EP0518822B1 - Messeinrichtung für Gleisebaumaschinen - Google Patents

Messeinrichtung für Gleisebaumaschinen Download PDF

Info

Publication number
EP0518822B1
EP0518822B1 EP92810441A EP92810441A EP0518822B1 EP 0518822 B1 EP0518822 B1 EP 0518822B1 EP 92810441 A EP92810441 A EP 92810441A EP 92810441 A EP92810441 A EP 92810441A EP 0518822 B1 EP0518822 B1 EP 0518822B1
Authority
EP
European Patent Office
Prior art keywords
measuring device
sensors
light
lenses
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810441A
Other languages
English (en)
French (fr)
Other versions
EP0518822A1 (de
Inventor
Heinz Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matisa Materiel Industriel SA
Original Assignee
Matisa Materiel Industriel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matisa Materiel Industriel SA filed Critical Matisa Materiel Industriel SA
Publication of EP0518822A1 publication Critical patent/EP0518822A1/de
Application granted granted Critical
Publication of EP0518822B1 publication Critical patent/EP0518822B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the present invention relates to a measuring device for track construction machines according to the preamble of claim 1.
  • measuring devices are required in order to record the course of the track precisely and in particular to be able to adapt or correct it.
  • Such measuring devices conventionally consist of an optical measuring system which uses three reference points on the track track which are at a distance from one another in order to record the track course. For straight horizontal stretches, these three points must be in a line, in curves, for example, these three reference points must be at a certain offset from each other. This offset is measured and evaluated. According to the evaluation, the course of the track must then be corrected if necessary.
  • the conventional optical measuring devices have lens disks driven by motors, which project the light waves emitted by the two outer reference points by means of lamps at the middle reference point onto correspondingly arranged sensors.
  • the relative position of the two outer reference points in relation to the optical axis of the measuring device is conventionally determined and evaluated by means of time measurement (CH-B-510 171).
  • the object of the present invention was now to find a measuring device which does not require any moving parts and the wear and tear resulting therefrom and thus increasing measurement inaccuracies.
  • the measuring device according to the invention advantageously has no moving parts, which ensures that the measuring accuracy remains constant over the entire useful life of the device, since there is no wear on moving parts of the optics, which reduces the measuring accuracy depending on the useful life.
  • the measuring device can also be constructed very compactly and is insensitive to impacts and rough transport.
  • a sensor strip 4, 5 is arranged in the center of each of the optical axes 3 formed from two lenses 1, 2 which are semicircular in cross section. These strips are arranged in such a way that the light rays collected by the lenses are, depending on the position of the corresponding light sources, projected as a fine line of light along the sensor strips.
  • the light source A lying on the optical axis 3 is projected onto the point A 'of the sensor strip 5.
  • a light source B lying outside the optical axis 3 is correspondingly projected onto the point B 'of the sensor strip 5.
  • the distance of the projected point on the sensor strip from the point of the optical axis on the sensor strip is a measure of the angle ⁇ of the light source with respect to the optical axis to this point.
  • 2 color filters 6 and polarization filters 7, 8 are additionally mounted in front of the lens for filtering stray light. This means that only light from a specific light source falls on the sensor strips and a clear signal can be generated. Especially when using highly sensitive CCD (Charge Coupled Device) sensors, only a comparatively small amount of light may be incident on the sensors. By setting the two polarization filters 7, 8 rotated relative to one another by 90 °, a very large part of the incident light is absorbed. If very strong light sources are now used, only a weak part of these light beams are transmitted to the sensors and all other extraneous light sources are filtered out.
  • CCD Charge Coupled Device
  • the angles can one or more light sources on both sides of the measuring arrangement with respect to the optical axis are detected and evaluated.
  • the optical axis is actually one plane; for the complete measurement of the angle of the light source with respect to two optical planes, two of the measuring devices described are correspondingly necessary, the optical planes of which are rotated with respect to one another at a certain angle, preferably 90 °.
  • the measuring device described is doubled with two pairs of cylindrical lenses, preferably rotated by 90 ° relative to one another, with the correspondingly assigned sensor strip pairs for the purpose of determining the angle of incidence of the light in two optical planes, the measuring device thus doubled with a specific one about its optical longitudinal axis Angle, preferably 45 °, is rotated relative to a plane, for example a horizontal plane.
  • FIG. 2 The type of evaluation is illustrated in FIG. 2.
  • a sensor strip consists of 2000 individual light-sensitive cells. All cells are cyclically queried for their status from cell 0 to cell 2000 using pulse generator logic.
  • the first cell 0 is arranged at the opposite end of the sensor strip.
  • a certain voltage value is output as the state corresponding to the light intensity of the light falling on each individual cell.
  • both light sources A and C lie on the optical axis of the measuring device. The light beam collected by the optics illuminates cell 1000 on both sensor strips.
  • the counter is constructed in such a way that when a signal from both sensor strips arrives at the same time, the signal is suppressed.
  • the value of the counter reached after a complete interrogation cycle corresponds to the difference angle between the two relative angles of the light sources A and C from the optical axis, the sign determining the corresponding side of the angle, that is to say upwards or downwards.
  • the value of the counter is set to zero.
  • a direct relationship between the counter value and the relative angle can be determined in degrees and displayed by means of suitable means or processed in a further evaluation logic.
  • the advantage of direct measurement of the relative angle is in particular that it compensates for an offset in the optical axis. If the two light sources lie on an axis which leads through the optical center of the measuring device, 0 is correctly output as the difference angle.
  • the counter will start counting up after 500 pulses every polling cycle by means of a signal from the sensor strip 5. After a further 500 pulses, at the pulse number 1000, the counting process is stopped by a signal from the sensor strip 4.
  • the counter reading is accordingly 500 units, which corresponds to a certain angular value in degrees upwards between the connection of the light source C with the measuring device and the connection of the light source A with the measuring device. Finally, this value is used to check the measuring points and, if necessary, to correct the track layout.
  • CCD sensors instead of CCD sensors, other sensors, e.g. PSD (Position-Sensitive Detectors) sensors are used.
  • PSD Position-Sensitive Detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Messeinrichtung für Geleisebaumaschinen gemäss dem Oberbegriff des Anspruchs 1.
  • Bei der Erstellung neuer oder bei der Nachbearbeitung bestehender Geleiseanlagen, insbesondere für Eisenbahnen, werden Messeinrichtungen benötigt, um den Geleiseverlauf genau erfassen und insbesondere den Anforderungen anpassen oder korrigieren zu können. Derartige Messeinrichtungen bestehen herkömmlicherweise aus einem optischen Messystem, welches drei voneinander entfernte Referenzpunkte auf der Geleisespur verwendet, um den Geleiseverlauf zu erfassen. Für gerade horizontale Strecken müssen diese drei Punkte in einer Linie liegen, in Kurven beispielsweise müssen diese drei Referenzpunkte in einem bestimmten Versatz zueinander liegen. Dieser Versatz wird gemessen und ausgewertet. Entsprechend der Auswertung muss der Geleiseverlauf danach allenfalls korrigiert werden.
  • Die herkömmlichen optischen Messeinrichtungen weisen mittels Motoren angetriebene Linsenscheiben auf, welche die von den beiden äusseren Referenzpunkten mittels Lampen abgestrahlten Lichtwellen am mittleren Referenzpunkt auf entsprechend angeordnete Sensoren projizieren. Dabei wird herkömmlicherweise mittels Zeitmessung die relative Lage der beiden äusseren Referenzpunkte im Verhältnis zur optischen Achse der Messeinrichtung festgestellt und ausgewertet (CH-B-510 171).
  • Aus der DE-C-22 36 220 ist ein ähnliches Messystem bekannt, das mit einem rotierenden Prisma, einer verschiebbaren Blende und einem optischen Sensor mit einer geradlinigen Reihe von photoelektrischen Zellen arbeitet und bei welchem die Zeitdauer der Bestrahlung des Sensors zu beiden Seiten des Schattens der Blende gemessen wird.
  • Die Aufgabe der vorliegenden Erfindung lag nun darin, eine Messeinrichtung zu finden, welche ohne bewegliche Teile und den dadurch bedingten Verschleiss und damit wachsende Messungenauigkeiten auskommt.
  • Diese Aufgabe wird erfindungsgemäss durch die im Kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
  • Bevorzugte Ausführungsformen der Erfindung sind in den Ansprüchen 2 bis 12 beschrieben.
  • Die erfindungsgemässe Messeinrichtung weist vorteilhaft keine beweglichen Teile auf, womit eine über die gesamte Nutzungsdauer der Einrichtung gleichbleibende Messgenauigkeit gewährleistet wird, da kein Verschleiss an beweglichen Teilen der Optik auftritt, welcher in Abhängigkeit der Nutzungsdauer die Messgenauigkeit herabsetzt. Ebenfalls kann die Messeinrichtung sehr kompakt aufgebaut werden und ist unempfindlich gegen Stösse und rauhen Transport.
  • Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand von Zeichnungen noch näher erläutert.
  • Es zeigen :
    • Figur 1 die erfindungsgemässe Anordnung der Messoptik mit Sensorstreifen.
    • Figur 2 schematisch die Sensorstreifen mit verschiedenen Lichtquellenpositionen.
  • In der Mitte der aus zwei im Querschnitt halbkreisförmigen Linsen 1, 2 gebildeten optischen Achse 3 sind je ein Sensorstreifen 4, 5 angeordnet. Diese Streifen sind derart angeordnet, dass die durch die Linsen gesammelten Lichtstrahlen je nach Stellung der entsprechenden Lichtquellen als feiner Lichtstrich gebündelt entlang der Sensorstreifen projiziert werden. Im Beispiel wird die auf der optischen Achse 3 liegende Lichtquelle A auf die Stelle A′ des Sensorstreifens 5 projiziert. Eine ausserhalb der optischen Achse 3 liegende Lichtquelle B wird entsprechend auf den Punkt B′ des Sensorstreifens 5 projiziert. Der Abstand des projizierten Punktes auf dem Sensorstreifen vom Punkt der optischen Achse auf dem Sensorstreifen ist ein Mass für den Winkel β der Lichtquelle bezüglich der optischen Achse zu diesem Punkt. Zur Filterung von Störlicht sind erfindungsgemäss zusätzlich vor der Linse 2 Farbfilter 6 und Polarisationsfilter 7, 8 angebracht. Damit kann erreicht werden, dass nur Licht einer bestimmten Lichtquelle auf die Sensorstreifen fällt und ein eindeutiges Signal erzeugt werden kann. Insbesondere bei der Verwendung von hochempfindlichen CCD (Charge Coupled Device) - Sensoren darf nur noch eine verhältnismässig kleine Lichtmenge auf die Sensoren treffen. Indem die beiden Polarisationsfilter 7, 8 gegen 90° zueinander verdreht eingestellt werden, wird ein sehr grosser Teil des einfallenden Lichtes absorbiert. Wenn nun sehr starke Lichtquellen verwendet werden, so wird nur noch ein schwacher Teil dieser Lichtstrahlen auf die Sensoren durchgelassen und alle anderen Fremdlichtquellen werden ausgefiltert. Durch die Anordnung je einer Linse und eines Sensorstreifens auf jeder Seite der optischen Achse können die Winkel je einer oder mehrerer Lichtquellen zu beiden Seiten der Messanordnung bezüglich der optischen Achse erfasst und ausgewertet werden. In der dargestellten Ausführungsform ist die optische Achse eigentlich eine Ebene, für die vollständige Vermessung des Winkels der Lichtquelle bezüglich zweier optischen Ebenen sind sinngemäss zwei der geschilderten Messeinrichtungen notwendig, deren optische Ebenen in einem bestimmten Winkel, vorzugsweise 90°, zueinander verdreht angeordnet sind. Ebenfalls ist es aber auch denkbar, nur eine Messeinrichtung, welche um ihre optische Achse drehbar in einem Gehäuse gelagert ist, zu verwenden, und mit jeweils zwei zeitlich verschobenen Messungen die zwei Winkel zu erfassen oder quadratische Sensoren zu verwenden, welche bei entsprechender Optik, zum Beispiel Bikonvex-Linse, durch das punktförmig gebündelte Licht beide Achsen gleichzeitig misst.
  • Bei einer ebenfalls denkbaren Ausführungsform ist eine Verdoppelung der geschilderten Messvorrichtung mit je zwei um vorzugsweise 90° zueinander verdrehten Zylinderlinsenpaaren mit den entsprechend zugeordneten Sensorstreifenpaaren zwecks Bestimmung des Einfallswinkels des Lichts in zwei optischen Ebenen vorgesehen, wobei die so verdoppelte Messeinrichtung um ihre optische Längsachse mit einem bestimmten Winkel, vorzugsweise 45°, gegenüber einer Ebene, zum Beispiel einer horizontalen Ebene, verdreht angeordnet ist. Mit dieser Ausführungsform wird erreicht, dass mehrere in derselben Ebene liegenden Lichtquellen von den Sensorstreifen unterscheidbar erfasst und ausgewertet werden können.
  • Die Art der Auswertung wird anhand der Figur 2 verdeutlicht. Zur besseren Anschaulichkeit sind dabei die beiden Sensorstreifen mit ihrer Wirkfläche nebeneinander dargestellt. Ein Sensorstreifen besteht hier beispielsweise aus 2000 einzelnen lichtempfindlichen Zellen. Dabei werden alle Zellen zyklisch von Zelle 0 bis Zelle 2000 mittels einer Impulsgeberlogik auf ihren Zustand abgefragt. Die erste Zelle 0 ist dabei bei den hintereinander angeordneten Sensorstreifen 4, 5 am jeweils entgegengesetzten Ende des Sensorstreifens angeordnet. Als Zustand wird entsprechend der Lichtintensität des auf jede einzelne Zelle fallenden Lichtes ein bestimmter Spannungswert abgegeben. Im in Figur 2a dargestellten Beispiel liegen beide Lichtquellen A und C auf der optischen Achse der Messeinrichtung. Der jeweils durch die Optik gesammelte Lichtstrahl beleuchtet auf beiden Sensorstreifen die Zelle 1000. Dies bedeutet, dass bei der zyklischen Abfrage des Zustandes jeweils die Zellen 0 bis 999 und 1001 bis 2000 beider Sensorstreifen 4, 5 keine Spannung abgeben und jede der Zellen 1000 einen bestimmten Spannungswert abgibt. Die Abfragezyklen beider Sensorstreifen werden nun synchronisiert, und gleichzeitig ist noch ein Zählbaustein vorgesehen, welcher bei einem ersten positiven Signal einer Zelle des einen Sensorstreifens entsprechend dem Abfragezyklus mit dem Zählvorgang beginnt und beim zweiten Eintreffen eines Signals einer Zelle des anderen Sensorstreifens den Zählvorgang abbricht. Dabei wird die Zählrichtung, das heisst das Vorzeichen des Zählers, vom jeweiligen Sensorstreifen fest bestimmt. Beispielsweise lässt ein Signal des Sensorstreifens 4 den Zähler vorwärts zählen und ein Signal des Sensorstreifens 5 den Zähler rückwärts zählen. Der Zähler ist derart aufgebaut, dass bei gleichzeitigem Eintreffen eines Signales von beiden Sensorstreifen das Signal unterdrückt wird. So entspricht der nach einem vollständigen Abfragezyklus erreichte Wert des Zählers dem Differenzwinkel zwischen den beiden relativen Winkeln der Lichtquellen A und C von der optischen Achse, wobei das Vorzeichen die entsprechende Seite des Winkels bestimmt, also nach oben oder nach unten. Vor dem Beginn eines Abfragezykluses wird der Wert des Zählers jeweils auf Null gesetzt. Entsprechend der Anzahl und dem Abstand der Zellen auf dem Sensorstreifen und der Auslegung der Linsen kann ein direkter Bezug zwischen dem Zählerwert und dem relativen Winkel in Grad bestimmt und mittels geeigneter Mittel angezeigt oder in einer weiteren Auswertungslogik verarbeitet werden. Der Vorteil der direkten Messung des relativen Winkels liegt insbesondere darin, dass damit ein Versatz der optischen Achse ausgeglichen wird. Liegen nämlich die beiden Lichtquellen auf einer Achse, welche durch das optische Zentrum der Messeinrichtung führt, so wird als Differenzwinkel richtigerweise 0 ausgegeben.
  • Bei einer Lichtquellenanordnung bezüglich der Messeinrichtung entsprechend Figur 2b wird der Zähler nach 500 Impulsen jedes Abfragezyklus durch ein Signal des Sensorstreifens 5 mit dem Vorwärtszählen beginnen. Nach weiteren 500 Impulsen, bei der Impulszahl 1000, wird der Zählvorgang durch ein Signal des Sensorstreifens 4 gestoppt. Der Zählerstand beträgt demnach 500 Einheiten, was einem bestimmten Winkelwert in Grad gegen oben zwischen der Verbindung der Lichtquelle C mit der Messeinrichtung und der Verbindung der Lichtquelle A mit der Messeinrichtung entspricht. Dieser Wert wird schliesslich zur Kontrolle der Messpunkte und gegebenenfalls zur Korrektur der Linienführung der Geleise verwendet.
  • Anstelle von CCD-Sensoren können auch andere Sensoren, z.B. PSD (Position-Sensitive Detectors)-Sensoren verwendet werden.

Claims (12)

  1. Messeinrichtung für Geleisebaumaschinen, welche eine optische Empfangseinrichtung in Form von Sensoren (4, 5) mit jeweils mehreren lichtempfindlichen Punkten für den Empfang von Lichtwellen, die von auf beiden Seiten der Messeinrichtung im Abstand dazu befindlichen Lichtquellen (A, C) emittiert werden, zwei im Bereich zwischen den Lichtquellen und beiderseits der optischen Empfangseinrichtung angeordnete Linsensysteme (1, 2) sowie eine Auswertungseinrichtung aufweist, wobei jeder Lichtquelle (A, C) je wenigstens einer der Sensoren (4, 5) zugeordnet ist, welcher die von der betreffenden Lichtquelle emittierten und durch das betreffende Linsensystem einfallenden Lichtwellen empfängt, dadurch gekennzeichnet, dass beide Linsensysteme aus je einer ortsfesten Linse (1, 2) bestehen, deren optische Achsen zusammenfallen, dass die lichtempfindlichen Punkte jedes Sensors (4, 5) in einer Reihe derart angeordnet sind, dass die durch die jeweilige Linse (1, 2) einfallenden Lichtstrahlen entsprechend ihrem Eintrittswinkel auf die Linse auf eine entsprechende Zone des Sensors (4, 5) projiziert werden, und dass die Auswertungseinrichtung eine Auswertungslogik aufweist, welche die von den Sensoren (4, 5) erzeugten Signale zusammenführt und auswertet.
  2. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass vor den Linsen (1, 2) jeweils ein Farbglasfilter (6) positioniert ist.
  3. Messeinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass vor den Linsen (1, 2) zwei Polarisationsfilter (7, 8) positioniert sind.
  4. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensoren (4, 5) CCD (Charged Coupled Device)-Sensoren mit mehr als 1000 lichtempfindlichen Zellen sind.
  5. Messeinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die CCD-Sensoren (4, 5) farbtaugliche Sensoren mit mehreren Reihen lichtempfindlicher Zellen sind.
  6. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensoren (4, 5) PSD (Position-Sensitive Detectors)- Sensoren mit kontinuierlicher Signalübermittlung sind.
  7. Messeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Sensoren (4, 5) polydimensional sind.
  8. Messeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Linsen (1, 2) Zylinderlinsen mit Halbkreisquerschnitt, und damit linienförmiger Projektion der einfallenden Lichtstrahlen, vorgesehen sind.
  9. Messeinrichtung nach dem Anspruch 8, dadurch gekennzeichnet, dass parallel zu der Längsachse der Messeinrichtung eine zweite gleichartige Messeinrichtung vorgesehen ist, welche ihrerseits um ihre Längsachse mit annähernd 90° gegenüber der ersten Messeinrichtung verdreht angeordnet ist.
  10. Messeinrichtung nach dem Anspruch 9, dadurch gekennzeichnet, dass die Messeinrichtung um ihre Längsachse gegenüber einer von der Lage der Lichtquellen bestimmten Ausgangsebene bis zu 45° verdreht angeordnet ist.
  11. Messeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei der Verwendung von Flächen-Sensoren als Linsen (1, 2) runde Bikonvex-Linsen vorgesehen sind.
  12. Messeinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Auswertungseinrichtung eine Impulsgeberlogik, welche die Sensoren (4, 5) ansteuert, und eine Zähllogik vorhanden ist, welche die von den Sensoren erhaltenen Signale auswertet.
EP92810441A 1991-06-10 1992-06-09 Messeinrichtung für Gleisebaumaschinen Expired - Lifetime EP0518822B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1721/91 1991-06-10
CH1721/91A CH683109A5 (de) 1991-06-10 1991-06-10 Messeinrichtung für Geleisebaumaschinen.

Publications (2)

Publication Number Publication Date
EP0518822A1 EP0518822A1 (de) 1992-12-16
EP0518822B1 true EP0518822B1 (de) 1995-11-08

Family

ID=4217052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810441A Expired - Lifetime EP0518822B1 (de) 1991-06-10 1992-06-09 Messeinrichtung für Gleisebaumaschinen

Country Status (4)

Country Link
US (1) US5255066A (de)
EP (1) EP0518822B1 (de)
CH (1) CH683109A5 (de)
DE (1) DE59204233D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798347B1 (fr) 1999-09-09 2001-11-30 Matisa Materiel Ind Sa Vehicule de mesure de l'etat geometrique d'une voie ferree
US6804621B1 (en) * 2003-04-10 2004-10-12 Tata Consultancy Services (Division Of Tata Sons, Ltd) Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections
DE102008062458B4 (de) * 2007-12-20 2016-01-14 Hochschule Magdeburg-Stendal (Fh) Messverfahren zur laserbasierten Vermessung von Werkstücken, Baugruppen und Werkzeugen
ES2646607T3 (es) 2014-06-27 2017-12-14 Hp3 Real Gmbh Dispositivo para medir vías férreas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT324391B (de) * 1971-10-08 1975-08-25 Plasser Bahnbaumasch Franz Einrichtung zur feststellung der abweichung der lage eines gleises von seiner soll-lage
US4180322A (en) * 1978-05-01 1979-12-25 Alcyon Equipment S.A. Interior measurement of enclosed spaces
CH657881A5 (de) * 1980-11-04 1986-09-30 Canron Inc Crissier Verfahren und vorrichtung zur vermessung der lage eines eisenbahngleises.
AT379432B (de) * 1983-06-24 1986-01-10 Voest Alpine Ag Einrichtung zur kontrolle der position einer streckenvortriebsmaschine
JPH0685387B2 (ja) * 1986-02-14 1994-10-26 株式会社東芝 位置合わせ方法
US4936678A (en) * 1988-03-21 1990-06-26 The Ohio State University Position detection system for use with agricultural and construction equipment
JPH0269641A (ja) * 1988-09-05 1990-03-08 Tokyo Electron Ind Co Ltd 被測定物の反射光取込み装置
US5000564A (en) * 1990-03-09 1991-03-19 Spectra-Physics, Inc. Laser beam measurement system

Also Published As

Publication number Publication date
EP0518822A1 (de) 1992-12-16
DE59204233D1 (de) 1995-12-14
US5255066A (en) 1993-10-19
CH683109A5 (de) 1994-01-14

Similar Documents

Publication Publication Date Title
DE2325457C3 (de) Vorrichtung zum Messen der Dicke eines transparenten Objektes
DE3728210C2 (de)
DE2952106A1 (de) Lichtelektrische inkrementale positioniereinrichtung
DE2431206A1 (de) Vorrichtung zum optischen lesen einer beugungsspur
DE3905730C2 (de) Positionsmeßeinrichtung
DE2913410C2 (de) Lichtelektrische Meßeinrichtung
DE4444079A1 (de) Verfahren und Vorrichtung zur Durchführung dieses Verfahrens zum Messen einer Lage von Bahnen oder Bogen
DE2404972A1 (de) Vorrichtung zur ermittlung von fehlstellen auf der oberflaeche eines bewegten reflektierenden materials
WO1996026417A1 (de) Vorrichtung und verfahren zum messen einer lage einer kante von bahnen oder bogen
DE2847610A1 (de) Verfahren und vorrichtung zur kontrolle der raender von bedrucktem material auf zentrierung des druckbildes in bezug auf den drucktraeger
EP0518822B1 (de) Messeinrichtung für Gleisebaumaschinen
CH671838A5 (de)
DE3203788C2 (de)
DE2808360B2 (de) Optische Vorrichtung zur Bestimmung des Lichtaustrittswinkels
DE2931818C2 (de) Vorrichtung zur Erfassung der Einfallsrichtung elektromagnetischer, insbesondere optischer Strahlung
DE2526110C3 (de) Vorrichtung zum Messen kleiner Auslenkungen eines Lichtbündels
EP0600048B1 (de) Verfahren zur messung von relativen winkeln
DE2340688C3 (de) Lesevorrichtung für optisch erfaßbare digitale Codierungen
EP0626564B1 (de) Lichtelektrische Längen- oder Winkelmesseinrichtung
DE3342721A1 (de) Fotodetektor-system zum feststellen bzw. messen der position einer oder mehrerer lichtquellen
EP0225625A2 (de) Einrichtung zur Bestimmung der Orte von Lichtflecken auf einem flächenhaften Lichtsensor
DE2922163A1 (de) Optische vorrichtung zur bestimmung der guete einer oberflaeche
DE2043876A1 (de) Anordnung zur Erfassung von Fehlern in durchsichtigen Bahnen
DE3526302A1 (de) Automatische vorrichtung zur ermittlung der lage des schussfadens und/oder der fluchtung der maschen bei wirk- und webwarenbahnen sowie zum steuern von schussrichtgeraeten
DE9013877U1 (de) Einrichtung zur Erfassung der Bewegung strukturierter Objekte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930320

17Q First examination report despatched

Effective date: 19940418

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59204233

Country of ref document: DE

Date of ref document: 19951214

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960208

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100705

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59204233

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59204233

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120608