EP0518310A1 - High-frequency power divider/combiner circuit - Google Patents

High-frequency power divider/combiner circuit Download PDF

Info

Publication number
EP0518310A1
EP0518310A1 EP92109809A EP92109809A EP0518310A1 EP 0518310 A1 EP0518310 A1 EP 0518310A1 EP 92109809 A EP92109809 A EP 92109809A EP 92109809 A EP92109809 A EP 92109809A EP 0518310 A1 EP0518310 A1 EP 0518310A1
Authority
EP
European Patent Office
Prior art keywords
lines
individual gates
gates
load balancing
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92109809A
Other languages
German (de)
French (fr)
Other versions
EP0518310B1 (en
Inventor
Thomas Dipl.-Ing. Jöst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP0518310A1 publication Critical patent/EP0518310A1/en
Application granted granted Critical
Publication of EP0518310B1 publication Critical patent/EP0518310B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Definitions

  • the invention relates to a circuit according to the preamble of the main claim.
  • Bridge circuits of this type are known (Meinke / Gundlach: Taschenbuch der Hochfrequenztechnik, 3rd edition, p. 1444 ff).
  • the transformation elements of such bridges can either be made up of concentrated transformation elements or of line elements, for example ⁇ / 8 or ⁇ / 4 lines. In a so-called Wilkinson coupler, the transformation elements are, for example, ⁇ / 4-long lines.
  • Such bridge circuits are used in high-frequency technology primarily for the parallel connection of high-frequency transmitters. Load balancing resistors are required for broadband decoupling of the individual gates.
  • a double Wilkinson coupler for example, such a resistor is connected between the two individual gates, with a triple or multiple Wilkinson coupler between the individual gates and a common star point or a corresponding polygon.
  • the load balancing resistors are arranged, for example, symmetrically to the ground potential in terms of voltage. It is also known to connect the load balancing resistors to ground on one side and to connect them to the individual gates via additional lines (DE 37 02 896).
  • the individual gates can be arranged spatially at a distance that is most favorable for the respective application, the actual load balancing resistor is connected to the individual gates via correspondingly long lines, the length of these lines being based only on the desired distance between the individual gates. Since these cables of any length result in a corresponding resistance transformation, their characteristic impedance is dimensioned in relation to ground and the complex load balancing resistor connected at its ends so that the complex resistance transformed through these cables to the individual gates corresponds to the complex resistance value which is necessary for broadband decoupling of the individual gates is needed.
  • This resistance value is calculated in a known manner according to the design regulations for the corresponding couplers; it corresponds to the resistance value which is calculated under the ideal assumption of individual gates which are spatially close together. It is therefore only necessary to dimension the complex load balancing resistor connected to the lines in such a way that the desired broadband decoupling of the individual gates is achieved.
  • the measure according to the invention is suitable both for bridges with high-level load balancing resistors and for bridges in which they are pulled down to one side on earth. Furthermore, it is advantageous to take the compensation measures required for maintaining a broadband transformation of the bridge at the sum gate or at the individual gates in line technology train and take advantage of the additional connection lines of the load balancing resistor.
  • a bridge according to the invention has proven to be particularly advantageous to design a bridge according to the invention using stripline technology (microstrip, suspended stripline, triplate technology or the like), since this results in a particularly simple and reproducible overall structure.
  • stripline technology microstrip, suspended stripline, triplate technology or the like
  • ⁇ / 4-long transformation lines are realized in stripline technology compared to a ground plane
  • the actual supply lines for bridging the distance between the individual gates are also in stripline technology
  • the connecting lines for the one or more of the individual gates remote complex load balancing resistors are formed by coaxial lines which are electrically conductively connected to the strip lines.
  • a bridge according to the invention also has the advantage that the load balancing resistors can be attached at locations where they can be optimally cooled.
  • a bridge according to the invention is therefore suitable for any desired performance with the smallest space requirement.
  • Fig. 1 shows a double Wilkinson coupler consisting of two approximately ⁇ / 4-long transformation lines L at the average operating frequency, whose outer conductors are connected to ground M on both sides and whose inner conductors are combined at one end in a summation point S and whose other ends are connected to the two individual gates E1 and E2.
  • the complex load balancing resistor Z required for the broadband decoupling between the individual gates E1 and E2 in accordance with the known dimensioning rules is formed in the exemplary embodiment according to FIG. 1 by a high-voltage complex resistance component Z1, which is arranged via coaxial lines L1 and L2 with any spacing apart from one another Single gates E1 and E2 is connected.
  • the outer conductors of these two lines L1, L2 are again connected to ground M on both sides, their inner conductor is connected to the resistance element Z1 or to the individual gates E1, E2.
  • the length and the impedance of these lines L1, L2 depend on the spatial distance between the two individual gates E1, E2, the complex resistance element Z1 is dimensioned such that the desired complex by transforming the lines L1, L2 at the individual gates E1, E2 Load balancing resistance value Z appears.
  • FIG. 2 and 3 show two further exemplary embodiments for the arrangement of a single (FIG. 2) or two parallel-connected (FIG. 3) load balancing resistors in turn in a 2-way Wilkinson coupler, in which the individual gates E1 and E2 again in one any spatial distance from each other are arranged.
  • the outer conductor of a coaxial cable L4 of any length is connected to the individual gate E1
  • the inner conductor I4 of which ends near the second individual gate E2 is connected to the individual gate E2 via a reactance Z3, for example a capacitor.
  • the coaxial cable connected to the outer conductor at E1 also sits in one any length of line section L5, whose inner conductor I5 is connected to a complex resistance element Z2, which is connected between this inner conductor I5 and the outer conductor of this line section L5 and which is preferably connected to ground M on one side.
  • a ground area M4 is provided, which together with the outer conductor of the line section L4 forms a high-frequency line with a corresponding characteristic impedance.
  • the complex resistor Z2 is transformed via the coaxial cable L5, L4 to the reactance Z3 (it thus acts between the inner conductor I4 and the outer conductor of the coaxial cable L4) and is then transformed by the line system L4 / M4 to the individual gate E1, so that between the individual gates E1 and E2 the series connection of this transformed resistance element Z2 and the reactance Z3 acts.
  • the complex load balancing resistance Z required for decoupling can be generated again between the individual gates E1 and E2.
  • two load balancing resistors Z2 and Z2 ' are connected in series, each using the same connection technology as in FIG. 2 with a reactance Z3 arranged between lines L4 and L4', for example again a capacitor.
  • the two complex resistors Z2 and Z2 ' are transformed via line sections L5 + L4 and L5' + L4 'to reactance Z3 and then via line system L4 / M4 or L4 '/ M4' to the individual gates E1 and E2, by selecting the resistors Z2 and Z2 'accordingly, the desired load balancing resistance Z between the individual gates E1 and E2 can be realized in this way.
  • the line systems L4, L5 or L4 ', L5' can also be used to compensate for the frequency dependency of the line transformation, in that the ground area M4 below the outer conductor of the line L4 via the connection of the single gate E1 or E2 to one below the line section L5 or .
  • L5 'extending ground surface M5 or M5' is extended and the outer conductor of the line section L5 or L5 'is galvanically connected to the ground surface M5 or M5' at a predetermined distance 1 from the associated single gate E1 or E2 (short circuit M6 or M6 ').
  • the bridge circuits shown in the figures in coaxial line technology according to the invention can be constructed in a particularly simple and space-saving manner in strip line technology, a mixed technology being advantageous, for example by using the lines L and the line system L4 / M4 or L4 '/ M4' and optionally L5 / M5 or L5 '/ M5' are constructed using stripline technology, while the transformation lines L4, L5 or L4 ', L5' are designed as coaxial lines which are soldered onto the striplines of the stripline system.

Landscapes

  • Amplifiers (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Microwave Amplifiers (AREA)

Abstract

In the case of the circuit for dividing radio-frequency power which is supplied from a summation gate (S) and passing it to a plurality of individual gates (E1, E2), and for combining radio-frequency power supplied from individual gates in a summation gate, having a plurality of transformation elements (L) connected between the summation gate and the individual gates, and having a load balancing impedance (Z), which acts between the individual gates, the individual gates are arranged at any desired physical distance from one another, and a complex impedance element (Z1), which acts as a load balancing impedance which is at a high level in terms of voltage, is arranged between said two individual gates, via connecting lines (L1, L2). <IMAGE>

Description

Die Erfindung betrifft eine Schaltung laut Oberbegriff des Hauptanspruches.The invention relates to a circuit according to the preamble of the main claim.

Brückenschaltungen dieser Art sind bekannt (Meinke/Gundlach: Taschenbuch der Hochfrequenztechnik, 3. Aufl., S. 1444 ff). Die Transformtionsglieder solcher Brücken können entweder aus konzentrierten Transformationselementen oder aus Leitungselementen, beispielsweise λ/8- oder λ/4-Leitungen aufgebaut sein. Bei einem sogenannten Wilkinson-Koppler sind die Transformationsglieder beispielsweise λ/4-lange Leitungen. Solche Brückenschaltungen werden in der Hochfrequenztechnik vor allem zum Parallelschalten von Hochfrequenzsendern benutzt. Zur breitbandigen Entkopplung der Einzeltore sind hierbei Lastausgleichswiderstände nötig. Bei einem Zweifach-Wilkinson-Koppler ist beispielsweise ein solcher Widerstand zwischen die beiden Einzeltore geschaltet, bei einem Drei- oder Mehrfach-Wilkinson-Koppler zwischen den Einzeltoren und einem gemeinsamen Sternpunkt oder einem entsprechenden Vieleck. Die Lastausgleichswiderstände sind z.B. symmetrisch zum Massepotential spannungsmäßig hochliegend angeordnet. Es ist auch schon bekannt, die Lastausgleichswiderstände einseitig an Masse anzuschalten und über zusätzliche Leitungen mit den Einzeltoren zu verbinden (DE 37 02 896). All diesen bekannten Brücken ist jedoch der Nachteil gemeinsam, daß die Einzeltore räumlich möglichst eng nebeneinander angeordnet sein müssen, damit dort ohne Verbindungsdrähte, die bei diesen Frequenzen nur als störende Induktivitäten wirken würden, der Lastausgleichswiderstand angeschlossen werden kann, durch die angeschalteten Lastausgleichswiderstände also keine parasitäten Impedanzen oder störenden Transformationen auftreten (siehe beispielsweise Zinke, Brunswig, Lehrbuch der Hochfrequenztechnik, Bd. II, S. 182, Abb. 4.12/2a und b;
IEEE Transactions on Microwave Theory and Techniques, January 1965, s. 92 bis 95, insbesondere Fig. 1, 2, 4, 6 und 8;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, February 1968, S. 110;
IRE Transactions on Microwave Theory and Techniques, January 1960, S. 116;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 3. March 1981, S. 189 bis 191).
Bridge circuits of this type are known (Meinke / Gundlach: Taschenbuch der Hochfrequenztechnik, 3rd edition, p. 1444 ff). The transformation elements of such bridges can either be made up of concentrated transformation elements or of line elements, for example λ / 8 or λ / 4 lines. In a so-called Wilkinson coupler, the transformation elements are, for example, λ / 4-long lines. Such bridge circuits are used in high-frequency technology primarily for the parallel connection of high-frequency transmitters. Load balancing resistors are required for broadband decoupling of the individual gates. With a double Wilkinson coupler, for example, such a resistor is connected between the two individual gates, with a triple or multiple Wilkinson coupler between the individual gates and a common star point or a corresponding polygon. The load balancing resistors are arranged, for example, symmetrically to the ground potential in terms of voltage. It is also known to connect the load balancing resistors to ground on one side and to connect them to the individual gates via additional lines (DE 37 02 896). All these known bridges, however, have the disadvantage in common that the individual gates must be arranged as closely as possible next to one another so that there is no parasite due to the connected load balancing resistors without connecting wires which would only act as disturbing inductors at these frequencies Impedances or disruptive transformations occur (see for example Zinke, Brunswig, Textbook of High Frequency Technology, Vol. II, p. 182, Fig. 4.12 / 2a and b;
IEEE Transactions on Microwave Theory and Techniques, January 1965, p. 92 to 95, in particular Figures 1, 2, 4, 6 and 8;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, February 1968, p. 110;
IRE Transactions on Microwave Theory and Techniques, January 1960, p. 116;
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. March 3, 1981, pp. 189 to 191).

Es ist Aufgabe der Erfindung, eine Brücke der eingangs erwähnten Art zu schaffen, bei der die Einzeltore in beliebigem räumlichen Abstand voneinander angeordnet sein können.It is an object of the invention to provide a bridge of the type mentioned in the introduction, in which the individual gates can be arranged at any spatial distance from one another.

Diese Aufgabe wird ausgehend von einer Schaltung laut Oberbegriff des Hauptanspruches durch dessen kennzeichnende Merkmale gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.This object is achieved on the basis of a circuit according to the preamble of the main claim by its characterizing features. Advantageous further developments result itself from the subclaims.

Bei der erfindungsgemäßen Brücke können die Einzeltore in einem für den jeweiligen Anwendungsfall günstigsten Abstand räumlich voneinander angeordnet sein, der eigentliche Lastausgleichswiderstand wird über entsprechend lange zusätzliche Leitungen mit den Einzeltoren verbunden, wobei die Länge dieser Leitungen sich nur nach dem gewünschten Abstand der Einzeltore richtet. Da diese beliebig langen Leitungen eine entsprechende Widerstandstransformation bewirken, wird deren Wellenwiderstand bezogen auf Masse und der an ihren Enden angeschlossene komplexe Lastausgleichswiderstand so dimensioniert, daß der durch diese Leitungen an die Einzeltore transformierte komplexe Widerstand demjenigen komplexen Widerstandswert entspricht, der für eine breitbandige Entkopplung der Einzeltore benötigt wird. Dieser Widerstandswert wird in bekannter Weise nach den Bemessungsvorschriften für die entsprechenden Koppler berechnet, er entspricht demjenigen Widerstandswert, der unter der idealen Annahme von räumlich eng aneinander anliegenden Einzeltoren sich errechnet. Es ist also nur erforderlich, den an die Leitungen angeschlossenen komplexen Lastausgleichswiderstand so zu dimensionieren, daß die gewünschte breitbandige Entkopplung der Einzeltore erreicht wird.In the bridge according to the invention, the individual gates can be arranged spatially at a distance that is most favorable for the respective application, the actual load balancing resistor is connected to the individual gates via correspondingly long lines, the length of these lines being based only on the desired distance between the individual gates. Since these cables of any length result in a corresponding resistance transformation, their characteristic impedance is dimensioned in relation to ground and the complex load balancing resistor connected at its ends so that the complex resistance transformed through these cables to the individual gates corresponds to the complex resistance value which is necessary for broadband decoupling of the individual gates is needed. This resistance value is calculated in a known manner according to the design regulations for the corresponding couplers; it corresponds to the resistance value which is calculated under the ideal assumption of individual gates which are spatially close together. It is therefore only necessary to dimension the complex load balancing resistor connected to the lines in such a way that the desired broadband decoupling of the individual gates is achieved.

Die erfindungsgemäße Maßnahme ist sowohl für Brücken mit spannungsmäßig hochliegenden Lastausgleichswiderständen geeignet als auch für Brücken, bei denen diese einseitig nach Masse heruntergezogen sind. Ferner ist es von Vorteil, die für die Einhaltung einer breitbandigen Transformation der Brücke erforderlichen Kompensationsmaßnahmen am Summentor bzw. an den Einzeltoren in Leitungstechnik auszubilden und hierbei die zusätzlichen Anschlußleitungen des Lastausgleichswiderstandes auszunutzen.The measure according to the invention is suitable both for bridges with high-level load balancing resistors and for bridges in which they are pulled down to one side on earth. Furthermore, it is advantageous to take the compensation measures required for maintaining a broadband transformation of the bridge at the sum gate or at the individual gates in line technology train and take advantage of the additional connection lines of the load balancing resistor.

Als besonders vorteilhaft hat es sich erwiesen, eine erfindungsgemäße Brücke in Stripline-Technik (Microstrip-, Suspended-Stripline, Triplate-Technik o.ä.) auszubilden, da sich hierdurch ein besonders einfacher und reproduzierbarer Gesamtaufbau ergibt. Die beispielsweise bei einem Wilkinson-Koppler λ/4-langen Transformationsleitungen werden hierbei in Stripline-Technik gegenüber einer Massefläche realisiert, die eigentlichen Zuleitungen zur Überbrückung des Abstandes zwischen den Einzeltoren ebenfalls in Stripline-Technik während die Anschlußleitungen für den oder die räumlich von den Einzeltoren abgesetzten komplexen Lastausgleichswiderständen durch Koaxialleitungen gebildet sind, die mit den Streifenleitungen elektrisch leitend verbunden sind. Eine erfindungsgemäße Brücke besitzt außerdem noch den Vorteil, daß die Lastausgleichswiderstände an Stellen angebracht werden können, an denen sie optimal gekühlt werden können. Eine erfindungsgemäße Brücke ist daher für beliebig hohe Leistungen bei geringstem Raumbedarf geeignet.It has proven to be particularly advantageous to design a bridge according to the invention using stripline technology (microstrip, suspended stripline, triplate technology or the like), since this results in a particularly simple and reproducible overall structure. For example, in the case of a Wilkinson coupler, λ / 4-long transformation lines are realized in stripline technology compared to a ground plane, the actual supply lines for bridging the distance between the individual gates are also in stripline technology, while the connecting lines for the one or more of the individual gates remote complex load balancing resistors are formed by coaxial lines which are electrically conductively connected to the strip lines. A bridge according to the invention also has the advantage that the load balancing resistors can be attached at locations where they can be optimally cooled. A bridge according to the invention is therefore suitable for any desired performance with the smallest space requirement.

Die Erfindung wird im folgenden anhand schematischer Zeichnungen an einem 2-fach-Wilkinson-Koppler näher erläutert.The invention is explained in more detail below with the aid of schematic drawings on a 2-way Wilkinson coupler.

Fig. 1 zeigt einen Zweifach-Wilkinson-Koppler bestehend aus zwei bei der mittleren Betriebsfrequenz ca. λ/4-langen Transformationsleitungen L, deren Außenleiter beidseitig an Masse M liegen und deren Innenleiter am einen Ende in einem Summenpunkt S zusammengefaßt sind und deren andere Enden mit den beiden Einzeltoren E1 und E2 verbunden sind. Der nach den bekannten Bemessungsvorschriften für eine breitbandige Entkopplung zwischen den Einzeltoren E1 und E2 erforderliche komplexe Lastausgleichswiderstand Z wird in dem Ausführungsbeispiel nach Fig. 1 durch ein spannungsmäßig hochliegendes komplexes Widerstandsbauelement Z1 gebildet, das über Koaxialleitungen L1 und L2 mit den im beliebigen räumlichen Abstand voneinander angeordneten Einzeltoren E1 und E2 verbunden ist. Die Außenleiter dieser beiden Leitungen L1, L2 liegen wieder beidseitig an Masse M, ihr Innenleiter ist mit dem Widerstandselement Z1 bzw. mit den Einzeltoren E1, E2 verbunden. Die Länge und der Wellenwiderstand dieser Leitungen L1, L2 richtet sich nach dem räumlichen Abstand zwischen den beiden Einzeltoren E1, E2, das komplexe Widerstandselement Z1 ist so dimensioniert, daß durch die Transformation der Leitungen L1, L2 an den Einzeltoren E1, E2 der gewünschte komplexe Lastausgleichswiderstandswert Z erscheint.Fig. 1 shows a double Wilkinson coupler consisting of two approximately λ / 4-long transformation lines L at the average operating frequency, whose outer conductors are connected to ground M on both sides and whose inner conductors are combined at one end in a summation point S and whose other ends are connected to the two individual gates E1 and E2. The complex load balancing resistor Z required for the broadband decoupling between the individual gates E1 and E2 in accordance with the known dimensioning rules is formed in the exemplary embodiment according to FIG. 1 by a high-voltage complex resistance component Z1, which is arranged via coaxial lines L1 and L2 with any spacing apart from one another Single gates E1 and E2 is connected. The outer conductors of these two lines L1, L2 are again connected to ground M on both sides, their inner conductor is connected to the resistance element Z1 or to the individual gates E1, E2. The length and the impedance of these lines L1, L2 depend on the spatial distance between the two individual gates E1, E2, the complex resistance element Z1 is dimensioned such that the desired complex by transforming the lines L1, L2 at the individual gates E1, E2 Load balancing resistance value Z appears.

Fig. 2 und 3 zeigen zwei weitere Ausführungsbeispiele für die Anordnung eines einzigen (Fig. 2) oder von zwei parallelgeschalteten (Fig. 3) Lastausgleichswiderständen wiederum bei einem 2-fach-Wilkinson-Koppler, bei dem die Einzeltore E1 und E2 wieder in einem beliebigen räumlichen Abstand voneinander angeordnet sind. Nach Fig. 2 ist am Einzeltor E1 der Außenleiter eines Koaxialkabels L4 beliebiger Länge angeschaltet, dessen nahe dem zweiten Einzeltor E2 endender Innenleiter I4 über einen Blindwiderstand Z3, beispielsweise einen Kondensator, mit dem Einzeltor E2 verbunden ist. Auf der anderen Seite des Einzeltores E1 setzt sich dieses mit dem Außenleiter an E1 angeschaltete Koaxialkabel in einem ebenfalls beliebig langen Leitungsstück L5 fort, dessen Innenleiter I5 mit einem komplexen Widerstandselement Z2 verbunden ist, das zwischen diesem Innenleiter I5 und dem Außenleiter dieses Leitungsstückes L5 geschaltet ist und das vorzugsweise einseitig an Masse M liegt. Im Abstand unterhalb des Koaxialleitungsstückes L4 ist eine schematisch gestrichelt angedeutete Massefläche M4 vorgesehen, die zusammen mit dem Außenleiter des Leitungsstückes L4 eine Hochfrequenzleitung mit einem entsprechenden Wellenwiderstand bildet. Der komplexe Widerstand Z2 wird über das Koaxialkabel L5, L4 zum Blindwiderstand Z3 transformiert (er wirkt damit zwischen Innenleiter I4 und Außenleiter des Koaxialkabels L4) und wird dann durch das Leitungssystem L4/M4 zum Einzeltor E1 transformiert, so daß zwischen den Einzeltoren E1 und E2 die Reihenschaltung dieses transformierten Widerstandselementes Z2 und des Blindwiderstandes Z3 wirkt. Durch entsprechende Wahl des Widerstandswertes des komplexen Widerstandselementes Z2 kann so unter Brücksichtigung des Blindwiderstandes Z3 sowie der Länge und des Wellenwiderstandes des Koaxialkabels L4 + L5 und des Leitungssystems L4/M4 wieder der zur Entkopplung erforderliche komplexe Lastausgleichswiderstand Z zwischen den Einzeltoren E1 und E2 erzeugt werden. Ein besonders einfacher Aufbau ergibt sich, wenn gemäß Fig. 3 zwei elektrisch in Reihe geschaltete Lastausgleichswiderstände Z2 und Z2' vorgesehen werden, die jeweils über die gleiche Anschlußtechnik wie in Fig. 2 mit einem zwischen den Leitungen L4 und L4' angeordneten Blindwiderstand Z3, beispielsweise wiederum einen Kondensator, verbunden sind. Die beiden Komplexen Widerstände Z2 und Z2' werden über die Leitungsstücke L5 + L4 bzw. L5' + L4' zum Blindwiderstand Z3 transformiert und dann über die Leitungssystems L4/M4 bzw. L4'/M4' zu den Einzeltoren E1 und E2, durch entsprechende Wahl der Widerstände Z2 und Z2' kann auf diese Weise wieder der gewünschte Lastausgleichswiderstand Z zwischen den Einzeltoren E1 und E2 realisiert werden.2 and 3 show two further exemplary embodiments for the arrangement of a single (FIG. 2) or two parallel-connected (FIG. 3) load balancing resistors in turn in a 2-way Wilkinson coupler, in which the individual gates E1 and E2 again in one any spatial distance from each other are arranged. According to FIG. 2, the outer conductor of a coaxial cable L4 of any length is connected to the individual gate E1, the inner conductor I4 of which ends near the second individual gate E2 is connected to the individual gate E2 via a reactance Z3, for example a capacitor. On the other side of the single gate E1, the coaxial cable connected to the outer conductor at E1 also sits in one any length of line section L5, whose inner conductor I5 is connected to a complex resistance element Z2, which is connected between this inner conductor I5 and the outer conductor of this line section L5 and which is preferably connected to ground M on one side. At a distance below the coaxial line section L4, a ground area M4, indicated schematically by dashed lines, is provided, which together with the outer conductor of the line section L4 forms a high-frequency line with a corresponding characteristic impedance. The complex resistor Z2 is transformed via the coaxial cable L5, L4 to the reactance Z3 (it thus acts between the inner conductor I4 and the outer conductor of the coaxial cable L4) and is then transformed by the line system L4 / M4 to the individual gate E1, so that between the individual gates E1 and E2 the series connection of this transformed resistance element Z2 and the reactance Z3 acts. By appropriate selection of the resistance value of the complex resistance element Z2, taking into account the reactance Z3 and the length and wave resistance of the coaxial cable L4 + L5 and the line system L4 / M4, the complex load balancing resistance Z required for decoupling can be generated again between the individual gates E1 and E2. A particularly simple construction is obtained if, according to FIG. 3, two load balancing resistors Z2 and Z2 'are connected in series, each using the same connection technology as in FIG. 2 with a reactance Z3 arranged between lines L4 and L4', for example again a capacitor. The two complex resistors Z2 and Z2 'are transformed via line sections L5 + L4 and L5' + L4 'to reactance Z3 and then via line system L4 / M4 or L4 '/ M4' to the individual gates E1 and E2, by selecting the resistors Z2 and Z2 'accordingly, the desired load balancing resistance Z between the individual gates E1 and E2 can be realized in this way.

Die Leitungssysteme L4, L5 bzw. L4', L5' können zusätzlich zur Kompensation der Frequenzabhängigkeit der Leitungstransformation ausgenutzt werden, indem die Massefläche M4 unterhalb des Außenleiters der Leitung L4 über den Anschluß des Einzeltores E1 bzw. E2 hinaus zu einer unterhalb des Leitungsstückes L5 bzs. L5' verlaufenden Massefläche M5 bzw. M5' verlängert wird und der Außenleiter des Leitungsstückes L5 bzw. L5' in einem vorbestimmten Abstand 1 vom zugehörigen Einzeltor E1 bzw. E2 mit der Massefläche M5 bzw. M5' galvanisch verbunden wird (Kurzschluß M6 bzw. M6'). Auf diese Weise wird an den Einzeltoren E1 bzw. E2 ein Parallelresonanzkreis in Form einer Induktivität (Länge l des Leitungsstückes L5 bis zum Kurzschluß M6) und einer zugehörigen Kapazität (zwischen Außenleiter der Leitung L4 bzw. L4' und der darunter angeordneten Massefläche M4 bzw. M4' erzeugt.The line systems L4, L5 or L4 ', L5' can also be used to compensate for the frequency dependency of the line transformation, in that the ground area M4 below the outer conductor of the line L4 via the connection of the single gate E1 or E2 to one below the line section L5 or . L5 'extending ground surface M5 or M5' is extended and the outer conductor of the line section L5 or L5 'is galvanically connected to the ground surface M5 or M5' at a predetermined distance 1 from the associated single gate E1 or E2 (short circuit M6 or M6 '). In this way, a parallel resonance circuit in the form of an inductance (length l of the line section L5 to the short circuit M6) and an associated capacitance (between the outer conductor of the line L4 or L4 'and the ground surface M4 or M4 'generated.

Die in den Figuren in Koaxialleitungstechnik dargestellten Brückenschaltungen gemäß der Erfindung können besonders einfach und raumsparend in Streifenleitungstechnik aufgebaut werden, wobei eine gemischte Technik vorteilhaft ist, indem beispielsweise die Leitungen L und die Leitungssystems L4/M4 bzw. L4'/M4' und gegebenenfalls L5/M5 bzw. L5'/M5' in Stripline-Technik aufgebaut werden, während die Transformationsleitungen L4, L5 bzw. L4', L5' als Koaxialleitungen ausgebildet sind, die auf die Streifenleitungen des Stripline-Systems aufgelötet werden.The bridge circuits shown in the figures in coaxial line technology according to the invention can be constructed in a particularly simple and space-saving manner in strip line technology, a mixed technology being advantageous, for example by using the lines L and the line system L4 / M4 or L4 '/ M4' and optionally L5 / M5 or L5 '/ M5' are constructed using stripline technology, while the transformation lines L4, L5 or L4 ', L5' are designed as coaxial lines which are soldered onto the striplines of the stripline system.

In den gezeigten Ausführungsbeispielen ist der Einfachheit halber nur ein aus zwei Transformationsleitungen bestehender Zweifach-Wilkinson-Koppler beschrieben, die Erfindung ist jedoch in gleicher Weise für Mehrfach-Wilkinson-Koppler mit drei oder mehr Transformationsleitungen und andere Brückenschaltungen der eingangs erwähnten Art mit Lastausgleichswiderständen geeignet, wesentlich ist, daß nach der Erfindung hierbei die Einzeltore in beliebigem Abstand voneinander angeordnet werden können während die Lastausgleichswiderstandselemente über transformierende Leitungsstücke angeschlossen sind, die darüber hinaus bei geeigneter Dimensionierung zu breitbandigen Transformationseigenschaften der Brücke führen.In the exemplary embodiments shown, for the sake of simplicity, only one double Wilkinson coupler consisting of two transformation lines is described, but the invention is equally suitable for multiple Wilkinson couplers with three or more transformation lines and other bridge circuits of the type mentioned at the beginning with load balancing resistors, It is essential that, according to the invention, the individual gates can be arranged at any distance from one another, while the load balancing resistance elements are connected via transforming line sections which, with suitable dimensions, also lead to broadband transformation properties of the bridge.

Claims (6)

Schaltung zum Aufteilen von einem Summentor (S) zugeführter Hochfrequenzleistung auf mehrere Einzeltore (E1, E2) bzw. zum Zusammenführen von Einzeltoren (E1, E2) zugeführter Hochfrequenzleistung in einem Summentor (S), mit mehreren zwischen Summentor und Einzeltoren geschalteten Transformationsgliedern und einem zwischen den Einzeltoren wirkenden Lastausgleichswiderstand (Z), der so bemessen ist, daß die Einzeltore breitbandig entkoppelt sind, dadurch gekennzeichnet, daß die Einzeltore (E1, E2) in einem beliebigen räumlichen Abstand voneinander angeordnet sind und zwischen diesen beiden Einzeltoren (E1, E2) über Verbindungsleitungen (Fig. 1: L1, L2; Fig. 2: L4; Fig. 3: L4, L4') ein als spannungsmäßig hochliegender Lastausgleichswiderstand (Z) wirkendes komplexes Widerstandselement (Z1, Z2, Z3, Z2') angeordnet ist.Circuit for dividing high-frequency power supplied by a sum gate (S) into several individual gates (E1, E2) or for combining high-frequency power supplied by single gates (E1, E2) in a sum gate (S), with a plurality of transformation elements connected between sum gate and single gates and one between the individual load balancing resistor (Z), which is dimensioned so that the individual gates are decoupled broadband, characterized in that the individual gates (E1, E2) are arranged at any spatial distance from one another and between these two individual gates (E1, E2) Connection lines (Fig. 1: L1, L2; Fig. 2: L4; Fig. 3: L4, L4 ') a complex resistance element (Z1, Z2, Z3, Z2') acting as a high-voltage load balancing resistor (Z) is arranged. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß der Lastausgleichswiderstand (Z) in an sich bekannter Weise durch Transformation mindestens eines einseitig an Masse (M) liegenden komplexen Widerstandselementes (Z2, Z2') über die Verbindungsleitungen (L4, L4') einschließendes Transformationsleitungen (L5, L5') zum hochliegenden Widerstandselement (Z3) gebildet ist (Fig. 2 und 3).Circuit according to Claim 1, characterized in that the load balancing resistor (Z) in a manner known per se by transforming at least one complex resistance element (Z2, Z2 ') lying on one side to ground (M) via the connecting lines (L4, L4') including transformation lines ( L5, L5 ') to the high-lying resistance element (Z3) is formed (FIGS. 2 and 3). Schaltung nach Anspruch 2, dadurch gekennzeichnet, daß am einen Ende (I5) des Innenleiters einer Leitung (L4 + L5) ein einseitig an masse (M) liegendes komplexes Widerstandselement (Z2) angeschlossen ist, das andere Innenleiterende (I4) dieser Leitung (L4 + L5) mit einem am einen Einzeltor (E2) angeschlossenen Blindwiderstand (Z3) verbunden ist und ein Teil (L4) der Länge dieser Leitung (L4 + L5) eine weitere Leitung (L4/M4) bildet, die den Verbindungspunkt von Innenleiterende (I4) und Blindwiderstand (Z3) mit dem anderen Einzeltor (E1) verbindet (Fig. 2).Circuit according to claim 2, characterized in that at one end (I5) of the inner conductor of a line (L4 + L5) a complex resistance element (Z2) lying on one side to ground (M) is connected, the other inner conductor end (I4) of this line (L4 + L5) is connected to a reactance (Z3) connected to a single gate (E2) and part (L4) of the length of this line (L4 + L5) forms a further line (L4 / M4), which connects the inner conductor end (I4 ) and reactance (Z3) connects to the other single gate (E1) (Fig. 2). Schaltung nach Anspruch 2, dadurch gekennzeichnet, daß am einen Ende (I5, I5') des Innenleiters von zwei Leitungen (L4 + L5; L4' + L5') jeweils ein einseitig an Masse (M) liegendes komplexes Widerstandselement (Z2, Z2') angeschlossen ist, die anderen Innenleiterenden (I4, I4') dieser Leitungen mit einem Blindwiderstand (Z3) verbunden sind, wobei ein Teil (L4, L4') der Länge dieser Leitungen (L4 + L5'; L4' + L5') weitere Leitungen (L4/M4; L4'/M4') bilden, welche die Verbindungspunkte der Innenleiterenden (I4, I4') und Blindwiderstand (Z3) mit den beiden Einzeltoren (E1, E2) verbinden (Fig. 3).Circuit according to claim 2, characterized in that at one end (I5, I5 ') of the inner conductor of two lines (L4 + L5; L4' + L5 ') each have a complex resistance element (Z2, Z2') connected to ground (M) on one side. ) is connected, the other inner conductor ends (I4, I4 ') of these lines are connected to a reactance (Z3), a part (L4, L4') of the length of these lines (L4 + L5 ';L4' + L5 ') others Form lines (L4 / M4; L4 '/ M4') which connect the connection points of the inner conductor ends (I4, I4 ') and reactance (Z3) with the two individual gates (E1, E2) (Fig. 3). Schaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Teil der mit Einzeltoren (E1, E2) verbundenen Leitungen (L4/M4, L5/M5) so dimensioniert ist, daß hierdurch Kompensations-Blindwiderstände gebildet werden.Circuit according to one of the preceding claims, characterized in that at least some of the lines (L4 / M4, L5 / M5) connected to individual gates (E1, E2) are dimensioned in such a way that compensation reactive resistors are formed as a result. Schaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Teil der Leitungen in Streifenleitungstechnik gegenüber einer oder mehreren Massebezugsflächen ausgebildet ist.Circuit according to one of the preceding claims, characterized in that at least some of the lines are designed using stripline technology with respect to one or more ground reference areas.
EP92109809A 1991-06-14 1992-06-11 High-frequency power divider/combiner circuit Expired - Lifetime EP0518310B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4119631 1991-06-14
DE4119631A DE4119631A1 (en) 1991-06-14 1991-06-14 CIRCUIT TO SPLIT OR MERGE HIGH FREQUENCY POWER

Publications (2)

Publication Number Publication Date
EP0518310A1 true EP0518310A1 (en) 1992-12-16
EP0518310B1 EP0518310B1 (en) 1995-08-16

Family

ID=6433937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109809A Expired - Lifetime EP0518310B1 (en) 1991-06-14 1992-06-11 High-frequency power divider/combiner circuit

Country Status (2)

Country Link
EP (1) EP0518310B1 (en)
DE (2) DE4119631A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847268B2 (en) 2000-01-20 2005-01-25 Kathrein-Werke Kg Wide-band circuit for splitting or joining radio-frequency powers
CN106654496A (en) * 2016-11-25 2017-05-10 成都雷电微力科技有限公司 Improved single-section Wilkinson power divider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424156A (en) * 1941-01-02 1947-07-15 Gen Electric Co Ltd Apparatus for transmitting and receiving radio signals
US4328471A (en) * 1980-09-15 1982-05-04 General Electric Company Bandwidth compensated quarter-wave coupled power combiner
EP0083476A1 (en) * 1981-12-28 1983-07-13 Hughes Aircraft Company Stripline-type power divider/combiner with integral resistor
DE3702896A1 (en) * 1987-01-31 1988-08-11 Licentia Gmbh BRIDGE CIRCUIT WITH LOAD BALANCING RESISTORS
US4875024A (en) * 1988-12-05 1989-10-17 Ford Aerospace Corporation Low loss power splitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424156A (en) * 1941-01-02 1947-07-15 Gen Electric Co Ltd Apparatus for transmitting and receiving radio signals
US4328471A (en) * 1980-09-15 1982-05-04 General Electric Company Bandwidth compensated quarter-wave coupled power combiner
EP0083476A1 (en) * 1981-12-28 1983-07-13 Hughes Aircraft Company Stripline-type power divider/combiner with integral resistor
DE3702896A1 (en) * 1987-01-31 1988-08-11 Licentia Gmbh BRIDGE CIRCUIT WITH LOAD BALANCING RESISTORS
US4875024A (en) * 1988-12-05 1989-10-17 Ford Aerospace Corporation Low loss power splitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 31 (E-295)(1754) 9. Februar 1985 & JP-A-59 176 903 ( FUJITSU K.K. ) 6. Oktober 1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847268B2 (en) 2000-01-20 2005-01-25 Kathrein-Werke Kg Wide-band circuit for splitting or joining radio-frequency powers
CN106654496A (en) * 2016-11-25 2017-05-10 成都雷电微力科技有限公司 Improved single-section Wilkinson power divider

Also Published As

Publication number Publication date
DE4119631A1 (en) 1992-12-17
EP0518310B1 (en) 1995-08-16
DE59203272D1 (en) 1995-09-21

Similar Documents

Publication Publication Date Title
DE69832228T2 (en) balun
DE3433068C2 (en)
DE60037550T2 (en) Broadband balancing circuit for wireless and high-frequency applications
DE3832293A1 (en) ADJUSTMENT CIRCUIT
DE3685553T2 (en) PIN DIODE ATTENUATOR.
EP0063819B1 (en) Microwave balanced mixer circuit using microstrip transmission lines
DE1909092A1 (en) Hybrid coupler with 90 ° phase shift
DE68909435T2 (en) Power distributor with a three-wire directional coupler.
DE1947255A1 (en) Microwave phase shifter
DE3731394C2 (en) High-frequency interference filter for a circuit to be connected to a line, in particular for two-wire sensors
EP0518310B1 (en) High-frequency power divider/combiner circuit
DE2611712C3 (en) Broadband waveguide mixer
DE3324540C2 (en) Broadband microwave amplifier
DE2541569C2 (en) Frequency dependent attenuator
DE2744862A1 (en) HIGH FREQUENCY TRANSFORMER
DE3445017C2 (en) Broadband balancing device
DE9420609U1 (en) High frequency distribution device
EP0277501A2 (en) Bridge circuit with load distribution resistors
EP0080553B1 (en) Stripline filter
DE972852C (en) Ultra high frequency band filter for transmission lines of electromagnetic vibrations
DE2807327B1 (en) Device for evenly distributing high-frequency energy over two outputs
WO2022038003A1 (en) Antenna
DE2728312A1 (en) DIRECTIONAL COUPLER
EP1224708B1 (en) Coupler for electromagnetic waves
DE102008024898B4 (en) Broadband RF power divider circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19921126

17Q First examination report despatched

Effective date: 19950201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59203272

Country of ref document: DE

Date of ref document: 19950921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950829

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010611

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050611