EP0518056B1 - Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks - Google Patents

Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks Download PDF

Info

Publication number
EP0518056B1
EP0518056B1 EP92107859A EP92107859A EP0518056B1 EP 0518056 B1 EP0518056 B1 EP 0518056B1 EP 92107859 A EP92107859 A EP 92107859A EP 92107859 A EP92107859 A EP 92107859A EP 0518056 B1 EP0518056 B1 EP 0518056B1
Authority
EP
European Patent Office
Prior art keywords
process according
characteristic
damping
damping characteristic
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92107859A
Other languages
English (en)
French (fr)
Other versions
EP0518056A1 (de
Inventor
Zhen Dr.-Ing. Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Bilstein GmbH
Original Assignee
August Bilstein GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by August Bilstein GmbH filed Critical August Bilstein GmbH
Publication of EP0518056A1 publication Critical patent/EP0518056A1/de
Application granted granted Critical
Publication of EP0518056B1 publication Critical patent/EP0518056B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/102Damping action or damper stepwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means

Definitions

  • the invention relates to a method for frequency-dependent adaptive control of a chassis of motor vehicles with controllable vibration dampers, which have controllable valves for changing the damping characteristics in a plurality of levels.
  • the structure of a chassis can be explained using a two-mass oscillator, the unsprung mass of the wheel and wheel suspension being referred to as the wheel mass and the proportional body mass of the vehicle as the body mass. There is a damper spring system between the two. Two contradicting tasks are solved by such a wheel suspension system.
  • the wheels When a vehicle is moving on a road that is inevitably uneven to a certain extent, the wheels are vibrated. The resulting wheel and body vibrations impair driving comfort and the safety of the vehicle.
  • the spring-damper system therefore has the task of guiding the wheel along the road as precisely as possible, of keeping the power transmission from the wheel to the ground at the highest possible level and, on the other hand, of compensating for the body movements resulting from the bumps on the road in order to improve driving comfort to increase for the occupants.
  • a method for controlling the damping force of a vibration damper is known from the German patent DE PS 37 05 508.
  • the method described uses the absolute value of the body acceleration to regulate the damping force, this being compared with two limit values for switching over to a harder damping characteristic in a defined time.
  • the disadvantage of this method is that it can only be used with a vibration damper with a three-way valve and does not take sufficient account of the dependency of the damping force to be set on the frequency of the road bumps.
  • German patent application DE-A-4 138 171 describes a method for regulating a semi-active undercarriage, in which a distinction is made between one-time, long-wave and short-wave road excitations for adjusting the damping force, the acceleration of the vehicle and the relative speed between the and axis must be measured and only two damping force settings are possible.
  • the invention has for its object to provide a method for frequency-dependent adaptive control of a chassis, with which the damping force of a vibration damper can be adjusted in several stages depending on the driving conditions of the motor vehicle and the frequent road bumps, without the Ralative speed between body and axle measure, and with which, in addition to high driving safety, optimum comfort is achieved.
  • a basic damping characteristic is set as a function of the vehicle speed, an increase in driving speed causing harder damping and a lowering of the driving speed producing a softer basic damping characteristic.
  • the basic attenuation characteristic set in this way is used for long-wave Road bumps are switched to a harder identifier, with long-wave periodic road excitation if the sign of the body acceleration does not change in a period defining a long-wave excitation.
  • the damping force remains after the recognition of a long-wave road excitation during a delay time after the first sign change of the body acceleration, i.e. a sign change during the delay time is not taken into account.
  • a short-wave road excitation is recognized when the sign of the body acceleration (a a ) changes in the period.
  • this control method only requires a sensor for the sign of the body acceleration and can use a multi-stage control valve to set the damping force of the vibration damper in a very fine-tuned manner. However, it can also be used for vibration dampers with two- or three-way valves.
  • a very inexpensive variant consists in equipping only the vehicle front axle with sensors for body acceleration and deriving the corresponding signals for the rear axle from the signals of the front axle.
  • the optimal damping force for necessary driving safety and, in compromise, for good driving comfort is influenced not only by the current driving speed and the current frequency of road excitation, but also by variables such as steering angle, brake pitch and lateral acceleration, which can be included in the control loop as auxiliary variables.
  • control method according to the invention that from a combination of adaptive and frequency-dependent damping force setting there is in particular the advantage that, by combining the two damping force settings, it uses the advantages of both methods to achieve high driving safety with the greatest possible driving comfort.
  • Fig. 1 shows the execution of a chassis for a motor vehicle with four shock absorbers.
  • the rear axle is supported by two vibration dampers 1 and two coil springs 2, the front wheel suspension has so-called level-controlled struts 3.
  • the vibration damper 1 and the struts 3 dampen the relative movements of the unsprung masses of the wheel and the wheel suspension and the sprung proportional body dimensions of the vehicle.
  • a control device 4 is provided, which can represent part of the vehicle computer, for example.
  • the control device 4 calculates a manipulated variable for changing the damping force from the signals from the acceleration sensors 5 and the driving speed of the vehicle, an acceleration sensor 5 being provided for each vibration damper 1 and each strut 3.
  • the block diagram of the unicycle model shown in FIG. 2 is used to explain the control method.
  • the linear two-mass system consists of the sprung proportional body mass m a and the unsprung wheel mass m R.
  • the spring constants c R and the damping constant d R are the constants of the radiant damper-spring system.
  • the driving speed v Fahr is tapped by the speedometer of the vehicle and fed directly to the controller RG. Via the size of the driving speed v Fahr, this forms the manipulated variable component for the current basic damping characteristic.
  • the acceleration sensor 5 arranged on the body mass m a measures the body acceleration a a , which is passed on to a filter 6. Emerging disturbance variables are filtered out in this filter.
  • the filtered signal goes to the controller RG as an input variable.
  • the controller calculates a controller output variable I R for influencing the damping behavior of the vibration damper by superimposing the manipulated variable component of the frequency-dependent damping force on the part of the manipulated variable for the basic damping characteristic.
  • This type of control can be used in particular for vibration dampers with a controllable multi-way valve as a bypass valve.
  • the control algorithm is to be explained in more detail with reference to the signal curve of the damping force shown in FIG. 3.
  • the basic damping force is set to the damping characteristic F 1 - soft. If a short-wave road excitation is additionally sensed, the damping force F D remains in the soft characteristic. With long-wave road excitation, the controller generates a manipulated variable for setting a harder damping characteristic F2. At a higher driving speed v Fahr , the basic damping force is set to a correspondingly higher, for example the damping force characteristic F 3. The frequency-dependent part of the control now puts the damping force F D on the harder characteristic F4 with long-wave road excitation, with short-wave road excitation it remains in the set basic damping force characteristic F3.
  • the controller will generate a manipulated variable as a function of long-wave road excitation, which sets the damping force two levels harder, for example F4.
  • auxiliary control variables such as lateral acceleration, brake pitch or steering angle, can have a similar influence on the damping force.
  • the controller RG supplies a manipulated variable for switching over the basic damping set via the driving speed to a harder damping characteristic.
  • the controller recognizes long-wave excitation, since the sign of the body acceleration a a does not change during a defined time T L.
  • a delay time T is added in the subsequent calculations of the time T L to eliminate error detections due to occurring disturbance variables, which in certain cases can also assume negative values.
  • Another possibility, not shown, of avoiding errors due to high-frequency harmonics, in particular in the vicinity of the zero crossing of the body acceleration a a is to ignore the first sign change of the body acceleration a a during a delay time T after the long-wave excitation has been recognized for the first time.
  • the controller RG detects a periodic short-wave road excitation x E (FIGS. 5 and 7), that is to say the sign of the body acceleration a a changes in the predefined time T L , a manipulated variable is generated to maintain the damping force F D in the soft basic damping characteristic curve. as shown in Fig. 5.
  • a single road excitation x E which causes a short-wave body acceleration a a
  • the damping force F D also remains in the soft characteristic curve (FIG. 7).
  • FIG. 6 shows the signal curves in the case of a single obstacle with long-wave excitation x E.
  • the controller RG recognizes the long-wave road excitation since the sign of the body acceleration a a does not change in the predefined time T L and switches from the basic damping force characteristic set by the driving speed to a harder characteristic.
  • the vibration of the body acceleration slowly subsides after the one-time street excitation x E , the body acceleration changes its sign in time T L and the controller generates a manipulated variable I that adjusts the damping force F D of the vibration damper to the basic damping characteristic.

Description

  • Die Erfindung betrifft ein Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks von Kraftfahrzeugen mit regelbaren Schwingungsdämpfern, welche steuerbare Ventile zum Ändern der Dämpfungscharakteristik in einer Mehrzahl von Abstufungen aufweisen.
  • Der Aufbau eines Fahrwerks läßt sich anhand eines Zweimassenschwingers erläutern, wobei die ungefederte Masse von Rad und Radaufhängung als Radmasse und die anteilige Aufbaumasse des Fahrzeuges als Aufbaumasse bezeichnet ist. Zwischen beiden befindet sich ein Dämpfer-Federsystem. Von einem solchen Radfederungssystem werden zwei sich widersprechende Aufgaben gelöst. Durch die Fortbewegung eines Fahrzeuges auf einer im gewissen Grad unvermeidbar unebenen Straße kommt es über die Räder zu einer Schwingungsanregung. Die resultierenden Rad- und Aufbauschwingungen beeinträchtigen den Fahrkomfort und auch die Sicherheit des Fahrzeuges.
  • Damit hat also das Feder- Dämpfersystem einmal die Aufgabe, das Rad so genau wie möglich an der Fahrbahn entlang zu führen, die Kraftübertragung vom Rad zum Untergrund auf möglichst hohem Niveau zu halten, und andererseits die aus den Straßenunebenheiten resultierenden Aufbaubewegungen auszugleichen, um den Fahrkomfort für die Insassen zu steigern. Durch Einstellung der Dämpferkraft des Schwingungsdämpfers in Abhängigkeit der Straßenanregung können im hohen Maße die auftretenden Schwingungen absorbiert und die Fahrsicherheit gewährleistet werden.
  • Ein Verfahren zur Steuerung der Dämpfungskraft eines Schwingungsdämpfers ist aus der deutschen Patentschrift DE PS 37 05 508 bekannt. Das beschriebene Verfahren verwendet zur Regelung der Dämpfungskraft den Absolutwert der Aufbaubeschleunigung, wobei dieser mit zwei Grenzwerten zur Umschaltung auf eine härtere Dämpfungskennlinie in einer definierten Zeit verglichen wird. Nachteilig wirkt sich bei diesem Verfahren aus, daß es nur bei einem Schwingungsdämpfer mit einem Drei-Wege-Ventil zum Einsatz kommen kann und nicht im ausreichenden Maße die Abhängigkeit der einzustellenden Dämpfungskraft von den frequenten Straßenunebenheiten berücksichtigt. In der deutschen Patentanmeldung DE-A-4 138 171 wird ein Verfahren zum Regeln eines semiaktiven Fahrwerks beschrieben, bei dem zwischen einmaligen, lang- und kurzwelligen Straßenanregungen zur Einstellung der Dämpfungskraft unterschieden wird, wobei neben der Aufbaubeschleunigung des Fahrzeuges auch die Relativgeschwindigkeit zwischen Aufbau- und Achse gemessen werden muß und nur zwei Dämpfungskrafteinstellungen möglich sind.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks zu schaffen, mit dem die Dämpfungskraft eines Schwingungsdämpfers in Abhängigkeit der Fahrbedingungen des Kraftfahrzeuges und der frequenten Straßenunebenheiten in mehreren Stufen eingestellt werden kann, ohne die Ralativgeschwindigkeit zwischen Aufbau- und Achse zu messen, und mit dem neben einer hohen Fahrsicherheit ein optimaler Komfort erreicht wird.
  • Die Aufgabe wird durch die Merkmale des ersten Patentanspruchs gelöst. Vorteilhafte Ausführungen sind in den Unteransprüchen beschrieben.
  • Bei dem erfindungsgemäßen Verfahren zur frequenzabhängigen adaptiven Regelung der Dämpfungskraft eines Schwingungsdämpfers wird in Abhängigkeit der Fahrzeuggeschwindigkeit eine Grunddämpfungscharakteristik eingestellt, wobei eine Fahrgeschwindigkeitserhöhung eine härtere Dämpfung und eine Senkung der Fahrgeschwindigkeit eine weichere Grunddämpfungscharakteristik bewirkt. Die so eingestellte Grunddämpfungscharakteristik wird bei langwelligen Straßenunebenheiten auf eine härtere Kennung geschaltet, wobei eine langwellige periodische Straßenanregung vorliegt, wenn sich das Vorzeichen der Aufbaubeschleunigung in einer eine langwellige Anregung definierenden Periodenzeit nicht ändert. Um den Einfluß von Fehlererkennungen durch hochfrequente Oberwellen, insbesondere in der Nähe des Nulldurchgangs der Aufbaubeschleunigung, zu vermeiden, bleibt die Dämpfungskraft nach dem Erkennen einer langwelligen Straßenanregung während einer Verzögerungszeit nach dem erstamligen Vorzeichenwechsel der Aufbaubeschleunigung in der harten Kennung, d. h. ein Vorzeichenwechsel während der Verzögerungszeit wird nicht berücksichtigt.
  • Bei einer kurzwelligen Straßenunebenheit bleibt die Grunddämpfungscharakteristik eingestellt. Eine kurzwellige Straßenanregung wird erkannt, wenn sich das Vorzeichen der Aufbaubeschleunigung (aa) in der Periodenzeit ändert.
  • Dieses Regelverfahren benötigt außer den am Fahrzeug schon vorhandenen Sensoren für die Fahrgeschwindigkeit und die Hilfsregelgrößen nur einen Sensor für das Vorzeichen der Aufbaubeschleunigung und kann bei Einsatz eines mehrstufigen Steuerventils die Dämpfungskraft des Schwingungsdämpfers sehr feinstufig einstellen. Es ist jedoch auch für Schwingungsdämpfer mit Zwei- oder Drei-Wege-Ventilen einsetzbar.
  • Eine sehr kostengünstige Variante besteht darin, nur die Fahrzeugvorderachse mit Sensoren für die Aufbaubeschleunigung auszurüsten und die entsprechenden Signale für die Hinterachse aus den Signalen der Vorderachse abzuleiten.
  • Die optimale Dämpfungskraft für eine notwendige Fahrsicherheit und im Kompromiß dazu für einen guten Fahrkomfort wird außer von der momentanen Fahrgeschwindigkeit und der momentanen frequenten Straßenanregung, auch von Größen wie Lenkwinkel, Bremsnicken und Querbeschleunigung beeinflußt, die als Hilfsgrößen in den Regelkreis eingehen können.
  • Das erfindungsgemäße Regelverfahren, daß aus einer Kombination von adaptiver und frequenzabhängiger Dämpfungskrafteinstellung besteht, weist insbesondere den Vorteil auf, daß es durch die Kombination beider Dämpfungskrafteinstellungen die Vorteile beider Verfahren zur Erreichung einer hohen Fahrsicherheit bei größtmöglichem Fahrkomfort nutzt.
  • Die Erfindung soll anhand eines Ausführungsbeispiels näher erläutert werden. Die zugehörigen Zeichnungen zeigen:
  • Fig. 1
    die Ausführung eines Fahrwerks eines Kraftfahrzeuges mit vier Stoßdämpfern,
    Fig. 2
    das Blockschaltbild der Fahrwerksregelung,
    Fig. 3
    den Signalverlauf der Dämpfungskraft in Abhängigkeit der Fahrgeschwindigkeit mit überlagertem frequenzabhängigen Teil der Dämpfungskraft,
    Fig. 4
    den Signalverlauf der Aufbaubeschleunigung und des frequenzabhängigen Teils der Dämpfungskraft bei einer langwelligen periodischen Straßenanregung,
    Fig. 5
    den Signalverlauf der Aufbaubeschleunigung und des frequenzabhängigen Teils der Dämpfungskraft bei einer kurzwelligen periodischen Straßenanregung,
    Fig. 6
    den Signalverlauf der Aufbaubeschleunigung und des frequenzabhängigen Teils der Dämpfungskraft bei langwelliger Erregung durch ein Einzelhindernis und
    Fig. 7
    den Signalverlauf der Aufbaubeschleunigung und des frequenzabhängigen Teils der Dämpfungskraft bei kurzwelliger Erregung durch ein Einzelhindernis.
  • Fig. 1 zeigt die Ausführung eines Fahrwerks für ein Kraftfahrzeug mit vier Stoßdämpfern. Die hintere Achse wird über zwei Schwingungsdämpfer 1 und zwei Wendelfedern 2 abgestützt, die vordere Radaufhängung weist sogenannte niveaugeregelte Federbeine 3 auf. Die Schwingungsdämpfer 1 und die Federbeine 3 dämpfen die Relativbewegungen der ungefederten Massen des Rades und der Radaufhängung und den gefederten anteiligen Aufbaumassen des Fahrzeuges. Zum Verändern der Dämpfereigenschaften ist eine Regeleinrichtung 4 vorgesehen, die zum Beispiel einen Teil des Fahrzeugrechners darstellen kann. Die Regeleinrichtung 4 errechnet aus den Signalen der Beschleunigungssensoren 5 und der Fahrgeschwindigkeit des Fahrzeuges eine Stellgröße zur Veränderung der Dämpfungskraft, wobei für jeden Schwingungsdämpfer 1 und jedes Federbein 3 ein Beschleunigungssensor 5 vorhanden ist.
  • Zur Erläuterung des Regelverfahrens wird das in Fig. 2 gezeigte Blockschaltbild des Einradmodells verwendet. Das lineare Zweimassensystem besteht aus der gefederten anteiligen Aufbaumasse ma und der ungefederten Radmasse mR. Zwischen beiden Massen befindet sich ein Dämpfer-Feder-System, bei dem ca die Federkonstante und da die Dämpfungskonstante darstellen. Die Federkonstande cR und die Dämpfungskonstante dR sind die Konstanten des radimanenten Dämpfer-Feder-Systems. Die Fahrgeschwindigkeit vFahr wird vom Tachometer des Fahrzeuges abgegriffen und dem Regler RG direkt zugeleitet. Dieser bildet über die Größe der Fahrgeschwindigkeit vFahr den Stellgrößenanteil für die momentane Grunddämpfungscharakteristik.
  • Der an der Aufbaumasse ma angeordnete Beschleunigungssensor 5 mißt die Aufbaubeschleunigung aa, die an einen Filter 6 weitergeleitet wird. In diesem Filter werden aufkommende Störgrößen herausgefiltert. Das gefilterte Signal geht als Eingangsgröße an den Regler RG. Der Regler errechnet gemäß dem erfindungsgemäßen Regelalgorithmus eine Reglerausgangsgröße IR zur Beeinflussung des Dämpfungsverhaltens des Schwingungsdämpfers, indem dem Teil der Stellgröße für die Grunddämpfungskennlinie der Stellgrößenanteil der frequenzabhängigen Dämpfungskraft überlagert wird.
  • Die Reglerausgangsgröße IR bildet zusammen mit dem Stellgrößenanteil IH der Hilfsregelgrößen, wie Lenkwinkel oder Querbeschleunigung, die Stellgröße I zur Beeinflussung der Dämpfungskraft FD des Schwingungsdämpfers, wobei auch denkbar ist, die gemessenen Hilfsregelgrößen direkt als Eingangsgrößen dem Regler RG zuzuführen.
  • Diese Art von Regelung kann insbesondere für Schwingungsdämpfer mit einem regelbaren Mehrwegeventil als Bypaßventil zur Anwendung kommen.
  • Anhand des in Fig. 3 gezeigten Signalverlaufs der Dämpfungskraft soll der Regelalgorithmus näher erläutert werden.
  • Fährt zum Beispiel das Fahrzeug mit einer sehr geringen Geschwindigkeit VFahr, wird die Grunddämpfungskraft auf die Dämpfungskennlinie F₁ - weich - eingestellt. Wird nun zusätzlich eine kurzwellige Straßenanregung sensiert, bleibt die Dämpfungskraft FD in der weichen Kennlinie. Bei einer langwelligen Straßenanregung erzeugt der Regler eine Stellgröße zur Einstellung einer härteren Dämpfungscharakteristik F₂. Bei einer höheren Fahrgeschwindigkeit vFahr wird die Grunddämpfungskraft auf eine entsprechend höhere, beispielsweise die Dämpfungskraftkennlinie F₃, eingestellt. Der frequenzabhängige Teil der Regelung stellt jetzt bei einer langwelligen Straßenanregung die Dämpfungskraft FD auf die härtere Kennlinie F₄, bei einer kurzwelligen Straßenanregung verbleibt sie in der eingestellten Grunddämpfungskraftkennlinie F₃.
  • Fährt das Fahrzeug mit einer Fahrgeschwindigkeit, die eine Grunddämpfung FD zwischen zwei möglichen Dämpfungskennlinien, zum Beispiel zwischen den Dämpfungskennlinien F₂ und F₃ bedingt, wird der Regler eine Stellgröße in Abhängigkeit einer langwelligen Straßenanregung erzeugen, die die Dämpfungskraft zwei Stufen härter einstellt, zum Beispiel auf F₄.
  • Einen ähnlichen Einfluß auf die Dämpfungskraft können die Hilfsregelgrößen, wie Querbeschleunigung, Bremsnicken oder Lenkwinkel ausüben.
  • Die Fig. 4 bis 7 zeigen die Signalverläufe der Aufbaubeschleunigung aa und des frequenzabhängigen Teils der Dämpfungskraft FD in Abhängigkeit unterschiedlicher Straßenanregungen.
  • Bei einer periodischen langwelligen Straßenanregung, wie sie Fig. 4 darstellt, liefert der Regler RG eine Stellgröße zur Umschaltung der über die Fahrgeschwindigkeit eingestellten Grunddämpfung auf eine härtere Dämfpungskennlinie. Der Regler erkennt eine langwellige Erregung, da sich das Vorzeichen der Aufbaubeschleunigung aa während einer definierten Zeit TL nicht ändert.
  • Hat der Regler eine langwellige Erregung erkannt, wird in den nachfolgenden Berechnungen der Zeit TL zur Ausschaltung von Fehlerkennungen durch auftretende Störgrößen eine Verzögerungszeit T zuaddiert, die in bestimmten Fällen auch negative Werte annehmen kann. Eine andere, nicht dargestellte Möglichkeit, Fehler durch hochfrequente Oberwellen, insbesondere in der Nähe des Nulldurchgangs der Aufbaubeschleunigung aa zu vermeiden, besteht darin, nach dem erstmaligen Erkennen der langwelligen Erregung den erstmaligen Vorzeichenwechsel der Aufbaubeschleunigung aa während einer Verzögerungszeit T nicht zu berücksichtigen.
  • Erkennt der Regler RG eine periodische kurzwellige Straßenanregung xE (Fig. 5 und 7), das heißt das Vorzeichen der Aufbaubeschleunigung aa ändert sich in der vordefinierten Zeit TL, wird eine Stellgröße zum Verbleib der Dämpfungskraft FD in der weichen Grunddämpfungskennlinie erzeugt, wie in Fig. 5 dargestellt. Bei einer einmaligen Straßenanregung xE, die eine kurzwellige Aufbaubeschleunigung aa verursacht, verbleibt die Dämpfungskraft FD ebenfalls in der weichen Kennlinie (Fig. 7).
  • Fig. 6 zeigt die Signalverläufe bei einem Einzelhindernis mit langwelliger Anregung xE. Der Regler RG erkennt die langwellige Straßenanregung, da sich das Vorzeichen der Aufbaubeschleunigung aa in der vordefinierten Zeit TL nicht ändert und schaltet von der durch die Fahrgeschwindigkeit eingestellten Grunddämpfungskraftkennlinie auf eine härtere Kennlinie um. Die Schwingung der Aufbaubeschleunigung klingt nach der einmaligen straßenanregung xE langsam ab, die Aufbaubeschleunigung ändert ihr Vorzeichen in der Zeit TL und der Regler erzeugt eine Stellgröße I, die die Dämpfungskraft FD des Schwingungsdämpfers auf die Grunddämpfungskennlinie einstellt.
  • Bezugszeichen
  • 1
    Schwingungsdämpfer
    2
    Wendelfeder
    3
    Federbein
    4
    Regeleinrichtung
    5
    Beschleunigungssensor
    6
    Filter
    ma
    Aufbaumasse
    mR
    Radmasse
    ca
    Federkonstante
    da
    Dämpfungskonstante
    cR
    Federkonstante
    dR
    Dämpfungskonstante
    vFahr
    Fahrgeschwindigkeit
    RG
    Regler
    IR
    Reglerausgangsgröße
    IH
    Stellgrößenanteil der Hilfregelgrößen
    I
    Stellgröße
    FD
    Dämpfungskraft
    F₁ - F₅
    Dämpfungskennlinien
    T
    Verzögerungszeit
    TL
    definierte Zeit
    xE
    Straßenanregung

Claims (11)

  1. Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks mit regelbaren Schwingungsdämpfern, welche steuerbare Ventile zum Ändern der Dämpfungscharakteristik in einer Mehrzahl von Abstufungen aufweisen, bei dem die Fahrzeuggeschwindigkeit und die Aufbaubeschleunigung gemessen werden, dadurch gekennzeichnet, daß die Grunddämpfungscharakteristik in Abhängigkeit der Fahrzeuggeschwindigkeit (vFahr) eingestellt wird, wobei eine Fahrgeschwindigkeitserhöhung eine härtere Grunddämpfungscharakteristik und eine Fahrgeschwindigkeitssenkung eine weichere Grunddämpfungscharakteristik bewirkt, daß die Dämpfungscharakteristik auf eine härtere Kennung geschaltet wird oder bei härtester Grunddämpfungscharakteristik in dieser bleibt, wenn das Vorzeichen der Aufbaubeschleunigung (aa) sich in einer eine langwellige straßenanregung kennzeichnenden Periodenzeit (TL) nicht ändert und die Dämpfungscharakteristik in die Kennlinie der von der Fahrzeuggeschwindigkeit (vFahr) eingestellten Grunddämpfung eingestellt wird oder bleibt, wenn sich das Vorzeichen der Aufbaubeschleunigung (aa) in der Periodenzeit (TL) ändert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umschaltung der Dämpfungscharakteristik auf eine härtere oder weichere Kennung in ein oder mehreren Stufen außderdem von Hilfsregelgrößen abhängt.
  3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die Querbeschleunigung, der Lenkwinkel, die Niveauregelung und/oder ein Signal für die Bremsbetätigung als Hilfsgrößen in den Regelkreis eingehen.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß nach einer erstmaligen Erkennung einer langwelligen Straßenanregung der Periodenzeit (TL) ein Verzögerungswert (ΔT) zuaddiert wird und die Erkennung der langen Welle mit der Periodenzeit (TL + ΔT) erfolgt.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Periodenzeit (TL) und/oder die Periodenzeit (TL + ΔT) als Konstanten im Regler abgespeichert sind.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß nach der Erkennung einer langwelligen periodischen Straßenanregung (xE) die Dämpfungskraft (D) in einer Verzögerungszeit (ΔT) nach dem erstmaligen Vorzeichenwechsel der Aufbaubeschleunigung (aa) während der eine langwellige Straßenanregung kennzeichnenden Periodenzeit (TL) in der harten Kennung bleibt.
  7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Größe der Verzögerungszeit (ΔT) von der Fahrgeschwindigkeit (vFahr) des Fahrzeuges abhängig ist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß bei einer hohen Fahrgeschwindigkeit (vFahr) eine längere Verzögerungszeit (ΔT) vorgesehen ist.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Fahrzeugvorderachse mit Sensoren für die Aufbaubeschleunigung und/oder die Querbeschleunigung ausgerüstet ist und die Signale für die Hinterachse aus den Signalen der Vorderachse abgeleitet werden.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eins der steuerbaren Ventile des Schwingungsdämpfers ein Drei-Wege-Ventil ist.
  11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eins der steuerbaren Ventile des Schwingungsdämpfers ein Zwei-Wege-Ventile ist.
EP92107859A 1991-06-12 1992-05-11 Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks Expired - Lifetime EP0518056B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4119323A DE4119323A1 (de) 1991-06-12 1991-06-12 Verfahren zur frequenzabhaengigen adaptiven regelung eines fahrwerks
DE4119323 1991-06-12

Publications (2)

Publication Number Publication Date
EP0518056A1 EP0518056A1 (de) 1992-12-16
EP0518056B1 true EP0518056B1 (de) 1995-01-04

Family

ID=6433745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92107859A Expired - Lifetime EP0518056B1 (de) 1991-06-12 1992-05-11 Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks

Country Status (4)

Country Link
EP (1) EP0518056B1 (de)
JP (1) JP3190428B2 (de)
DE (2) DE4119323A1 (de)
ES (1) ES2066514T3 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418625B4 (de) * 1993-05-27 2004-11-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Steuereinrichtung für eine Radaufhängung eines Fahrzeugs, Verfahren zur Einstellung der Federkonstanten und zur Einstellung des Dämpfungsmaßes einer Radaufhängung
IT1274272B (it) * 1994-04-20 1997-07-17 Fiat Auto Spa Sistema automatico per la variazione della rigidezza e/o dello smorzamento delle sospensioni di un autoveicolo
DE4430364B4 (de) * 1994-08-26 2005-03-31 Siemens Ag Verfahren und Vorrichtung zur Steuerung der Dämpfung des Fahrwerks eines Kraftfahrzeugs
DE19755656C1 (de) * 1997-12-15 1999-08-26 Fkfs Forschungsinstitut Fuer K Fahrzeugfederungssystem
DE10120918B4 (de) * 2001-04-27 2011-05-05 Continental Aktiengesellschaft Elektrisch verstellbare, semiaktive Dämpferregelung
DE102004037043A1 (de) 2004-07-29 2006-03-23 Degussa Ag Blockkondensate organofunktioneller Siloxane, deren Herstellung, Verwendung sowie deren Eigenschaften
DE102008052992B4 (de) * 2007-10-26 2020-10-29 Volkswagen Ag Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE102009002477A1 (de) 2009-04-20 2010-10-21 Evonik Degussa Gmbh Quartäre-aminofunktionelle, siliciumorganische Verbindungen enthaltende Zusammensetzung sowie deren Herstellung und Verwendung
DE102015005966A1 (de) * 2015-05-08 2016-11-10 Fludicon Gmbh Verfahren und Vorrichtung zur Regelung oder Steuerung einer semiaktiven Dämpfereinrichtung eines Kraftfahrzeugs
DE102016206964A1 (de) * 2016-04-25 2017-10-26 Zf Friedrichshafen Ag Verfahren zur Verstellung eines Fahrwerkselements eines Kraftfahrzeugs
WO2021119947A1 (zh) * 2019-12-16 2021-06-24 哈尔滨工业大学(深圳) 一种桥梁损伤快速检测方法及相关装置
DE102021131065A1 (de) * 2021-11-26 2023-06-01 Audi Aktiengesellschaft Aktive Fahrwerkregelung für ein Kraftfahrzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3437799A1 (de) * 1984-10-16 1986-04-24 August Bilstein GmbH & Co KG, 5828 Ennepetal Verfahren zur ueberwachung und beeinflussung von stossdaempfern
DE3518503C1 (de) * 1985-05-23 1986-10-23 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zur rechnergestuetzten,fahrbahnabhaengigen Steuerung von Daempfern einer Fahrzeugfederung
JPS6280112A (ja) * 1985-10-02 1987-04-13 Toyota Motor Corp サスペンシヨン制御装置
JPS62194921A (ja) * 1986-02-21 1987-08-27 Honda Motor Co Ltd 緩衝器の減衰力制御方法
DE3624493A1 (de) * 1986-07-19 1988-01-21 Bayerische Motoren Werke Ag Vorrichtung zur beeinflussung der daempfkraft und/oder federkraft an aufhaengungsteilen eines kraftfahrzeugs
DE3632919A1 (de) * 1986-09-27 1988-03-31 Bayerische Motoren Werke Ag Verfahren zur daempfkraftverstellung von kraftfahrzeugen
DE3738284A1 (de) * 1986-12-09 1988-06-30 Bosch Gmbh Robert Vorrichtung zur aktiven fahrwerkregelung bei kraftfahrzeugen
DE3889329T2 (de) * 1988-01-20 1994-11-17 Moog Inc Fahrzeugaufhängesystem und dessen betrieb.
DE3818179A1 (de) * 1988-05-28 1989-12-07 Messerschmitt Boelkow Blohm Aufhaengung fuer fahrzeuge
JP2748546B2 (ja) * 1989-05-12 1998-05-06 トヨタ自動車株式会社 車両振動制御装置
DE59000184D1 (de) * 1989-06-20 1992-08-06 Bilstein August Gmbh Co Kg Semi-aktives fahrwerk.
CA2029709C (en) * 1989-11-13 1994-04-19 Eiichiro Okuda Suspension control apparatus

Also Published As

Publication number Publication date
DE4119323C2 (de) 1993-04-29
DE4119323A1 (de) 1992-12-17
EP0518056A1 (de) 1992-12-16
JPH05169959A (ja) 1993-07-09
JP3190428B2 (ja) 2001-07-23
ES2066514T3 (es) 1995-03-01
DE59201121D1 (de) 1995-02-16

Similar Documents

Publication Publication Date Title
EP0403803B1 (de) Semi-aktives Fahrwerk
DE19748271B4 (de) Steuersystem einer semiaktiven Aufhängung
DE4333379C2 (de) Vorrichtung zur Steuerung der Stoßdämpfer von Radaufhängungen
DE19804005C2 (de) Verfahren zum Einstellen einer Fahrzeugaufhängung
DE4139692C2 (de) Verfahren zur Beeinflussung der Schwingungsdämpfer von Fahrzeugen
DE112018007347B4 (de) Aufhängungssteuereinrichtung
EP0518056B1 (de) Verfahren zur frequenzabhängigen adaptiven Regelung eines Fahrwerks
DE102010003205B4 (de) Verfahren zur Bestimmung der vertikalen Beschleunigung, der longitudinalen Winkelbeschleunigung und der transversalen Winkelbeschleunigung eines Körpers, insbesondere eines Kraftfahrzeugs
EP0499790B1 (de) Verfahren zum Regeln eines semiaktiven Fahrwerks
EP2214920A1 (de) Verfahren und system zur beeinflussung der bewegung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrzeugaufbaus eines kraftfahrzeuges und fahrzeug
EP0844114B1 (de) Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks
US5218546A (en) Frequency shaping method for minimizing impact harshness of suspension system
DE102008052991A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE4116839A1 (de) Verfahren und schaltungssystem zur aufbereitung von signalen
EP2052885B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
JPH04232111A (ja) 信号処理方法及び装置
DE4202091C2 (de)
DE19804003C2 (de) Elektronische Aufhängungsregelung für Fahrzeuge
DE4103188C1 (en) Regulating vibration damping of semi-active chassis of motor vehicle - operating proportional or quasi proportional suspension valves according to road irregularities and vertical acceleration of undercarriage
EP2052886B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE19600724C2 (de) Verfahren zur Ermittlung von zur Quer- und/oder Längsbeschleunigung eines Fahrzeuges analogen Signalen
DE102012019619A1 (de) Steuereinrichtung für ein Niveauregelsystem und Niveauregelsystem
DE102021212474B3 (de) Verfahren zur Beeinflussung einer Bewegung eines Fahrzeugaufbaus eines Fahrzeugs, Computerprogramm, Steuerungs- und/oder Regelungssystem, sowie Fahrzeug
EP2052887B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE4220617C1 (en) Regulation of chassis of motor vehicle with regulatable vibration dampers - using proportional valves for adjusting damping force and measuring body acceleration and damping force actual value

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19921027

17Q First examination report despatched

Effective date: 19940527

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950117

REF Corresponds to:

Ref document number: 59201121

Country of ref document: DE

Date of ref document: 19950216

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2066514

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970417

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970428

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970519

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980512

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: AUGUST BILSTEIN G.M.B.H. & CO. K.G.

Effective date: 19980531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

EUG Se: european patent has lapsed

Ref document number: 92107859.8

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050503

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050510

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050512

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20050819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060511

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070511