EP0525325A1 - Process for preparing dense sintered articles - Google Patents

Process for preparing dense sintered articles Download PDF

Info

Publication number
EP0525325A1
EP0525325A1 EP92108827A EP92108827A EP0525325A1 EP 0525325 A1 EP0525325 A1 EP 0525325A1 EP 92108827 A EP92108827 A EP 92108827A EP 92108827 A EP92108827 A EP 92108827A EP 0525325 A1 EP0525325 A1 EP 0525325A1
Authority
EP
European Patent Office
Prior art keywords
binder
green body
mixture
mold
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92108827A
Other languages
German (de)
French (fr)
Other versions
EP0525325B1 (en
Inventor
Arie Dr. Ruder
Hans Peter Dr. Buchkremer
Rudolf Prof. Hecker
Detlev Dr. Stöver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0525325A1 publication Critical patent/EP0525325A1/en
Application granted granted Critical
Publication of EP0525325B1 publication Critical patent/EP0525325B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing dense sintered workpieces made of metal, a metal alloy or ceramic materials, in which a green body is first formed from a mixture of the metal in powder form, the metal alloy or the ceramic material and a binder, which removes the binder. sintered and the sintered body is compressed, if necessary, by hot isostatic pressing (HIP process).
  • HIP process hot isostatic pressing
  • a viscous mixture of powder and binder has previously been produced, and this mixture has been pressed into the predetermined shape under a pressure of a few hundred bars. Quite apart from the fact that with this procedure narrow cavities of the form to be filled can be inaccessible to the viscous mass, it also shows that during the subsequent binder removal or Sintering process, to which the viscous mass filled under pressure is subjected, the binder is not completely removed from the mass or. the green body escapes so that undesirable residues can remain in the workpiece.
  • This object is achieved in that first the mixture of the powder, the binder, the proportion of which in the mixture is such that it is sufficient to solidify the powder-binder mixture to form the green body and thereby 2 to 5 vol %, and a solvent for the binder is formed so that it is in the form of a flowable, solid, liquid mass (casting mass), after which this mass is poured into the predetermined shape, applied or sprayed on and then dried, the solvent escaping and the remaining binder Powder-binder mixture solidified, so that the green body is formed, which is then debindered and sintered.
  • the green body is removed from the mold after drying and is ready for further processing.
  • the casting compound is expediently produced in a separate vessel, after which it is poured into the mold through a sprue or a funnel.
  • Adequate filling of the form is achieved by gravitation and can be accompanied by targeted vibration of the form. External vibrations and / or rotations of the shape by hand or mechanically are useful for this.
  • the solvent can be removed from the mass filled into the mold under normal pressure and at room temperature. However, this drying process can also take place at elevated temperature and / or under a slight negative pressure or can be accelerated thereby.
  • the filling can be built up in several steps using different materials.
  • a procedure which is expedient for this is that mixtures formed from different materials are poured into the mold one after the other, so that the poured-in mass and thus also the green body formed thereafter consists of layers of different composition arranged one above the other.
  • a second is poured onto the first. This process is continued until the mold is completely filled, so that a layer system green body composed of different materials with a stepped structure, e.g. with regard to material, porosity, grain / particle size distribution.
  • a further process variant consists in that the mixture is filled in via / or around a green body previously introduced into the mold or an already finished workpiece.
  • an inner or outer coating (s) or covering of a solid part that has already been produced can be produced, the casting compound being poured into the cavities and the surface to be coated after being introduced into a suitable mold.
  • the casting compound can also be applied or sprayed on with a brush and then further processed with good success.
  • Composites or graded materials can be made by inserting the insert component into the premix or by inserting it into the mold prior to casting.
  • the general rule is that the proportion of the binder in the mixture should be such that it is sufficient to solidify the mass to form a manageable green body.
  • the amount of binder required for this can easily be determined by means of a few preliminary tests; it is in the range between 2 and 5% by volume.
  • binder fraction 0.02 (2.00% by volume) with particle sizes of approximately 20 ⁇ m have considerable strength. However, when using larger particles with the same binder content, the strength is still sufficient to ensure that the green bodies are handled safely.
  • the proportion of binder can be varied by controlled addition or evaporation of the liquid, volatile solvent component (carrier). In practice, the maximum volume fraction is limited by the solubility limit of the binder in the solvent or by the relative natural porosity, which is approximately 26% for ideally packed spherical particles.
  • the binder condenses as a thin film on the powder particles during the removal (evaporation) of the solvent (carrier) and a rapid, continuous removal of the solvent (carrier) through the free particle spaces takes place.
  • the final strength of the green body is achieved after the solvent (carrier) has been completely removed and after the binder has solidified at room temperature (possibly also at elevated temperature) as a solid network with connecting bridges between adjacent powder particles.
  • the green body After the green body has been formed, it is subjected to a thermally activated debinding and sintering treatment.
  • the green body is heated to remove the binder.
  • This debinding process is not restricted to a specific time-temperature program (profiles, sequences, cycles), although a few partial steps are required to enable complete binder removal.
  • a typical procedure is that the green body is heated at a rate of 3-10 ° C./min to a temperature in the range from 280 to 420 ° C. and, depending on the size of the body, is kept at this temperature until the binder is removed.
  • the body is then heated to sintering temperature up to a rate of> 10 ° C / min.
  • High temperatures promote the rapid splitting of the binder into a vapor that sublimes outside the green body either in the atmosphere or pumped out by a vacuum system. The splitting and removal takes until the binder has burned out.
  • Materials such as super alloys, stainless steel, titanium alloys and aluminum alloys, iron materials, ceramic powders, for example, can be used as the material for the workpieces to be produced.
  • Zirconium oxide, chromium oxide, lathan oxide, perovskite, aluminum oxide, silicon oxide can be provided.
  • Wax, shellac, PMMA and alcohol, trichlorethylene, toluene (toluene) are mentioned as binders.
  • the sintering of the green bodies produced by the process according to the invention was carried out using specific, known schemes for each material. Density measurements showed that the sinterability of the materials is not affected by the process itself.
  • the end product can be sintered to a closed porosity. The sintered parts with closed porosity can therefore be compacted containerless up to the theoretical density by HIP.
  • Chemical analyzes of end products produced by the method according to the invention showed no increase in the concentration of contaminants related to the chemical composition of the binder, such as oxygen, carbon, nitrogen and hydrogen.
  • the overall composition was within the nominal concentrations of the starting products.
  • the mixture was poured into a four-part stable Teflon mold, measuring 80x20x1 mm. After 2 hours of drying in air, the product achieved high strength, making handling easy.
  • the total process time was 4.27 h.
  • the density of the sintered part was 92.5% of the theoretical density of Ti6A14V and the chem. Analysis showed within the measurement accuracy the same composition as that of the starting powder.
  • the mixture was applied to the substrate with a brush.
  • the 50 ⁇ m thick layer produced in this way was then air-dried for half an hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The invention relates to a process for producing dense sintered articles from metal or ceramic materials. A flowable casting composition consisting of the pulverised material, a binder and a solvent is poured into a predetermined mould and subsequently dried. The binder is removed from the green compact thus formed and the latter is sintered. The proportion of binder in the casting composition should be minimised. Expediently, the mould is vibrated during the casting. Heating control during drying with simultaneous application of a vacuum is advantageous. Multi-layered articles can also be produced by suitable application of the process.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen dichter Sinterwerkstücke aus Metall, einer Metalllegierung oder aus keramischen Werkstoffen, bei dem zunächst aus einem Gemisch des als Pulver vorliegenden Metalls, der Metalllegierung oder des keramischen Werkstoffs und einem Binder ein Grünkörper geformt wird, dieser entbindert, gesintert und der Sinterkörper ggfs. durch Heißisostatisches Pressen (HIP-Verfahren) verdichtet wird.The invention relates to a method for producing dense sintered workpieces made of metal, a metal alloy or ceramic materials, in which a green body is first formed from a mixture of the metal in powder form, the metal alloy or the ceramic material and a binder, which removes the binder. sintered and the sintered body is compressed, if necessary, by hot isostatic pressing (HIP process).

Dieses bekannte Verfahren, bei dem der Grünkörper z.B. im Vakuum gesintert und anschließend der HIP-Schritt angewandt wird, dient dazu, Werkstücke annähernd auf ihre theoretisch mögliche Werkstoffdichte zu kompaktieren.This known method in which the green body e.g. Sintered in a vacuum and then using the HIP step serves to compact workpieces approximately to their theoretically possible material density.

Zur Herstellung des Grünkörpers wurde bisher ein viskoses Gemisch aus Pulver und Binder (Wachse und Kunststoffe) hergestellt und dieses Gemisch unter Druck von einigen Hundert Bar in die vorbestimmte Form gepreßt. Ganz abgesehen davon, daß bei dieser Verfahrensweise enge Hohlräume der zu füllenden Form für die viskose Masse unzugänglich sein können, zeigt sich auch, daß beim anschließenden Binderentfernungs-bzw. Sinterungsvorgang, dem die unter Druck in die Form gefüllte viskose Masse unterworfen wird, der Binder nicht vollständig aus der Masse bwz. dem Grünkörper entweicht, so daß unerwünschte Rückstände im Werkstück verbleiben können.To produce the green body, a viscous mixture of powder and binder (waxes and plastics) has previously been produced, and this mixture has been pressed into the predetermined shape under a pressure of a few hundred bars. Quite apart from the fact that with this procedure narrow cavities of the form to be filled can be inaccessible to the viscous mass, it also shows that during the subsequent binder removal or Sintering process, to which the viscous mass filled under pressure is subjected, the binder is not completely removed from the mass or. the green body escapes so that undesirable residues can remain in the workpiece.

Es ist daher Aufgabe der Erfindung, ein Verfahren der eingangs bezeichneten Art zu schaffen, daß die vorgenannten Nachteile weitgehend vermeidet.It is therefore an object of the invention to provide a method of the type described in the opening paragraph which largely avoids the aforementioned disadvantages.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zunächst das Gemisch derart aus dem Pulver, dem Binder, dessen Anteil im Gemisch so bemessen ist, daß er zur Verfestigung des Pulver-Binder-Gemischs zur Bildung des Grünkörpers ausreicht und dabei am Gemisch 2 bis 5 Vol% beträgt, und einem Lösungsmittel für den Binder gebildet wird, daß es als fließfähige, festflüssige Masse (Gießmasse) vorliegt, wonach diese Masse in die vorbestimmte Form gegossen, aufgetragen oder aufgesprayt und anschließend getrocknet wird, wobei das Lösungsmittel entweicht und der verbleibende Binder das Pulver-Binder-Gemisch verfestigt, so daß der Grünkörper gebildet wird, der anschließend entbindert und gesintert wird.This object is achieved in that first the mixture of the powder, the binder, the proportion of which in the mixture is such that it is sufficient to solidify the powder-binder mixture to form the green body and thereby 2 to 5 vol %, and a solvent for the binder is formed so that it is in the form of a flowable, solid, liquid mass (casting mass), after which this mass is poured into the predetermined shape, applied or sprayed on and then dried, the solvent escaping and the remaining binder Powder-binder mixture solidified, so that the green body is formed, which is then debindered and sintered.

Wie sich gezeigt hat, können durch diese erfindungsgemäße Verfahrensweise, die als "Naß-Pulvergießen" bezeichnet werden kann, aus Pulvern verschiedener Materialien und mit verschiedenen Teilchengrößenverteilungen dreidimensionale, endkonturnahe, feste Körper von vorher entworfener Gestalt und/oder Größe geformt werden. Die rheologischen Eigenschaften der Pulver-Träger-Bindermischung vor dem Gießen werden genutzt, um eine freie (durch Gravitation), ggfs. auch erzwungene Formfüllung zu erreichen, wobei nach der Entfernung des Lösungsmittel (während der Trocknung) das Pulver-Bindergemisch sich in einen festen Grünkörper verfestigt, der die Innenkonturen der Form wiedergibt. Zur erzwungenen Formfüllung werden allenfalls Drücke wenig oberhalb Atmosphärendruck eingesetzt.As has been shown, by this procedure according to the invention, which can be called "wet powder casting", three-dimensional, near-net-shape, solid bodies of a previously designed shape and / or size can be formed from powders of different materials and with different particle size distributions. The rheological properties of the powder-carrier-binder mixture before casting are used to achieve a free (by gravitation), possibly also forced mold filling, whereby after the removal of the solvent (during drying) the powder-binder mixture becomes solid Green body solidified, which reflects the inner contours of the shape. At most, pressures slightly above atmospheric pressure are used to force the mold to be filled.

Der Grünkörper wird nach dem Trocknen aus der Form entfernt und ist damit bereit für die weitere Bearbeitung.The green body is removed from the mold after drying and is ready for further processing.

Die Gießmasse wird zweckmäßigerweise in einem separaten Gefäß hergestellt, wonach sie durch einen Einguß oder einen Trichter in die Form gegossen wird.The casting compound is expediently produced in a separate vessel, after which it is poured into the mold through a sprue or a funnel.

Ein ausreichendes Verfüllen der Form wird durch die Gravitation erreicht und kann durch gezielte Erschütterung der Form begleitet werden. Hierzu sind äußere Vibrationen und/oder Rotationen der Form von hand oder mechanisch dienlich.Adequate filling of the form is achieved by gravitation and can be accompanied by targeted vibration of the form. External vibrations and / or rotations of the shape by hand or mechanically are useful for this.

Die Entfernung des Lösungsmittels aus der in die Form gefüllten Masse kann unter Normaldruck und bei Raumtemperatur erfolgen. Dieser Trocknungsvorgang kann aber auch bei erhöhter Temperatur und/oder unter leichtem Unterdruck stattfinden bzw. dadurch beschleunigt werden.The solvent can be removed from the mass filled into the mold under normal pressure and at room temperature. However, this drying process can also take place at elevated temperature and / or under a slight negative pressure or can be accelerated thereby.

Sollen Werkstücke aus unterschiedlichen Schichtungen (gradierte Werkstoffe) hergestellt werden, so kann der Aufbau der Füllung in mehreren Schritten mit unterschiedlichen Materialien erfolgen. Eine hierfür zweckmäßige Verfahrensweise besteht dabei darin, daß aus unterschiedlichen Materialien gebildete Gemische nacheinander in die Form gegoßen werden, so daß die eingegossene Masse und damit auch der danach gebildete Grünkörper aus übereinanderliegend angeordneten Schichten unterschiedlicher Zusammensetzung besteht.If workpieces are to be produced from different layers (graded materials), the filling can be built up in several steps using different materials. A procedure which is expedient for this is that mixtures formed from different materials are poured into the mold one after the other, so that the poured-in mass and thus also the green body formed thereafter consists of layers of different composition arranged one above the other.

Nach dem Eingießen des ersten Materials mit bestimmter Zusammensetzung wird ein zweites auf das erste gegossen. Dieser Prozeß wird bis zur vollständigen Füllung der Form fortgesetzt, so daß ein aus verschiedenen Materialien aufgebauter Schichtsystem-Grünkörper mit einer abgestuften Struktur, z.B. bezüglich Material, Porosität, Korn/Teilchengrößenverteilung, entsteht.After pouring the first material with a certain composition, a second is poured onto the first. This process is continued until the mold is completely filled, so that a layer system green body composed of different materials with a stepped structure, e.g. with regard to material, porosity, grain / particle size distribution.

Eine weitere Verfahrensvariante besteht darin, daß das Gemisch über/oder um einen in die Form vorab eingebrachten Grünkörper oder ein bereits fertiges Werkstück eingefüllt wird.A further process variant consists in that the mixture is filled in via / or around a green body previously introduced into the mold or an already finished workpiece.

Auf diese Weise läßt sich eine innere oder äußere Beschichtung(en) oder Umhüllung eines bereits erzeugten, festen Teils herstellen, wobei nach dem Einbringen in eine geeignete Form die Gießmasse in die Hohlräume und die zu beschichtende Oberfläche gegossen wird.In this way, an inner or outer coating (s) or covering of a solid part that has already been produced can be produced, the casting compound being poured into the cavities and the surface to be coated after being introduced into a suitable mold.

Wie sich gezeigt hat, kann die Gießmasse auch mit einem Pinsel aufgetragen oder aufgesprayt und dann mit gutem Erfolg weiterbehandelt werden.As has been shown, the casting compound can also be applied or sprayed on with a brush and then further processed with good success.

Verbundwerkstoffe bzw. gradierte Werkstoffe können hergestellt werden, indem die Einlagekomponente in die Vormischung eingebracht wird oder indem sie vor dem Gießen in die Form eingebracht wird.Composites or graded materials can be made by inserting the insert component into the premix or by inserting it into the mold prior to casting.

Die erzielte Festigkeit des Grünkörpers hängt im allgemeinen von 2 Parametern ab:

  • a. vom relativen Volumenanteil des Binders im Grünkörpers und
  • b. von der mittleren Teilchengröße des verwendeten Pulvers.
The strength of the green body generally depends on two parameters:
  • a. of the relative volume fraction of the binder in the green body and
  • b. from the average particle size of the powder used.

Generelle Regel ist dabei, daß der Anteil des Binders im Gemisch so zu bemessen ist, daß er gerade zur Verfestigung der Masse zur Bildung eines handhabbaren Grünkörpers ausreicht. Die hierzu erforderliche Menge des Binders ist leicht durch einige Vorversuche zu ermitteln, sie liegt im Bereich zwischen 2 und 5 Vol%.The general rule is that the proportion of the binder in the mixture should be such that it is sufficient to solidify the mass to form a manageable green body. The amount of binder required for this can easily be determined by means of a few preliminary tests; it is in the range between 2 and 5% by volume.

Wie sich gezeigt hat, haben Grünkörper mit einem Binderanteil von 0,02 (2,00 Vol%) mit Teilchengrößen von ca. 20 um eine beachtliche Festigkeit. Bei der Verwendung von größeren Teilchen mit demselben Binderanteil ist die Festigkeit jedoch immer noch hinreichend, um ein sicheres Handhaben der Grünkörper zu gewährleisten. Der Binderanteil läßt sich durch kontrolliertes Hinzufügen oder Verdampfen des flüssigen, flüchtigen Lösungsmittel-Bestandteils (Träger) variieren. In der Praxis wird der maximale Volumenanteil durch die Löslichkeitsgrenze des Binders im Lösungsmittel oder durch die relative natürliche Porosität begrenzt, die ungefähr 26 % bei ideal gepackten Kugelteilchen beträgt.As has been shown, green bodies with a binder fraction of 0.02 (2.00% by volume) with particle sizes of approximately 20 μm have considerable strength. However, when using larger particles with the same binder content, the strength is still sufficient to ensure that the green bodies are handled safely. The proportion of binder can be varied by controlled addition or evaporation of the liquid, volatile solvent component (carrier). In practice, the maximum volume fraction is limited by the solubility limit of the binder in the solvent or by the relative natural porosity, which is approximately 26% for ideally packed spherical particles.

Da das erfindungsgemäße Verfahren nur verhälnismäßig kleine Bindermengen (2 - 5 Vol.%) verwendet, ist nur ein Teil des Raumes zwischen den Teilchen von Binder erfüllt. Deshalb kondensiert der Binder während der Entfernung (Verdampfung) des Lösungsmittels (Trägers) als dünner Film auf den Pulverteilchen und eine schnelle, kontinuierliche Entfernung des Lösungsmittels (Trägers) durch die freien Teilchenzwischenräume findet statt.Since the method according to the invention uses only relatively small amounts of binder (2-5% by volume), only part of the space between the particles of binder is fulfilled. Therefore, the binder condenses as a thin film on the powder particles during the removal (evaporation) of the solvent (carrier) and a rapid, continuous removal of the solvent (carrier) through the free particle spaces takes place.

Die Endfestigkeit des Grünkörpers wird erreicht nach der vollständigen Entfernung des Lösungsmittels (Trägers) und nach dem Festwerden des Binders bei Raumtemperatur (ggfs. auch bei erhöhter Temperatur) als festes Netzwerk mit Verbindungsbrücken zwischen benachbarten Pulverteilchen.The final strength of the green body is achieved after the solvent (carrier) has been completely removed and after the binder has solidified at room temperature (possibly also at elevated temperature) as a solid network with connecting bridges between adjacent powder particles.

Die Tatsache, daß die Bindung der Pulverteilchen, eines mit dem anderen, durch die Bildung von lokalen Brücken gewährleistet wird, ist nicht nur vorteilhaft für die Entfernung der Lösungsmittel, sondern ist auch für den anschließenden Prozeß der Sinterung von großer Bedeutung.The fact that the binding of the powder particles, one with the other, is ensured by the formation of local bridges is not only advantageous for the removal of the solvents, but is also of great importance for the subsequent sintering process.

Nach Bildung des Grünkörpers wird dieser einer thermisch aktivierten Entbinderungs- und Sinterbehandlung unterzogen. Dabei wird der Grünkörper zur Entfernung des Binders erhitzt. Dieser Entbinderungsprozeß ist nicht auf ein bestimmtes Zeit-Temperatur-Programm beschränkt (Profile, Zeifolgen, Zyklen), obwohl einige Teilschritte erforderlich sind, um eine vollständige Binderentfernung zu ermöglichen. Eine typische Verfahrensweise besteht darin, daß die Grünkörper mit einer Rate von 3 - 10°C/min auf eine Temperatur im Bereich von 280 bis 420 ° C aufgeheizt und je nach der Größe des Körpers auf dieser Temperatur bis zur Entfernung des Binders gehalten wird. Anschließend wird der Körper auf Sintertemperatur bis mit einer Rate von > 10°C/min aufgeheizt.After the green body has been formed, it is subjected to a thermally activated debinding and sintering treatment. The green body is heated to remove the binder. This debinding process is not restricted to a specific time-temperature program (profiles, sequences, cycles), although a few partial steps are required to enable complete binder removal. A typical procedure is that the green body is heated at a rate of 3-10 ° C./min to a temperature in the range from 280 to 420 ° C. and, depending on the size of the body, is kept at this temperature until the binder is removed. The body is then heated to sintering temperature up to a rate of> 10 ° C / min.

Die besten Entbinderungsergebnisse erhält man in der Regel unter Fein- bis Hochvakuumbedingungen, wenn auch ein beachtlicher Entwachsungsumfang bei Atmosphärendruck oder leichtem Vakuum stattfindet. Eine Entbinderung unter strömender Gasatmosphäre ist ebenso möglich.The best debinding results are usually obtained under fine to high vacuum conditions, although there is a considerable amount of dewaxing at atmospheric pressure or a light vacuum. Debinding under a flowing gas atmosphere is also possible.

Die Unemfpindlichkeit des Entbinderungsprozesses auf den speziellen thermischen Zyklus als auch die Möglichkeit relativ hohe Heizraten zu verwenden liegt primär an zwei Faktoren:

  • a. der geringe Volumenanteil des Binders hat eine offene Struktur zwischen den Teilchen zur Folge. Diese gewährleistet für die Dämpfe, die von dem sich zersetzenden Binder stammen, einen unbehinderten Weg aus dem Grünkörper. b. die intrinsichen Eigenschaften des Binders, der, wenn er über den Schmelzpunkt erhitzt wird, in ein hoch-viskoses Produkt polymerisiert, so daß die netzwerkartige Struktur zwischen den Teilchen und die damit verbundene Form des Grünkörpers bestehen bleibt.
The insensitivity of the debinding process to the special thermal cycle as well as the possibility to use relatively high heating rates is primarily due to two factors:
  • a. the low volume fraction of the binder results in an open structure between the particles. This guarantees an unobstructed path out of the green body for the vapors that come from the decomposing binder. b. the intrinsic properties of the binder, which, when heated above the melting point, polymerizes into a highly viscous product, so that the network-like structure between the particles and the associated shape of the green body remains.

Hohe Temperaturen fördern das schnelle Aufspalten des Binders in einen Dampf, der außerhalb des Grünkörpers entweder in der Atmosphäre oder abgepumpt von einem Vakuumsystem sublimiert. Das Aufspalten und Entfernen dauert so lange, bis der Binder herausgebrannt ist.High temperatures promote the rapid splitting of the binder into a vapor that sublimes outside the green body either in the atmosphere or pumped out by a vacuum system. The splitting and removal takes until the binder has burned out.

Die Tatsache, daß die Festigkeit des entbinderten Grünkörpers ausreichend ist, um eine weitere Handhabbarkeit zu gewährleisten, liegt an möglichen Binder-Spaltungsrückständen, die die Pulverteilchen in der jeweiligen Lage halten.The fact that the strength of the debindered green body is sufficient to ensure further manageability is due to possible binder cleavage residues which hold the powder particles in the respective position.

Als Material für die herzustellenden Werkstükke können Materialien, wie Superlegierungen, Edelstahl, Titanlegierungen und Aluminiumlegierungen, Eisenwerkstoffe, keramische Pulver z.B. Zirkonoxid, Chromoxid, Lathanoxid, Perovskite, Aluminiumoxid, Siliziumoxid vorgesehen werden. Als Binder sind Wachs, Schellak, PMMA und als Lösungsmittel Alkohol, Trichlorethylen, Toluen (Toluol) zu nennen.Materials such as super alloys, stainless steel, titanium alloys and aluminum alloys, iron materials, ceramic powders, for example, can be used as the material for the workpieces to be produced. Zirconium oxide, chromium oxide, lathan oxide, perovskite, aluminum oxide, silicon oxide can be provided. Wax, shellac, PMMA and alcohol, trichlorethylene, toluene (toluene) are mentioned as binders.

Das Sintern der nach dem erfindungsgemäßen Verfahren hergestellten Grünkörper wurde unter Verwendung von spezifischen, bekannten Schemen für jedes Material durchgeführt. Dichtemessungen zeigten, daß die Sinterfähigkeit der Materialien nicht vom Verfahren selbst beeinflußt wird. Das Endprodukt kann bis zur geschlossenen Porosität gesintert werden. Die gesinterten Teile mit geschlossener Porosität können deshalb containerlos bis zur theoretischen Dichte durch HIP kompaktiert werden.The sintering of the green bodies produced by the process according to the invention was carried out using specific, known schemes for each material. Density measurements showed that the sinterability of the materials is not affected by the process itself. The end product can be sintered to a closed porosity. The sintered parts with closed porosity can therefore be compacted containerless up to the theoretical density by HIP.

Chemische Analysen von Endprodukten, die nach dem erfindungsgemäßen Verfahren erzeugt wurden, zeigten keinen Konzentrationsanstieg von Veruneinigungselementen die mit der chemischen Zusammensetzung des Binders in Verbindung standen, wie Sauerstoff, Kohlenstoff, Stickstoff und Wasserstoff. Die gesamte Zusammensetzung lag im Rahmen der nominellen Konzentrationen der Ausgangsprodukte.Chemical analyzes of end products produced by the method according to the invention showed no increase in the concentration of contaminants related to the chemical composition of the binder, such as oxygen, carbon, nitrogen and hydrogen. The overall composition was within the nominal concentrations of the starting products.

Ausführungsbeispiel Nr. 1Embodiment 1

  • 1. Werkstoff Pulver:
    • Ni-Basis-Superlegierung (2.4636)
    • Teilchengröße: 100 um
    • Masse: 100 g
    • Volumen: 12,6 ml (berechnet aus der theor.
    • Dichte)
    • Lösungsmittel
    • (Träger): Alkohol (Ethanol)
    • Volumen (20 °C): 50 ml
    • Masse: 39,5g
    • Binder:
    • Schellack
    • Masse: 2g
    • Volumen: 1,8 ml (berechnet)
    • Gewichtsanteil Binder:
    • 0,014 (1.4 %)
    • Volumenanteil Binder:
    • 0,028 (2.8 %)
    1. Material powder:
    • Ni-based superalloy (2.4636)
    • Particle size: 100 µm
    • Weight: 100 g
    • Volume: 12.6 ml (calculated from the theor.
    • Density)
    • solvent
    • (Carrier): alcohol (ethanol)
    • Volume (20 ° C): 50 ml
    • Weight: 39.5g
    • Binder:
    • shellac
    • Weight: 2g
    • Volume: 1.8 ml (calculated)
    • Binder weight fraction:
    • 0.014 (1.4%)
    • Binder volume fraction:
    • 0.028 (2.8%)
  • 2. Mischung der Komponenten
    Die Werkstoffe wurden in einem Taumelmischer für 2 Stunden gemischt.
    2. Mixing the components
    The materials were mixed in a tumble mixer for 2 hours.
  • 3. Gießen (Formfüllung) und Trocknung
    Die Mischung wurde in eine zweiteilige stabile Teflonform gegossen, die aus zwei exzentrisch zueinander angeordneten Zylindern (20 und 10 mm φ und 10 bzw. 15 mm Länge) bestand. Das Produkt erreichte nach 14 h Trockenzeit in der Luft oder nach 4 h Trocknung im Exsikkator hohe Festigkeit, so daß die Handhabung gut möglich ist.
    3. Pouring (mold filling) and drying
    The mixture was poured into a two-part stable Teflon mold, which consisted of two eccentrically arranged cylinders (20 and 10 mm φ and 10 or 15 mm in length). The product reached high strength after 14 hours of drying time in the air or after 4 hours of drying in a desiccator, so that handling is easy.
  • 4. Entbinderung und Sinterung Entbinderung und Sinterung wurden im selben Ofen in einem kontinuierlichen Zyklus folgendermaßen durchgeführt:
    • 1) Aufheizen von Raumtemperatur auf 350°C mit 3 ° C/min (1,9h).
    • 2) Halten bei 350 °C für 3 h.
    • 3) Aufheizen von 350°C auf 900°C mit 10 ° C/min (0,9 h).
    • 4) Halten bei 900 °C für 3 h.
    • 5) Aufheizen von 900°C auf 1265°C mit 10 ° C/min (0,6 h).
    • 6) Halten bei 1265°C für 3 h.
    Der Druck im Ofen wurde dabei zwischen 10-5 und 10-4 mbar gehalten. Die Gesamtprozeßzeit betrug 12,4 h.
    4. Debinding and sintering Debinding and sintering were carried out in the same furnace in a continuous cycle as follows:
    • 1) Heating from room temperature to 350 ° C at 3 ° C / min (1.9h).
    • 2) Hold at 350 ° C for 3 h.
    • 3) Heating from 350 ° C to 900 ° C at 10 ° C / min (0.9 h).
    • 4) Hold at 900 ° C for 3 h.
    • 5) Heating from 900 ° C to 1265 ° C at 10 ° C / min (0.6 h).
    • 6) Hold at 1265 ° C for 3 h.
    The pressure in the furnace was kept between 10- 5 and 10- 4 mbar. The total process time was 12.4 hours.
  • 5. Dichte und chem. Analyse
    Die Dichte des gesinterten Teiles war 96 % der theor. Dichte (Archimedische Methode) des Werkstoffes und die chem. Analyse erbrachte keine Abweichung von der Nominalzusammensetzung dieses Werkstoffes. Ausführungsbeispiel Nr. 2
    5. Density and chem. analysis
    The density of the sintered part was 96% of the theoretical density (Archimedean method) of the material and the chem. Analysis showed no deviation from the nominal composition of this material. Embodiment 2
  • 1. Werkstoff
    • Pulver:
    • Ti6A14V
    • Teilchengröße: +53 -180 um
    • Masse: 275 g
    • Volumen: 62.2 ml (berechnet aus der theor.
    • Dichte)
    • Lösungmittel (Träger):
    • Alkohol (Ethanol)
    • Volumen (20 °C): 50 ml
    • Masse: 39.5 g
    • Binder:
    • Schellak
    • Masse: 3g
    • Volumen: 2.75 ml (berechnet)
    • Gewichtsanteil Binder:
    • 0,009 (0.9 %)
    • Volumenanteil Binder:
    • 0,027 (2.7 %)
    1. Material
    • Powder:
    • Ti6A14V
    • Particle size: +53-180 µm
    • Weight: 275 g
    • Volume: 62.2 ml (calculated from the theor.
    • Density)
    • Solvent (carrier):
    • Alcohol (ethanol)
    • Volume (20 ° C): 50 ml
    • Weight: 39.5 g
    • Binder:
    • Shellac
    • Weight: 3g
    • Volume: 2.75 ml (calculated)
    • Binder weight fraction:
    • 0.009 (0.9%)
    • Binder volume fraction:
    • 0.027 (2.7%)
  • 2. Mischung der Komponenten
    Wie 2. in Ausführungsbeispiel Nr. 1
    2. Mixing the components
    Like 2nd in embodiment no. 1
  • 3. Gießen (Formfüllung) und Trocknung3. Pouring (mold filling) and drying

Die Mischung wurde in eine vierteilige stabile Teflonform gegossen, mit den Maßen 80x20x1 mm. Das Produkt erreichte nach 2 h Trockenzeit in Luft hohe Festigkeit, so daß Handhabung gut möglich ist.The mixture was poured into a four-part stable Teflon mold, measuring 80x20x1 mm. After 2 hours of drying in air, the product achieved high strength, making handling easy.

4. Entbinderung und Sinterung

  • 1) Aufheizen von Raumtemperatur auf 350°C mit 25 ° C/min (0,22 h).
  • 2) Halten bei 350 °C für 1 h.
  • 3) Aufheizen von 350°C auf 1100°C mit 100°C /min (0,12 h).
  • 4) Halten bei 1100°C für 20 Minuten (0,33 h).
  • 5) Argonfüllung auf 400 mbar Druck.
  • 6) Aufheizen von 1100°C auf 1600°C mit 100 ° C/min (0,1 h).
  • 7) Halten bei 1600°C für 2,5 h.
4. Debinding and sintering
  • 1) Heating from room temperature to 350 ° C at 25 ° C / min (0.22 h).
  • 2) Hold at 350 ° C for 1 h.
  • 3) Heating from 350 ° C to 1100 ° C at 100 ° C / min (0.12 h).
  • 4) Hold at 1100 ° C for 20 minutes (0.33 h).
  • 5) Argon filling at 400 mbar pressure.
  • 6) Heating from 1100 ° C to 1600 ° C at 100 ° C / min (0.1 h).
  • 7) Hold at 1600 ° C for 2.5 h.

Die Gesamtprozeßzeit betrug 4.27 h.The total process time was 4.27 h.

5. Dichte und chem. Analyse5. Density and chem. analysis

Die Dichte des gesinterten Teiles war 92,5 % der theor. Dichte von Ti6A14V un die chem. Analyse ergab im Rahmen der Meßgenauigkeit die gleiche Zusammensetzung wie die des Ausgangspulvers.The density of the sintered part was 92.5% of the theoretical density of Ti6A14V and the chem. Analysis showed within the measurement accuracy the same composition as that of the starting powder.

Ausführungsbeispiel Nr. 3Embodiment 3

  • 1. Werkstoff Pulver:
    • Perovskite Lao.84 Sro.16 Mn03
    • Teilchengröße: +45 -90 um
    • Masse: 25 g
    • Lösungsmittel:
    • Alkohol (Ethanol)
    • Volumen 25 ml
    • Binder.
    • Schellack
    • Masse: 0.5 g
    • Substratdichte: Zr02-8Y Folie
    • 40 mm φ.
    1. Material powder:
    • Perovskite La o . 84 Sr o . 16 Mn0 3
    • Particle size: +45 -90 µm
    • Weight: 25 g
    • Solvent:
    • Alcohol (ethanol)
    • Volume 25 ml
    • Binder.
    • shellac
    • Weight: 0.5 g
    • Substrate density: Zr0 2 -8Y film
    • 40 mm φ.
  • 2. Mischung der Komponenten
    Wie 2 in Ausführungsbeispiel Nr. 1 und Nr. 2
    2. Mixing the components
    Like 2 in working example No. 1 and No. 2
  • 3. Anwendung der Mischung und Trocknung3. Application of the mixture and drying

Die Mischung wurde mit einer Bürste auf das Substrat aufgebracht. Die hierdurch erzeugte ca. 50 µm dicke Schicht wurde anschließend eine halbe Stunde an der Luft getrocknet.The mixture was applied to the substrate with a brush. The 50 µm thick layer produced in this way was then air-dried for half an hour.

4. Entbinderung und Sinterung4. Debinding and sintering

Enbinderung und Sinterung wurden im selben Ofen in einem kontinuierlichen Zyklus folgendermaßen durchgeführt:

  • 1) Aufheizen von Raumtemperatur auf 350°C mit 1 ° C/min (5.7 h)
  • 2) Halten bei 350 °C für 2 h.
  • 3) Aufheizen vo 350 ° C auf 1500 ° C mit 1 ° C/min (19.2 h)
  • 4) Halten bei 350 °C für 5 h.
  • 5. Ergebnis
Binding and sintering were carried out in the same furnace in a continuous cycle as follows:
  • 1) Heating from room temperature to 350 ° C at 1 ° C / min (5.7 h)
  • 2) Hold at 350 ° C for 2 h.
  • 3) Heating from 350 ° C to 1500 ° C at 1 ° C / min (19.2 h)
  • 4) Hold at 350 ° C for 5 h.
  • 5. Result

Metallopraphische Analyse der hergestellten Perovskiteschicht ergab eine deutlich sichtbare Haftung zum Zirkonoxidsubstrat. Außerdem konnte eine gleichmäßige poröse Struktur mit ausgeprägter Teilchenverbindung festgestellt werden.Metallographic analysis of the perovskite layer produced showed clearly visible adhesion to the zirconium oxide substrate. In addition, a uniform porous structure with a pronounced particle connection was found.

Claims (9)

1. Verfahren zum Herstellen dichter Sinterwerkstücke aus Metall, einer Metalllegierung oder aus keramischen Werkstoffen, bei dem zunächst aus einem Gemisch des als Pulver vorliegenden Metalls, der Metalllegierung oder des keramischen Werkstoffs und einem Binder ein Grünkörper geformt wird, dieser entbindert, gesintert und der Sinterkörper ggfs. durch Heißisostatisches Pressen (HIP-Verfahren) verdichtet wird,
dadurch gekennzeichnet,
daß zunächst das Gemisch derart aus dem Pulver, dem Binder, dessen Anteil im Gemisch so bemessen ist, daß er zur Verfestigung des Pulver-Binder-Gemischs zur Bildung des Grünkörpers ausreicht und dabei am Gemisch 2 bis 5 Vol% beträgt, und einem Lösungsmittel für den Binder gebildet wird, daß es als fließfähige, festflüssige Masse (Gießmasse) vorliegt, wonach diese Masse in die vorbestimmte Form gegossen, aufgetragen oder aufgesprayt und anschließend getrocknet wird, wobei das Lösungsmittel entweicht und der verbleibende Binder das Pulver-Binder-Gemisch verfestigt, so daß der Grünkörper gebildet wird, der anschließend entbindert und gesintert wird.
1. A method for producing dense sintered workpieces made of metal, a metal alloy or ceramic materials, in which a green body is first formed from a mixture of the metal present in powder form, the metal alloy or the ceramic material and a binder, which debinders, sintered and the sintered body if necessary, compacted by hot isostatic pressing (HIP process),
characterized,
that first the mixture of the powder, the binder, the proportion of which in the mixture is such that it is sufficient to solidify the powder-binder mixture to form the green body and is 2 to 5% by volume of the mixture, and a solvent for the binder is formed so that it is in the form of a flowable, solid, liquid mass (casting mass), after which this mass is poured into the predetermined shape, applied or sprayed on and then dried, the solvent escaping and the remaining binder solidifying the powder-binder mixture, so that the green body is formed, which is then debindered and sintered.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Masse unter gleichzeitiger gezielter Erschütterung der Form in diese eingeführt wird.
2. The method according to claim 1,
characterized,
that the mass is introduced into this while simultaneously shaking the form in a targeted manner.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die in der Form befindliche Gießmasse während des Trocknens einem Unterdruck ausgesetzt wird.
3. The method according to claim 1 or 2,
characterized,
that the casting compound in the mold is exposed to a negative pressure during drying.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die in der Form befindliche Gießmasse während des Trocknens temperiert wird.
4. The method according to any one of claims 1 to 3,
characterized,
that the casting compound in the mold is tempered during drying.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß aus unterschiedlichen Materialien gebildete Gemische nacheinander in die Form gegossen werden, so daß die Gießmasse und damit auch der anschließend gebildete Grünkörper aus übereinanderliegenden Schichten unterschiedlicher Zusammensetzung besteht.
5. The method according to any one of claims 1 to 4,
characterized, that mixtures formed from different materials are poured into the mold one after the other, so that the casting compound and thus also the subsequently formed green body consist of layers of different composition lying one above the other.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß das Gemisch über/oder um einen in die Form vorab eingebrachten Grünkörper oder ein bereits fertiges Werkstück eingefüllt wird.
6. The method according to any one of claims 1 to 5,
characterized,
that the mixture is filled in via / or around a green body previously introduced into the mold or an already finished workpiece.
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß der Grünkörper mit einer Rate von 3 bis 10°C/min auf eine Temperatur im Bereich von 280 bis 420°C aufgeheizt und je nach der Größe des gebildeten Körpers auf dieser Temperatur bis zur Entfernung des Binders gehalten wird.
7. The method according to any one of claims 1 to 6,
characterized,
that the green body is heated at a rate of 3 to 10 ° C / min to a temperature in the range from 280 to 420 ° C and, depending on the size of the body formed, is kept at this temperature until the binder is removed.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
daß der Grünkörper anschließend auf eine Sintertemperatur mit einer Rate von > 10°C /min aufgeheizt wird.
8. The method according to claim 7,
characterized,
that the green body is then heated to a sintering temperature at a rate of> 10 ° C / min.
9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß die Ausheizung unter Fein- bis Hochvakuumbedingungen erfolgt.
9. The method according to any one of claims 1 to 8,
characterized,
that the heating takes place under fine to high vacuum conditions.
EP92108827A 1991-06-22 1992-05-26 Process for preparing dense sintered articles Expired - Lifetime EP0525325B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4120706A DE4120706C2 (en) 1991-06-22 1991-06-22 Process for the production of porous or dense sintered workpieces
DE4120706 1991-06-22

Publications (2)

Publication Number Publication Date
EP0525325A1 true EP0525325A1 (en) 1993-02-03
EP0525325B1 EP0525325B1 (en) 1996-03-06

Family

ID=6434559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92108827A Expired - Lifetime EP0525325B1 (en) 1991-06-22 1992-05-26 Process for preparing dense sintered articles

Country Status (3)

Country Link
EP (1) EP0525325B1 (en)
AT (1) ATE134922T1 (en)
DE (2) DE4120706C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027551A1 (en) * 2000-06-02 2001-12-13 Thomas Hesse Porous or solid product molding process, in which a non-melting powder, solvent and beeswax binder are formed below the wax melting point
US6652804B1 (en) 1998-04-17 2003-11-25 Gkn Sinter Metals Gmbh Method for producing an openly porous sintered metal film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535444C2 (en) * 1995-01-20 1999-07-22 Scholz Paul Friedrich Dr Ing Process for the powder metallurgical manufacture of articles and articles produced in this way
DE19528031A1 (en) * 1995-07-31 1997-02-06 Krebsoege Sinterholding Gmbh Flat gasket made of metal
DE19716595C1 (en) * 1997-04-21 1998-09-03 Forschungszentrum Juelich Gmbh Thin metal inner layer with fine porosity for a pipe
DE19717460A1 (en) * 1997-04-25 1998-10-29 Karlsruhe Forschzent Directional solidification process especially for superconductive ceramic production
DE19722004A1 (en) * 1997-05-27 1998-12-03 Fraunhofer Ges Forschung Production of a metal or ceramic workpiece
DE19748742C1 (en) * 1997-11-05 1999-07-01 Karlsruhe Forschzent Melt-textured neodymium-barium-copper oxide high temperature superconductor production
DE19801440C2 (en) * 1998-01-16 2001-08-16 Forschungszentrum Juelich Gmbh Inexpensive method for producing an electrode-electrolyte unit
US5989493A (en) * 1998-08-28 1999-11-23 Alliedsignal Inc. Net shape hastelloy X made by metal injection molding using an aqueous binder
DE19841573C2 (en) * 1998-09-11 2000-11-09 Karlsruhe Forschzent Process for producing mechanically strong, electrically conductive connections between high-temperature superconductors (HTSL)
DE19936734C1 (en) * 1999-08-06 2001-02-15 Fraunhofer Ges Forschung Production of a metal or ceramic workpiece comprises pouring a metallic or ceramic slip into a porous casting mold with addition of filler under pressure to form a green body, removing the solvent, and removing the body from the mold
DE19963698A1 (en) 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Thin porous layer with open porosity and process for its production
DE102005024623B4 (en) * 2005-05-30 2007-08-23 Beru Ag Method for producing a ceramic glow plug for a glow plug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491559A (en) * 1979-12-31 1985-01-01 Kennametal Inc. Flowable composition adapted for sintering and method of making
EP0177209A2 (en) * 1984-10-01 1986-04-09 CDP, Ltd. Consolidation of a part from separate metallic components
EP0260101A2 (en) * 1986-09-09 1988-03-16 Mixalloy Limited Production of flat products from particulate material
WO1988007901A1 (en) * 1987-04-09 1988-10-20 Ceramic Systems Corporation Molding and precision forming using highly loaded systems
DE4037258A1 (en) * 1989-11-24 1991-05-29 Asea Brown Boveri Complicated metal or ceramic component prodn. - by vacuum slip casting of thixotropic powder slip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006493A (en) * 1986-03-31 1991-04-09 The Dow Chemical Company Novel ceramic binder comprising poly(ethyloxazoline)
US4882110A (en) * 1987-01-27 1989-11-21 Air Products And Chemicals, Inc. CO2 copolymer binder for forming ceramic bodies and a shaping process using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491559A (en) * 1979-12-31 1985-01-01 Kennametal Inc. Flowable composition adapted for sintering and method of making
EP0177209A2 (en) * 1984-10-01 1986-04-09 CDP, Ltd. Consolidation of a part from separate metallic components
EP0260101A2 (en) * 1986-09-09 1988-03-16 Mixalloy Limited Production of flat products from particulate material
WO1988007901A1 (en) * 1987-04-09 1988-10-20 Ceramic Systems Corporation Molding and precision forming using highly loaded systems
DE4037258A1 (en) * 1989-11-24 1991-05-29 Asea Brown Boveri Complicated metal or ceramic component prodn. - by vacuum slip casting of thixotropic powder slip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652804B1 (en) 1998-04-17 2003-11-25 Gkn Sinter Metals Gmbh Method for producing an openly porous sintered metal film
DE10027551A1 (en) * 2000-06-02 2001-12-13 Thomas Hesse Porous or solid product molding process, in which a non-melting powder, solvent and beeswax binder are formed below the wax melting point
DE10027551B4 (en) * 2000-06-02 2005-09-29 Hesse, Thomas, Dipl.-Ing. Process for the production of moldings from a plastically processable molding composition based on beeswax, solvents and sinterable powders and a use of the molding composition

Also Published As

Publication number Publication date
EP0525325B1 (en) 1996-03-06
DE4120706C2 (en) 1994-10-13
DE59205549D1 (en) 1996-04-11
ATE134922T1 (en) 1996-03-15
DE4120706A1 (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0525325B1 (en) Process for preparing dense sintered articles
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
DE1915977B2 (en) Process for the production of dentures and jewelry from metal powders
DE2027016A1 (en) Process for compacting metal or ceramic objects
WO2000006327A2 (en) Method for producing components by metallic powder injection moulding
DE2650982A1 (en) PROCESS FOR ISOSTATIC HOT COMPRESSION
WO1987000781A1 (en) Construction elements produced by powder metallurgy
EP1579934B1 (en) Process for the production of a muffle for investment casing or modell casting and composition of such a muffle
DE2208250B2 (en) Process for the production of an isostatically pressure-sintered body
DE4322084A1 (en) Process for the production of a setter
DE1150264B (en) Organic suspending agent in the manufacture of molded bodies to be sintered using the slip casting process
WO2018134202A1 (en) Method for producing hard metal bodies by means of 3d printing
DE2258485A1 (en) METHOD AND DEVICE FOR MANUFACTURING CASTING AND PRESSING FORMS
EP3145662B1 (en) Method for producing ceramic and/or metal components
EP0421084B1 (en) Method for making components by powder metallurgy
EP0151472B1 (en) Process for compacting porous ceramic parts for hot isostatic pressing
DE4037258A1 (en) Complicated metal or ceramic component prodn. - by vacuum slip casting of thixotropic powder slip
DE19717460A1 (en) Directional solidification process especially for superconductive ceramic production
DE19638927C2 (en) Process for the production of highly porous, metallic moldings
DE19730742C2 (en) Process for producing a silicon-containing non-oxide ceramic molded body or such a layer
DE3808123A1 (en) Process for producing sintered parts of finely particulate metal or ceramic powders
DE102014209085A1 (en) Production of a molded body from a dental alloy
DE3517494C2 (en)
DE2422425A1 (en) Stable refractory metal compact prodn - by directional solidification of the metal-binder mixture in slurry form
EP0446673A1 (en) Process for preparing a sintered article having a compact outer layer and a smooth surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19930528

17Q First examination report despatched

Effective date: 19941005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 134922

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59205549

Country of ref document: DE

Date of ref document: 19960411

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960521

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110525

Year of fee payment: 20

Ref country code: FR

Payment date: 20110603

Year of fee payment: 20

Ref country code: SE

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 20

Ref country code: AT

Payment date: 20110520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110419

Year of fee payment: 20

Ref country code: IT

Payment date: 20110527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205549

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120525

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 134922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120527