EP0518310B1 - High-frequency power divider/combiner circuit - Google Patents

High-frequency power divider/combiner circuit Download PDF

Info

Publication number
EP0518310B1
EP0518310B1 EP92109809A EP92109809A EP0518310B1 EP 0518310 B1 EP0518310 B1 EP 0518310B1 EP 92109809 A EP92109809 A EP 92109809A EP 92109809 A EP92109809 A EP 92109809A EP 0518310 B1 EP0518310 B1 EP 0518310B1
Authority
EP
European Patent Office
Prior art keywords
lines
individual gates
individual
inner conductor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92109809A
Other languages
German (de)
French (fr)
Other versions
EP0518310A1 (en
Inventor
Thomas Dipl.-Ing. Jöst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP0518310A1 publication Critical patent/EP0518310A1/en
Application granted granted Critical
Publication of EP0518310B1 publication Critical patent/EP0518310B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Definitions

  • the invention relates to a circuit according to the preamble of the main claim.
  • Bridge circuits of this type are known (Meinke / Gundlach: Taschenbuch der Hochfrequenztechnik, 3rd ed., P. 1444 ff).
  • the transformation elements of such bridges can be constructed either from concentrated transformation elements or from line elements, for example ⁇ / 8 or ⁇ / 4 lines. In a so-called Wilkinson coupler, the transformation elements are, for example, ⁇ / 4-long lines.
  • Such bridge circuits are used in high-frequency technology primarily for the parallel connection of high-frequency transmitters. Load balancing resistors are required for broadband decoupling of the individual gates.
  • such a resistor is connected between the two individual gates, in the case of a triple or multiple Wilkinson coupler between the individual gates and a common star point or a corresponding polygon.
  • the load balancing resistors are arranged, for example, symmetrically to the ground potential in terms of voltage. It is also known to connect the load balancing resistors to ground on one side and to connect them to the individual gates via additional lines (DE 37 02 896).
  • the individual gates can be spatially arranged at a distance that is most favorable for the respective application, the actual load balancing resistor is connected to the individual gates via correspondingly long lines, the length of these lines being based only on the desired distance between the individual gates. Since these cables of any length result in a corresponding resistance transformation, their wave impedance is dimensioned in relation to ground and the complex load balancing resistor connected at its ends so that the complex resistance transformed through these cables to the individual gates corresponds to the complex resistance value which is necessary for broadband decoupling of the individual gates is needed.
  • This resistance value is calculated in a known manner according to the design regulations for the corresponding couplers; it corresponds to the resistance value which is calculated under the ideal assumption of individual gates which are spatially close together. It is therefore only necessary to dimension the complex load balancing resistor connected to the lines in such a way that the desired broadband decoupling of the individual gates is achieved.
  • the measure according to the invention is suitable both for bridges with high-level load balancing resistors and for bridges in which they are pulled down to ground on one side. Furthermore, it is advantageous to take the compensation measures required for maintaining a broadband transformation of the bridge at the sum gate or at the individual gates in line technology train and take advantage of the additional connection lines of the load balancing resistor.
  • a bridge according to the invention has proven to be particularly advantageous to design a bridge according to the invention using stripline technology (microstrip, suspended stripline, triplate technology or the like), since this results in a particularly simple and reproducible overall structure.
  • stripline technology microstrip, suspended stripline, triplate technology or the like
  • ⁇ / 4-long transformation lines are implemented in stripline technology compared to a ground plane
  • the actual supply lines for bridging the distance between the individual gates are also implemented in stripline technology
  • the connecting lines for the one or more of the individual gates remote complex load balancing resistors are formed by coaxial lines which are electrically conductively connected to the strip lines.
  • a bridge according to the invention also has the advantage that the load balancing resistors can be attached at locations where they can be optimally cooled.
  • a bridge according to the invention is therefore suitable for any desired performance with the smallest space requirement.
  • Fig. 1 shows a double Wilkinson coupler consisting of two at the average operating frequency approximately ⁇ / 4-long transformation lines L, the outer conductors are on both sides to ground M and the inner conductors are combined at one end in a summation point S and their other ends are connected to the two individual gates E1 and E2.
  • the complex load balancing resistor Z required for the broadband decoupling between the individual gates E1 and E2 in accordance with the known dimensioning regulations is formed in the exemplary embodiment according to FIG. 1 by a high-voltage complex resistance component Z1, which is arranged via coaxial lines L1 and L2 with any spacing between them Single gates E1 and E2 is connected.
  • the outer conductors of these two lines L1, L2 are again connected to ground M on both sides, their inner conductor is connected to the resistance element Z1 or to the individual gates E1, E2.
  • the length and the impedance of these lines L1, L2 depend on the spatial distance between the two individual gates E1, E2, the complex resistance element Z1 is dimensioned such that the desired complex by transforming the lines L1, L2 at the individual gates E1, E2 Load balancing resistance value Z appears.
  • Fig. 2 and 3 show two further embodiments for the arrangement of a single (Fig. 2) or two parallel (Fig. 3) load balancing resistors in turn in a 2-way Wilkinson coupler, in which the individual gates E1 and E2 again in one any spatial distance from each other are arranged.
  • the outer conductor of a coaxial cable L4 of any length is connected to the individual gate E1
  • the inner conductor I4 of which ends near the second individual gate E2 is connected to the individual gate E2 via a reactance Z3, for example a capacitor.
  • the coaxial cable connected to the outer conductor at E1 also sits in one any length of line section L5, whose inner conductor I5 is connected to a complex resistance element Z2, which is connected between this inner conductor I5 and the outer conductor of this line section L5 and which is preferably connected to ground M on one side.
  • a ground area M4 is provided, which together with the outer conductor of the line section L4 forms a high-frequency line with a corresponding characteristic impedance.
  • the complex resistor Z2 is transformed via the coaxial cable L5, L4 to the reactance Z3 (it thus acts between the inner conductor I4 and the outer conductor of the coaxial cable L4) and is then transformed by the line system L4 / M4 to the individual gate E1, so that between the individual gates E1 and E2 the series connection of this transformed resistance element Z2 and the reactance Z3 acts.
  • the complex load balancing resistance Z required for the decoupling can be generated again between the individual gates E1 and E2.
  • two electrically connected load balancing resistors Z2 and Z2 ' are provided, each using the same connection technology as in FIG. 2 with a reactance Z3 arranged between lines L4 and L4', for example again a capacitor.
  • the two complex resistors Z2 and Z2 ' are transformed via line sections L5 + L4 and L5' + L4 'to reactance Z3 and then via line system L4 / M4 or L4 '/ M4' to the individual gates E1 and E2, by appropriate selection of the resistors Z2 and Z2 ', the desired load balancing resistance Z between the individual gates E1 and E2 can be realized in this way.
  • the line systems L4, L5 or L4 ', L5' can also be used to compensate for the frequency dependence of the line transformation by the ground area M4 below the outer conductor of the line L4 via the connection of the single gate E1 or E2 to a below the line section L5 or .
  • L5 'extending ground surface M5 or M5' is extended and the outer conductor of the line section L5 or L5 'is galvanically connected at a predetermined distance 1 from the associated single gate E1 or E2 to the ground surface M5 or M5' (short circuit M6 or M6 ′).
  • the bridge circuits shown in the figures in coaxial line technology according to the invention can be constructed in a particularly simple and space-saving manner in strip line technology, a mixed technology being advantageous, for example by using the lines L and the line system L4 / M4 or L4 '/ M4' and optionally L5 / M5 or L5 '/ M5' are built using stripline technology, while the transformation lines L4, L5 or L4 ', L5' are designed as coaxial lines that are soldered onto the striplines of the stripline system.

Description

Die Erfindung betrifft eine Schaltung laut Oberbegriff des Hauptanspruches.The invention relates to a circuit according to the preamble of the main claim.

Brückenschaltungen dieser Art sind bekannt (Meinke/Gundlach: Taschenbuch der Hochfrequenztechnik, 3. Aufl., S. 1444 ff). Die Transformtionsglieder solcher Brücken können entweder aus konzentrierten Transformationselementen oder aus Leitungselementen, beispielsweise λ/8- oder λ/4-Leitungen aufgebaut sein. Bei einem sogenannten Wilkinson-Koppler sind die Transformationsglieder beispielsweise λ/4-lange Leitungen. Solche Brückenschaltungen werden in der Hochfrequenztechnik vor allem zum Parallelschalten von Hochfrequenzsendern benutzt. Zur breitbandigen Entkopplung der Einzeltore sind hierbei Lastausgleichswiderstände nötig. Bei einem Zweifach-Wilkinson-Koppler ist beispielsweise ein solcher Widerstand zwischen die beiden Einzeltore geschaltet, bei einem Drei- oder Mehrfach-Wilkinson-Koppler zwischen den Einzeltoren und einem gemeinsamen Sternpunkt oder einem entsprechenden Vieleck. Die Lastausgleichswiderstände sind z.B. symmetrisch zum Massepotential spannungsmäßig hochliegend angeordnet. Es ist auch schon bekannt, die Lastausgleichswiderstände einseitig an Masse anzuschalten und über zusätzliche Leitungen mit den Einzeltoren zu verbinden (DE 37 02 896). All diesen bekannten Brücken ist jedoch der Nachteil gemeinsam, daß die Einzeltore räumlich möglichst eng nebeneinander angeordnet sein müssen, damit dort ohne Verbindungsdrähte, die bei diesen Frequenzen nur als störende Induktivitäten wirken würden, der Lastausgleichswiderstand angeschlossen werden kann, durch die angeschalteten Lastausgleichswiderstände also keine parasitäten Impedanzen oder störenden Transformationen auftreten (siehe beispielsweise Zinke, Brunswig, Lehrbuch der Hochfrequenztechnik, Bd. II, S. 182, Abb. 4.12/2a und b;
IEEE Transactions on Microwave Theory and Techniques, January 1965, s. 92 bis 95, insbesondere Fig. 1, 2, 4, 6 und 8;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, February 1968, S. 110;
IRE Transactions on Microwave Theory and Techniques, January 1960, S. 116;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 3. March 1981, S. 189 bis 191).
Bridge circuits of this type are known (Meinke / Gundlach: Taschenbuch der Hochfrequenztechnik, 3rd ed., P. 1444 ff). The transformation elements of such bridges can be constructed either from concentrated transformation elements or from line elements, for example λ / 8 or λ / 4 lines. In a so-called Wilkinson coupler, the transformation elements are, for example, λ / 4-long lines. Such bridge circuits are used in high-frequency technology primarily for the parallel connection of high-frequency transmitters. Load balancing resistors are required for broadband decoupling of the individual gates. In the case of a double Wilkinson coupler, for example, such a resistor is connected between the two individual gates, in the case of a triple or multiple Wilkinson coupler between the individual gates and a common star point or a corresponding polygon. The load balancing resistors are arranged, for example, symmetrically to the ground potential in terms of voltage. It is also known to connect the load balancing resistors to ground on one side and to connect them to the individual gates via additional lines (DE 37 02 896). All these known bridges, however, have the disadvantage in common that the individual gates must be arranged as closely as possible next to one another so that the load balancing resistor cannot be connected by connecting the load balancing resistors without connecting wires, which would only act as disturbing inductors at these frequencies Impedances or disruptive transformations occur (see for example Zinke, Brunswig, Textbook of High Frequency Technology, Vol. II, p. 182, Fig. 4.12 / 2a and b;
IEEE Transactions on Microwave Theory and Techniques, January 1965, p. 92 to 95, in particular Figures 1, 2, 4, 6 and 8;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, February 1968, p. 110;
IRE Transactions on Microwave Theory and Techniques, January 1960, p. 116;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 3 March 1981, pp. 189 to 191).

Es ist Aufgabe der Erfindung, eine Brücke der eingangs erwähnten Art zu schaffen, bei der die Einzeltore in beliebigem räumlichen Abstand voneinander angeordnet sein können.It is an object of the invention to provide a bridge of the type mentioned in the introduction, in which the individual gates can be arranged at any spatial distance from one another.

Diese Aufgabe wird ausgehend von einer Schaltung laut Oberbegriff des Hauptanspruches durch dessen kennzeichnende Merkmale gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.This object is achieved on the basis of a circuit according to the preamble of the main claim by its characterizing features. Advantageous further developments result itself from the subclaims.

Bei der erfindungsgemäßen Brücke können die Einzeltore in einem für den jeweiligen Anwendungsfall günstigsten Abstand räumlich voneinander angeordnet sein, der eigentliche Lastausgleichswiderstand wird über entsprechend lange zusätzliche Leitungen mit den Einzeltoren verbunden, wobei die Länge dieser Leitungen sich nur nach dem gewünschten Abstand der Einzeltore richtet. Da diese beliebig langen Leitungen eine entsprechende Widerstandstransformation bewirken, wird deren Wellenwiderstand bezogen auf Masse und der an ihren Enden angeschlossene komplexe Lastausgleichswiderstand so dimensioniert, daß der durch diese Leitungen an die Einzeltore transformierte komplexe Widerstand demjenigen komplexen Widerstandswert entspricht, der für eine breitbandige Entkopplung der Einzeltore benötigt wird. Dieser Widerstandswert wird in bekannter Weise nach den Bemessungsvorschriften für die entsprechenden Koppler berechnet, er entspricht demjenigen Widerstandswert, der unter der idealen Annahme von räumlich eng aneinander anliegenden Einzeltoren sich errechnet. Es ist also nur erforderlich, den an die Leitungen angeschlossenen komplexen Lastausgleichswiderstand so zu dimensionieren, daß die gewünschte breitbandige Entkopplung der Einzeltore erreicht wird.In the bridge according to the invention, the individual gates can be spatially arranged at a distance that is most favorable for the respective application, the actual load balancing resistor is connected to the individual gates via correspondingly long lines, the length of these lines being based only on the desired distance between the individual gates. Since these cables of any length result in a corresponding resistance transformation, their wave impedance is dimensioned in relation to ground and the complex load balancing resistor connected at its ends so that the complex resistance transformed through these cables to the individual gates corresponds to the complex resistance value which is necessary for broadband decoupling of the individual gates is needed. This resistance value is calculated in a known manner according to the design regulations for the corresponding couplers; it corresponds to the resistance value which is calculated under the ideal assumption of individual gates which are spatially close together. It is therefore only necessary to dimension the complex load balancing resistor connected to the lines in such a way that the desired broadband decoupling of the individual gates is achieved.

Die erfindungsgemäße Maßnahme ist sowohl für Brücken mit spannungsmäßig hochliegenden Lastausgleichswiderständen geeignet als auch für Brücken, bei denen diese einseitig nach Masse heruntergezogen sind. Ferner ist es von Vorteil, die für die Einhaltung einer breitbandigen Transformation der Brücke erforderlichen Kompensationsmaßnahmen am Summentor bzw. an den Einzeltoren in Leitungstechnik auszubilden und hierbei die zusätzlichen Anschlußleitungen des Lastausgleichswiderstandes auszunutzen.The measure according to the invention is suitable both for bridges with high-level load balancing resistors and for bridges in which they are pulled down to ground on one side. Furthermore, it is advantageous to take the compensation measures required for maintaining a broadband transformation of the bridge at the sum gate or at the individual gates in line technology train and take advantage of the additional connection lines of the load balancing resistor.

Als besonders vorteilhaft hat es sich erwiesen, eine erfindungsgemäße Brücke in Stripline-Technik (Microstrip-, Suspended-Stripline, Triplate-Technik o.ä.) auszubilden, da sich hierdurch ein besonders einfacher und reproduzierbarer Gesamtaufbau ergibt. Die beispielsweise bei einem Wilkinson-Koppler λ/4-langen Transformationsleitungen werden hierbei in Stripline-Technik gegenüber einer Massefläche realisiert, die eigentlichen Zuleitungen zur Überbrückung des Abstandes zwischen den Einzeltoren ebenfalls in Stripline-Technik während die Anschlußleitungen für den oder die räumlich von den Einzeltoren abgesetzten komplexen Lastausgleichswiderständen durch Koaxialleitungen gebildet sind, die mit den Streifenleitungen elektrisch leitend verbunden sind. Eine erfindungsgemäße Brücke besitzt außerdem noch den Vorteil, daß die Lastausgleichswiderstände an Stellen angebracht werden können, an denen sie optimal gekühlt werden können. Eine erfindungsgemäße Brücke ist daher für beliebig hohe Leistungen bei geringstem Raumbedarf geeignet.It has proven to be particularly advantageous to design a bridge according to the invention using stripline technology (microstrip, suspended stripline, triplate technology or the like), since this results in a particularly simple and reproducible overall structure. For example, in the case of a Wilkinson coupler, λ / 4-long transformation lines are implemented in stripline technology compared to a ground plane, the actual supply lines for bridging the distance between the individual gates are also implemented in stripline technology, while the connecting lines for the one or more of the individual gates remote complex load balancing resistors are formed by coaxial lines which are electrically conductively connected to the strip lines. A bridge according to the invention also has the advantage that the load balancing resistors can be attached at locations where they can be optimally cooled. A bridge according to the invention is therefore suitable for any desired performance with the smallest space requirement.

Die Erfindung wird im folgenden anhand schematischer Zeichnungen an einem 2-fach-Wilkinson-Koppler näher erläutert.The invention is explained in more detail below with the aid of schematic drawings on a 2-way Wilkinson coupler.

Fig. 1 zeigt einen Zweifach-Wilkinson-Koppler bestehend aus zwei bei der mittleren Betriebsfrequenz ca. λ/4-langen Transformationsleitungen L, deren Außenleiter beidseitig an Masse M liegen und deren Innenleiter am einen Ende in einem Summenpunkt S zusammengefaßt sind und deren andere Enden mit den beiden Einzeltoren E1 und E2 verbunden sind. Der nach den bekannten Bemessungsvorschriften für eine breitbandige Entkopplung zwischen den Einzeltoren E1 und E2 erforderliche komplexe Lastausgleichswiderstand Z wird in dem Ausführungsbeispiel nach Fig. 1 durch ein spannungsmäßig hochliegendes komplexes Widerstandsbauelement Z1 gebildet, das über Koaxialleitungen L1 und L2 mit den im beliebigen räumlichen Abstand voneinander angeordneten Einzeltoren E1 und E2 verbunden ist. Die Außenleiter dieser beiden Leitungen L1, L2 liegen wieder beidseitig an Masse M, ihr Innenleiter ist mit dem Widerstandselement Z1 bzw. mit den Einzeltoren E1, E2 verbunden. Die Länge und der Wellenwiderstand dieser Leitungen L1, L2 richtet sich nach dem räumlichen Abstand zwischen den beiden Einzeltoren E1, E2, das komplexe Widerstandselement Z1 ist so dimensioniert, daß durch die Transformation der Leitungen L1, L2 an den Einzeltoren E1, E2 der gewünschte komplexe Lastausgleichswiderstandswert Z erscheint.Fig. 1 shows a double Wilkinson coupler consisting of two at the average operating frequency approximately λ / 4-long transformation lines L, the outer conductors are on both sides to ground M and the inner conductors are combined at one end in a summation point S and their other ends are connected to the two individual gates E1 and E2. The complex load balancing resistor Z required for the broadband decoupling between the individual gates E1 and E2 in accordance with the known dimensioning regulations is formed in the exemplary embodiment according to FIG. 1 by a high-voltage complex resistance component Z1, which is arranged via coaxial lines L1 and L2 with any spacing between them Single gates E1 and E2 is connected. The outer conductors of these two lines L1, L2 are again connected to ground M on both sides, their inner conductor is connected to the resistance element Z1 or to the individual gates E1, E2. The length and the impedance of these lines L1, L2 depend on the spatial distance between the two individual gates E1, E2, the complex resistance element Z1 is dimensioned such that the desired complex by transforming the lines L1, L2 at the individual gates E1, E2 Load balancing resistance value Z appears.

Fig. 2 und 3 zeigen zwei weitere Ausführungsbeispiele für die Anordnung eines einzigen (Fig. 2) oder von zwei parallelgeschalteten (Fig. 3) Lastausgleichswiderständen wiederum bei einem 2-fach-Wilkinson-Koppler, bei dem die Einzeltore E1 und E2 wieder in einem beliebigen räumlichen Abstand voneinander angeordnet sind. Nach Fig. 2 ist am Einzeltor E1 der Außenleiter eines Koaxialkabels L4 beliebiger Länge angeschaltet, dessen nahe dem zweiten Einzeltor E2 endender Innenleiter I4 über einen Blindwiderstand Z3, beispielsweise einen Kondensator, mit dem Einzeltor E2 verbunden ist. Auf der anderen Seite des Einzeltores E1 setzt sich dieses mit dem Außenleiter an E1 angeschaltete Koaxialkabel in einem ebenfalls beliebig langen Leitungsstück L5 fort, dessen Innenleiter I5 mit einem komplexen Widerstandselement Z2 verbunden ist, das zwischen diesem Innenleiter I5 und dem Außenleiter dieses Leitungsstückes L5 geschaltet ist und das vorzugsweise einseitig an Masse M liegt. Im Abstand unterhalb des Koaxialleitungsstückes L4 ist eine schematisch gestrichelt angedeutete Massefläche M4 vorgesehen, die zusammen mit dem Außenleiter des Leitungsstückes L4 eine Hochfrequenzleitung mit einem entsprechenden Wellenwiderstand bildet. Der komplexe Widerstand Z2 wird über das Koaxialkabel L5, L4 zum Blindwiderstand Z3 transformiert (er wirkt damit zwischen Innenleiter I4 und Außenleiter des Koaxialkabels L4) und wird dann durch das Leitungssystem L4/M4 zum Einzeltor E1 transformiert, so daß zwischen den Einzeltoren E1 und E2 die Reihenschaltung dieses transformierten Widerstandselementes Z2 und des Blindwiderstandes Z3 wirkt. Durch entsprechende Wahl des Widerstandswertes des komplexen Widerstandselementes Z2 kann so unter Brücksichtigung des Blindwiderstandes Z3 sowie der Länge und des Wellenwiderstandes des Koaxialkabels L4 + L5 und des Leitungssystems L4/M4 wieder der zur Entkopplung erforderliche komplexe Lastausgleichswiderstand Z zwischen den Einzeltoren E1 und E2 erzeugt werden. Ein besonders einfacher Aufbau ergibt sich, wenn gemäß Fig. 3 zwei elektrisch in Reihe geschaltete Lastausgleichswiderstände Z2 und Z2′ vorgesehen werden, die jeweils über die gleiche Anschlußtechnik wie in Fig. 2 mit einem zwischen den Leitungen L4 und L4′ angeordneten Blindwiderstand Z3, beispielsweise wiederum einen Kondensator, verbunden sind. Die beiden Komplexen Widerstände Z2 und Z2′ werden über die Leitungsstücke L5 + L4 bzw. L5′ + L4′ zum Blindwiderstand Z3 transformiert und dann über die Leitungssystems L4/M4 bzw. L4′/M4′ zu den Einzeltoren E1 und E2, durch entsprechende Wahl der Widerstände Z2 und Z2′ kann auf diese Weise wieder der gewünschte Lastausgleichswiderstand Z zwischen den Einzeltoren E1 und E2 realisiert werden.Fig. 2 and 3 show two further embodiments for the arrangement of a single (Fig. 2) or two parallel (Fig. 3) load balancing resistors in turn in a 2-way Wilkinson coupler, in which the individual gates E1 and E2 again in one any spatial distance from each other are arranged. 2, the outer conductor of a coaxial cable L4 of any length is connected to the individual gate E1, the inner conductor I4 of which ends near the second individual gate E2 is connected to the individual gate E2 via a reactance Z3, for example a capacitor. On the other side of the single gate E1, the coaxial cable connected to the outer conductor at E1 also sits in one any length of line section L5, whose inner conductor I5 is connected to a complex resistance element Z2, which is connected between this inner conductor I5 and the outer conductor of this line section L5 and which is preferably connected to ground M on one side. At a distance below the coaxial line section L4, a ground area M4, indicated schematically by dashed lines, is provided, which together with the outer conductor of the line section L4 forms a high-frequency line with a corresponding characteristic impedance. The complex resistor Z2 is transformed via the coaxial cable L5, L4 to the reactance Z3 (it thus acts between the inner conductor I4 and the outer conductor of the coaxial cable L4) and is then transformed by the line system L4 / M4 to the individual gate E1, so that between the individual gates E1 and E2 the series connection of this transformed resistance element Z2 and the reactance Z3 acts. By appropriate choice of the resistance value of the complex resistance element Z2, taking into account the reactance Z3 and the length and wave resistance of the coaxial cable L4 + L5 and the line system L4 / M4, the complex load balancing resistance Z required for the decoupling can be generated again between the individual gates E1 and E2. A particularly simple construction results if, according to FIG. 3, two electrically connected load balancing resistors Z2 and Z2 'are provided, each using the same connection technology as in FIG. 2 with a reactance Z3 arranged between lines L4 and L4', for example again a capacitor. The two complex resistors Z2 and Z2 'are transformed via line sections L5 + L4 and L5' + L4 'to reactance Z3 and then via line system L4 / M4 or L4 '/ M4' to the individual gates E1 and E2, by appropriate selection of the resistors Z2 and Z2 ', the desired load balancing resistance Z between the individual gates E1 and E2 can be realized in this way.

Die Leitungssysteme L4, L5 bzw. L4′, L5′ können zusätzlich zur Kompensation der Frequenzabhängigkeit der Leitungstransformation ausgenutzt werden, indem die Massefläche M4 unterhalb des Außenleiters der Leitung L4 über den Anschluß des Einzeltores E1 bzw. E2 hinaus zu einer unterhalb des Leitungsstückes L5 bzs. L5′ verlaufenden Massefläche M5 bzw. M5′ verlängert wird und der Außenleiter des Leitungsstückes L5 bzw. L5′ in einem vorbestimmten Abstand 1 vom zugehörigen Einzeltor E1 bzw. E2 mit der Massefläche M5 bzw. M5′ galvanisch verbunden wird (Kurzschluß M6 bzw. M6′). Auf diese Weise wird an den Einzeltoren E1 bzw. E2 ein Parallelresonanzkreis in Form einer Induktivität (Länge l des Leitungsstückes L5 bis zum Kurzschluß M6) und einer zugehörigen Kapazität (zwischen Außenleiter der Leitung L4 bzw. L4′ und der darunter angeordneten Massefläche M4 bzw. M4′ erzeugt.The line systems L4, L5 or L4 ', L5' can also be used to compensate for the frequency dependence of the line transformation by the ground area M4 below the outer conductor of the line L4 via the connection of the single gate E1 or E2 to a below the line section L5 or . L5 'extending ground surface M5 or M5' is extended and the outer conductor of the line section L5 or L5 'is galvanically connected at a predetermined distance 1 from the associated single gate E1 or E2 to the ground surface M5 or M5' (short circuit M6 or M6 ′). In this way, a parallel resonance circuit in the form of an inductance (length l of the line section L5 to short circuit M6) and an associated capacitance (between the outer conductor of the line L4 or L4 'and the ground surface M4 or M4 'generated.

Die in den Figuren in Koaxialleitungstechnik dargestellten Brückenschaltungen gemäß der Erfindung können besonders einfach und raumsparend in Streifenleitungstechnik aufgebaut werden, wobei eine gemischte Technik vorteilhaft ist, indem beispielsweise die Leitungen L und die Leitungssystems L4/M4 bzw. L4′/M4′ und gegebenenfalls L5/M5 bzw. L5′/M5′ in Stripline-Technik aufgebaut werden, während die Transformationsleitungen L4, L5 bzw. L4′, L5′ als Koaxialleitungen ausgebildet sind, die auf die Streifenleitungen des Stripline-Systems aufgelötet werden.The bridge circuits shown in the figures in coaxial line technology according to the invention can be constructed in a particularly simple and space-saving manner in strip line technology, a mixed technology being advantageous, for example by using the lines L and the line system L4 / M4 or L4 '/ M4' and optionally L5 / M5 or L5 '/ M5' are built using stripline technology, while the transformation lines L4, L5 or L4 ', L5' are designed as coaxial lines that are soldered onto the striplines of the stripline system.

In den gezeigten Ausführungsbeispielen ist der Einfachheit halber nur ein aus zwei Transformationsleitungen bestehender Zweifach-Wilkinson-Koppler beschrieben, die Erfindung ist jedoch in gleicher Weise für Mehrfach-Wilkinson-Koppler mit drei oder mehr Transformationsleitungen und andere Brückenschaltungen der eingangs erwähnten Art mit Lastausgleichswiderständen geeignet, wesentlich ist, daß nach der Erfindung hierbei die Einzeltore in beliebigem Abstand voneinander angeordnet werden können während die Lastausgleichswiderstandselemente über transformierende Leitungsstücke angeschlossen sind, die darüber hinaus bei geeigneter Dimensionierung zu breitbandigen Transformationseigenschaften der Brücke führen.In the exemplary embodiments shown, for the sake of simplicity, only a double Wilkinson coupler consisting of two transformation lines is described, but the invention is equally suitable for multiple Wilkinson couplers with three or more transformation lines and other bridge circuits of the type mentioned at the beginning with load balancing resistors, It is essential that, according to the invention, the individual gates can be arranged at any distance from one another, while the load balancing resistance elements are connected via transforming line sections which, with suitable dimensions, also lead to broadband transformation properties of the bridge.

Claims (6)

  1. Circuit for distributing radio-frequency output supplied to a summation gate (S) between a plurality of individual gates (E1, E2) and for merging radio-frequency output supplied to individual gates (E1, E2) in a summation gate (S), having a plurality of transforming sections connected between the summation gate and individual gates, and between each of the individual gates dummy resistors (Z) operating on the high side in voltage terms,
    characterised in that the individual gates (E1, E2) are arranged in any desired spacing from one another and the dummy resistors (Z) are constituted by complex resistance elements (Z1, Z2, Z3, Z2′) which are wired via connecting lines (Fig. 1: L1, L2; Fig. 2: L4; Fig. 3: L4, L4′), the characteristic impedance of the connecting lines and the complex resistance element being proportioned in dependence on the length of the connecting lines for broadband decoupling of the individual gates.
  2. Circuit according to claim 1, characterised in that the dummy resistor (Z) is constituted in a manner known per se by transformation of at least one complex resistance element (Z2, Z2′) taken to frame (M) on one side via transformation lines (L5, L5′) which include connecting lines (L4, L4′) (Figs. 2 and 3).
  3. Circuit according to claim 2, characterised in that at one end (I5) of the inner conductor of one line (L4 + L5) there is attached a complex resistance element (Z2) taken to frame (M) on one side, the other inner conductor end (I4) of the said line (L4 + L5) is connected to a reactance (Z3) connected to one individual gate (E2), and part (L4) of the length of the said line (L4 + L5) forms another line (L4/M4) connecting the connection point of the inner conductor end (I4) and reactance (Z3) to the other individual gate (E1) (Fig. 2).
  4. Circuit according to claim 2, characterised in that at one end (I5, I5′) of the inner conductor of two lines (L4 + L5; L4′ + L5′) there is connected a complex resistance element (Z2, Z2′) in each case taken to frame (M) on one side, the other inner conductor ends (I4, I4′) of the said lines are connected to a reactance (Z3), and part (L4, L4′) of the length of the said lines (L4 + L5; L4′ + L5′) forms further lines (L4/M4; L4/M4′) connecting the connection points of the inner conductor ends (I4, I4′) and reactance (Z3) to the two individual gates (E1, E2) (Fig. 3).
  5. Circuit according to any of the preceding claims, characterised in that at least part of the lines (L4/M4, L5/M5) connected to individual gates (E1, E2) is so proportioned that compensating reactances are formed thereby.
  6. Circuit according to any of the preceding claims, characterised in that at least part of the lines is constructed using stripline engineering in relation to one or more frame reference surfaces.
EP92109809A 1991-06-14 1992-06-11 High-frequency power divider/combiner circuit Expired - Lifetime EP0518310B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4119631A DE4119631A1 (en) 1991-06-14 1991-06-14 CIRCUIT TO SPLIT OR MERGE HIGH FREQUENCY POWER
DE4119631 1991-06-14

Publications (2)

Publication Number Publication Date
EP0518310A1 EP0518310A1 (en) 1992-12-16
EP0518310B1 true EP0518310B1 (en) 1995-08-16

Family

ID=6433937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109809A Expired - Lifetime EP0518310B1 (en) 1991-06-14 1992-06-11 High-frequency power divider/combiner circuit

Country Status (2)

Country Link
EP (1) EP0518310B1 (en)
DE (2) DE4119631A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2393843C (en) 2000-01-20 2007-08-14 Kathrein-Werke Kg Circuit for dividing or bringing together high-frequency performances
CN106654496A (en) * 2016-11-25 2017-05-10 成都雷电微力科技有限公司 Improved single-section Wilkinson power divider

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583161A (en) * 1941-01-02 1946-12-11 Gen Electric Co Ltd Improvements in apparatus for simultaneously or alternately transmitting and receiving radio signals of very high frequency
US4328471A (en) * 1980-09-15 1982-05-04 General Electric Company Bandwidth compensated quarter-wave coupled power combiner
US4450418A (en) * 1981-12-28 1984-05-22 Hughes Aircraft Company Stripline-type power divider/combiner with integral resistor and method of making the same
DE3702896A1 (en) * 1987-01-31 1988-08-11 Licentia Gmbh BRIDGE CIRCUIT WITH LOAD BALANCING RESISTORS
US4875024A (en) * 1988-12-05 1989-10-17 Ford Aerospace Corporation Low loss power splitter

Also Published As

Publication number Publication date
EP0518310A1 (en) 1992-12-16
DE4119631A1 (en) 1992-12-17
DE59203272D1 (en) 1995-09-21

Similar Documents

Publication Publication Date Title
DE69832228T2 (en) balun
DE3341719A1 (en) SYMMETRY TRANSMITTER
DE60037550T2 (en) Broadband balancing circuit for wireless and high-frequency applications
EP0063819B1 (en) Microwave balanced mixer circuit using microstrip transmission lines
DE1909092A1 (en) Hybrid coupler with 90 ° phase shift
DE3731394C2 (en) High-frequency interference filter for a circuit to be connected to a line, in particular for two-wire sensors
EP0518310B1 (en) High-frequency power divider/combiner circuit
DE2611712C3 (en) Broadband waveguide mixer
DE3324540C2 (en) Broadband microwave amplifier
DE2744862A1 (en) HIGH FREQUENCY TRANSFORMER
DE3445017A1 (en) Balancing device for coupling an unbalanced line to a balanced element
EP0277501A2 (en) Bridge circuit with load distribution resistors
EP0080553B1 (en) Stripline filter
DE972852C (en) Ultra high frequency band filter for transmission lines of electromagnetic vibrations
DE2302171A1 (en) ALUMINUM TRANSFORMER WORKING AS IMPEDANCE CONVERTER
DE2807327B1 (en) Device for evenly distributing high-frequency energy over two outputs
WO2022038003A1 (en) Antenna
DE3829106C2 (en)
DE3616033A1 (en) REFLECTION PHASE SHIFT
DE102008024898B4 (en) Broadband RF power divider circuit
EP1913606B1 (en) Line transformer for impedance matching
EP0314883B1 (en) Terminal impedance for high-frequency lines or circuits
EP1224708B1 (en) Coupler for electromagnetic waves
DE19507359C2 (en) Tyminski-Hylas cable bridge
DE1157679B (en) Circuit arrangement for the supply of a common consumer by two high-frequency generators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19921126

17Q First examination report despatched

Effective date: 19950201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59203272

Country of ref document: DE

Date of ref document: 19950921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950829

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010611

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050611