h.2) Hold at 350 ° C for 1 h.
  • 3) Aufheizen von 350°C auf 1100°C mit 100°C/min (0,12 h).3) Heating from 350 ° C to 1100 ° C at 100 ° C / min (0.12 h).
  • 4) Halten bei 1100°C für 20 Minuten (0,33 h).4) Hold at 1100 ° C for 20 minutes (0.33 h).
  • 5) Argonfüllung auf 400 mbar Druck.5) Argon filling at 400 mbar pressure.
  • 6) Aufheizen von 1100°C auf 1600°C mit 100°C/min (0,1 h).6) Heating from 1100 ° C to 1600 ° C at 100 ° C / min (0.1 h).
  • 7) Halten bei 1600°C für 2,5 h.7) Hold at 1600 ° C for 2.5 h.

Die Gesamtprozeßzeit betrug 4.27 h.The total process time was 4.27 h.

5. Dichte und chem. Analyse5. Density and chem. analysis

Die Dichte des gesinterten Teiles war 92,5 % der theor. Dichte von Ti6A14V un die chem. Analyse ergab im Rahmen der Meßgenauigkeit die gleiche Zusammensetzung wie die des Ausgangspulvers.The density of the sintered part was 92.5% of the theoretical density of Ti6A14V and the chem. Analysis showed within the measurement accuracy the same composition as that of the starting powder.

Ausführungsbeispiel Nr. 3Embodiment 3 1. Werkstoff1. Material

Pulver:Powder:
Perovskite La0.84 Sr0.16 MnO₃
Teilchengröße: +45 -90 µm
Masse: 25 g
Perovskite La 0.84 Sr 0.16 MnO₃
Particle size: +45 -90 µm
Weight: 25 g
Lösungsmittel:Solvent:
Alkohol (Ethanol)
Volumen 25 ml
Alcohol (ethanol)
Volume 25 ml
Binder.Binder.
Schellack
Masse: 0.5 g
Substratdichte: ZrO₂-8Y Folie
40 mm φ.
shellac
Weight: 0.5 g
Substrate density: ZrO₂-8Y film
40 mm φ.
2. Mischung der Komponenten2. Mixing the components

Wie 2 in Ausführungsbeispiel Nr. 1 und Nr. 2Like 2 in working example No. 1 and No. 2

3. Anwendung der Mischung und Trocknung3. Application of the mixture and drying

Die Mischung wurde mit einer Bürste auf das Substrat aufgebracht. Die hierdurch erzeugte ca. 50 µm dicke Schicht wurde anschließend eine halbe Stunde an der Luft getrocknet.The mixture was applied to the substrate with a brush. The 50 µm thick layer produced in this way was then air-dried for half an hour.

4. Entbinderung und Sinterung4. Debinding and sintering

Enbinderung und Sinterung wurden im selben Ofen in einem kontinuierlichen Zyklus folgendermaßen durchgeführt:

  • 1) Aufheizen von Raumtemperatur auf 350°C mit 1°C/min (5.7 h)
  • 2) Halten bei 350°C für 2 h.
  • 3) Aufheizen vo 350°C auf 1500°C mit 1°C/min (19.2 h)
  • 4) Halten bei 350°C für 5 h.
Binding and sintering were carried out in the same furnace in a continuous cycle as follows:
  • 1) Heating from room temperature to 350 ° C at 1 ° C / min (5.7 h)
  • 2) Hold at 350 ° C for 2 h.
  • 3) Heating from 350 ° C to 1500 ° C at 1 ° C / min (19.2 h)
  • 4) Hold at 350 ° C for 5 h.

5. Ergebnis5. Result

Metallopraphische Analyse der hergestellten Perovskiteschicht ergab eine deutlich sichtbare Haftung zum Zirkonoxidsubstrat. Außerdem konnte eine gleichmäßige poröse Struktur mit ausgeprägter Teilchenverbindung festgestellt werden.Metallopraphic analysis of the perovskite layer produced showed clearly visible adhesion to the zirconium oxide substrate. In addition, a uniform porous structure with a pronounced particle connection was found.

Claims (10)

  1. A process for producing porous or dense sintered workpieces made of metal, a metal alloy or of ceramic materials, wherein a green body is first formed from a mixture of the metal, the metal alloy or the ceramic material which is present as a powder, and a binder, and the green body is subsequently freed from binder and sintered,
    characterised in that
    the mixture is first formed comprising the powder, the binder, the proportion of which in the mixture is calculated so that is sufficient to consolidate the powder-binder mixture in order to form the green body and in this respect amounts to 2 to 5 % by volume in the mixture, and a solvent for the binder, wherein the relative proportions of binder and solvent are calculated so that the binder is completely dissolved in the solvent, and in addition the proportions of powder, binder and solvent are calculated so that the material formed in this manner (the casting material) for casting into the mould permits free filling of the mould (by gravitation) on account of its rheological properties or if need be permits forced filling of the mould by a pressure slightly above atmospheric pressure, after which this material is cast into the predetermined mould made of non-porous material or is deposited or sprayed on and is subsequently dried, wherein the solvent escapes by evaporation and the remaining binder consolidates the powder-binder mixture so that the green body is formed.
  2. A process according to claim 1,
    characterised in that
    the material is introduced into the mould with simultaneous jarring of the latter
  3. A process according to claim 1 or 2,
    characterised in that
    the casting material situated in the mould is subjected to a reduced pressure during drying.
  4. A process according to any one of claims 1 to 3,
    characterised in that
    the casting material situated in the mould is heated during drying.
  5. A process according to any one of claims 1 to 4,
    characterised in that
    mixtures formed from different materials are cast successively into the mould, so that the casting material, and thus the green body which is subsequently formed also, consists of layers of different compositions lying one on top of another.
  6. A process according to any one of claims 1 to 5,
    characterised in that
    the mixture is introduced over or around a green body or a ready-made workpiece which is introduced previously into the mould.
  7. A process according to any one of claims 1 to 6,
    characterised in that
    the green body is heated to a temperature within the range from 280 to 420°C at a rate of 3 to 10°C/min and, depending on the size of the body formed, is held at this temperature until the binder is removed.
  8. A process according to claim 7,
    characterised in that
    the green body is subsequently heated to a sintering temperature at a rate of > 10°C/min.
  9. A process according to any one of claims 1 to 8,
    characterised in that
    bake-out is effected under medium to high vacuum conditions.
  10. A process according to any one of claims 1 to 9,
    characterised in that
    the sintered body is densified by hot isostatic pressing (HIP process).
EP92108827A 1991-06-22 1992-05-26 Process for preparing dense sintered articles Expired - Lifetime EP0525325B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4120706 1991-06-22
DE4120706A DE4120706C2 (en) 1991-06-22 1991-06-22 Process for the production of porous or dense sintered workpieces

Publications (2)

Publication Number Publication Date
EP0525325A1 EP0525325A1 (en) 1993-02-03
EP0525325B1 true EP0525325B1 (en) 1996-03-06

Family

ID=6434559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92108827A Expired - Lifetime EP0525325B1 (en) 1991-06-22 1992-05-26 Process for preparing dense sintered articles

Country Status (3)

Country Link
EP (1) EP0525325B1 (en)
AT (1) ATE134922T1 (en)
DE (2) DE4120706C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963698A1 (en) * 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Thin porous layer with open porosity and process for its production

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535444C2 (en) * 1995-01-20 1999-07-22 Scholz Paul Friedrich Dr Ing Process for the powder metallurgical manufacture of articles and articles produced in this way
DE19528031A1 (en) * 1995-07-31 1997-02-06 Krebsoege Sinterholding Gmbh Flat gasket made of metal
DE19716595C1 (en) * 1997-04-21 1998-09-03 Forschungszentrum Juelich Gmbh Thin metal inner layer with fine porosity for a pipe
DE19717460A1 (en) * 1997-04-25 1998-10-29 Karlsruhe Forschzent Directional solidification process especially for superconductive ceramic production
DE19722004A1 (en) * 1997-05-27 1998-12-03 Fraunhofer Ges Forschung Production of a metal or ceramic workpiece
DE19748742C1 (en) * 1997-11-05 1999-07-01 Karlsruhe Forschzent Melt-textured neodymium-barium-copper oxide high temperature superconductor production
DE19801440C2 (en) * 1998-01-16 2001-08-16 Forschungszentrum Juelich Gmbh Inexpensive method for producing an electrode-electrolyte unit
ATE212681T1 (en) 1998-04-17 2002-02-15 Gkn Sinter Metals Gmbh METHOD FOR PRODUCING A SINTERED METAL LAYER WITH OPEN POROSITY
US5989493A (en) * 1998-08-28 1999-11-23 Alliedsignal Inc. Net shape hastelloy X made by metal injection molding using an aqueous binder
DE19841573C2 (en) * 1998-09-11 2000-11-09 Karlsruhe Forschzent Process for producing mechanically strong, electrically conductive connections between high-temperature superconductors (HTSL)
DE19936734C1 (en) * 1999-08-06 2001-02-15 Fraunhofer Ges Forschung Production of a metal or ceramic workpiece comprises pouring a metallic or ceramic slip into a porous casting mold with addition of filler under pressure to form a green body, removing the solvent, and removing the body from the mold
DE10027551B4 (en) * 2000-06-02 2005-09-29 Hesse, Thomas, Dipl.-Ing. Process for the production of moldings from a plastically processable molding composition based on beeswax, solvents and sinterable powders and a use of the molding composition
DE102005024623B4 (en) * 2005-05-30 2007-08-23 Beru Ag Method for producing a ceramic glow plug for a glow plug

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491559A (en) * 1979-12-31 1985-01-01 Kennametal Inc. Flowable composition adapted for sintering and method of making
US4554130A (en) * 1984-10-01 1985-11-19 Cdp, Ltd. Consolidation of a part from separate metallic components
US5006493A (en) * 1986-03-31 1991-04-09 The Dow Chemical Company Novel ceramic binder comprising poly(ethyloxazoline)
GB8621712D0 (en) * 1986-09-09 1986-10-15 Mixalloy Ltd Flat products
US4882110A (en) * 1987-01-27 1989-11-21 Air Products And Chemicals, Inc. CO2 copolymer binder for forming ceramic bodies and a shaping process using the same
AU1728688A (en) * 1987-04-09 1988-11-04 Ceramic Systems Corporation Molding and precision forming using highly loaded systems
DE4037258A1 (en) * 1989-11-24 1991-05-29 Asea Brown Boveri Complicated metal or ceramic component prodn. - by vacuum slip casting of thixotropic powder slip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963698A1 (en) * 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Thin porous layer with open porosity and process for its production
US7306753B2 (en) 1999-12-29 2007-12-11 Gkn Sinter Metals Gmbh Method of making a thin porous layer

Also Published As

Publication number Publication date
EP0525325A1 (en) 1993-02-03
DE59205549D1 (en) 1996-04-11
DE4120706A1 (en) 1992-12-24
ATE134922T1 (en) 1996-03-15
DE4120706C2 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
EP0525325B1 (en) Process for preparing dense sintered articles
DE2711219C2 (en) Implantable, prosthetic element
EP3590634B1 (en) Surface passivation of aluminum containing powder
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
DE2125562C3 (en) Process for the powder-metallurgical production of dense bodies from nickel superalloys
DE2027016A1 (en) Process for compacting metal or ceramic objects
WO2001019556A1 (en) Mixture of two particulate phases used in the production of a green compact that can be sintered at higher temperatures
WO2000006327A2 (en) Method for producing components by metallic powder injection moulding
DE2650982A1 (en) PROCESS FOR ISOSTATIC HOT COMPRESSION
EP1579934B1 (en) Process for the production of a muffle for investment casing or modell casting and composition of such a muffle
DE102005045698A1 (en) Shaped body of a dental alloy for the production of dental parts
WO1987000781A1 (en) Construction elements produced by powder metallurgy
EP0431165A1 (en) Ceramic composite material and method of obtaining it
DE4322084A1 (en) Process for the production of a setter
EP0812930A1 (en) Ceramic evaporation material
WO2018134202A1 (en) Method for producing hard metal bodies by means of 3d printing
EP0099066A1 (en) Process for manufacturing a composite article from chromium and copper
DE3403917C1 (en) Process for compacting porous ceramic components for hot isostatic pressing
EP3145662B1 (en) Method for producing ceramic and/or metal components
CH681516A5 (en)
DE19717460A1 (en) Directional solidification process especially for superconductive ceramic production
DE19638927C2 (en) Process for the production of highly porous, metallic moldings
DE10110448A1 (en) Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder
DE19730742C2 (en) Process for producing a silicon-containing non-oxide ceramic molded body or such a layer
DE3808123A1 (en) Process for producing sintered parts of finely particulate metal or ceramic powders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19930528

17Q First examination report despatched

Effective date: 19941005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 134922

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59205549

Country of ref document: DE

Date of ref document: 19960411

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960521

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110525

Year of fee payment: 20

Ref country code: FR

Payment date: 20110603

Year of fee payment: 20

Ref country code: SE

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 20

Ref country code: AT

Payment date: 20110520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110419

Year of fee payment: 20

Ref country code: IT

Payment date: 20110527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205549

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120525

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 134922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120527