EP0517594B1 - Machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée - Google Patents

Machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée Download PDF

Info

Publication number
EP0517594B1
EP0517594B1 EP92401532A EP92401532A EP0517594B1 EP 0517594 B1 EP0517594 B1 EP 0517594B1 EP 92401532 A EP92401532 A EP 92401532A EP 92401532 A EP92401532 A EP 92401532A EP 0517594 B1 EP0517594 B1 EP 0517594B1
Authority
EP
European Patent Office
Prior art keywords
machine according
wafer
disk
polishing
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92401532A
Other languages
German (de)
English (en)
Other versions
EP0517594A1 (fr
Inventor
André Baldy
Gérard Barrois
Henry Blanc
Marcel Dominiak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9106869A external-priority patent/FR2677293A1/fr
Priority claimed from FR9106866A external-priority patent/FR2677288B1/fr
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0517594A1 publication Critical patent/EP0517594A1/fr
Application granted granted Critical
Publication of EP0517594B1 publication Critical patent/EP0517594B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/004Machines or devices using grinding or polishing belts; Accessories therefor using abrasive rolled strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/18Accessories
    • B24B21/20Accessories for controlling or adjusting the tracking or the tension of the grinding belt

Definitions

  • the present invention relates to a polishing machine with a tensile microabrasive band and an improved wafer support head.
  • a machine according to the preamble of claim 1 is known, for example, from PATENT ABSTRACTS OF JAPAN vol. 8, no. 83 (M-290) (1520) April 17, 1984 & JP-A-59 001 151.
  • the invention finds a particular application in the polishing of microelectronic components integrated in semiconductor wafers (in silicon for example). They can be, in particular, magnetic writing and reading heads.
  • the first document relates to heads with a so-called “horizontal” structure - because formed by a stack of layers deposited on the upper face of a semiconductor wafer - and the second to heads with a so-called “vertical” structure - because formed of layers deposited on the edge of such a wafer.
  • micro-machining carried out on such wafers consists, in the first case, in leveling (or “planarizing") and in polishing various intermediate sub-assemblies obtained during the production process, in defining an air gap and in bringing the assembly of the head in the general plane of the substrate, also called the flight plane.
  • the purpose of micro-machining is to define an air gap and to adjust the shape of the flight pads.
  • the machine which is the subject of the present invention is above all intended for polishing assemblies or sub-assemblies corresponding to the first category (horizontal heads) because it is in this case that the technological problems are the most difficult.
  • Figure 1 shows, by way of example of a polishing piece, a magnetic writing and reading head in a horizontal structure.
  • the assembly represented corresponds to the last stage of production before final polishing.
  • This set includes a silicon substrate 10 in which a box has been etched, a magnetic circuit 12 made of iron-nickel alloy, a double coil 14 made of copper, a layer of silica 16 3 to 6 ”m thick, a spacer nonmagnetic 18 in silica approximately 1 ”thick and two upper pole pieces 20 in iron-nickel.
  • the final polishing plan is marked in broken lines and referenced 22.
  • the material removal relates to the pole pieces 20 and to the protrusions 23 in silica. In order not to alter the magnetic circuit, this removal must not reduce the thickness of the uniform layer of silica by more than 0.3 ”m.
  • the final polishing plan defines the flight plan of the head.
  • Two such heads are generally placed side by side on two parallel strips called "skis", defining two flight plans, in a general catamaran structure.
  • Figure 2 first of all, illustrates the known principle of lapping with liquid loaded with abrasive grains.
  • the plate 10 and its protuberances 25 are placed opposite a polishing plate 23 and the liquid 24, loaded with abrasive grains, forms a film between the plate and the reference plane.
  • the translational movement of the insert causes abrasion of the growths.
  • part a shows an outgrowth 25a before polishing, the shape of which corresponds very substantially to that encountered in the case of integrated magnetic heads, as will be seen more clearly below.
  • This profile takes the form 25b after the start of polishing (part b ) and, finally, the form 25c (part c ) at the end of polishing.
  • part c the form 25c at the end of polishing.
  • FIG. 4 Another known technique consists in using a microabrasive plastic film bonded to a reference plate.
  • the adhesive layer has a thickness of about 100 »m.
  • the thickness of the sheet is about 50 to 75 ”m.
  • the assembly therefore has a thickness of approximately 150 to 175 "m.
  • FIG. 5 shows this abrasive means with a plate 10 and its protrusions 25 to be polished. It is observed that the presence of the protuberances and the relatively large thickness of the polishing layer cause it to crease, by local compression of the sheet and crushing of the glue points. In this case again, the polish finally obtained is not satisfactory.
  • Figures 6 schematically show the profile of a polished pad 29, before polishing ( Figure 6a) and after polishing ( Figure 6b).
  • Polishing machines are also known which use a microabrasive film, not glued to a reference surface but stretched over a plate. Such machines are described in documents DE-U-8 717 353 and DOS 26 37 343. These machines comprise a supply coil and a take-up coil between which passes, in a step-by-step movement, the microabrasive strip. This strip passes over a piece of soft material.
  • the polishing piece which in this case is a base plate, is held by a head animated by a rotational movement,
  • a pneumatic means arranged at the lower part of the machine, allows to press the microabrasive band under the base of the plate, so that it comes to deform the abrasive film and sink into the soft piece.
  • the tension of the strip is obtained by means of pliers or jaws which simultaneously make it possible to advance the strip step by step.
  • a head with rotary movement such as that of the cited documents, would not be suitable for polishing semiconductor wafers since then the center of the wafer would not be polished.
  • a simple rotary movement is only suitable for ring pieces, such as the base of plates.
  • microabrasive sheets (or “strips” or “films) which can be used in the invention can be commercial sheets, such as those sold by the company 3M.
  • the film called “Imperial Lapping Film (ILF)" of thickness 12 or 25 or 35 or 50 or 75 "m may be suitable. This film is available on roll.
  • the polishing means comprises a microabrasive sheet or strip 33 stretched and pressed against a reference plate 30.
  • the sheet 33 is stretched by means 35, 35 ′ arranged on either side of the plate 30.
  • FIGS. 8a and 8b illustrate a particular embodiment of the means 35, 35 ′ able to tension the abrasive sheet properly and to allow the slow scrolling of it over the board.
  • the machine is shown in top view on part a and in side view on part b .
  • FIGS. 8a and 8b stick to the reference plate and to the various means for stretching the microabrasive strip on this plate and making it run.
  • the machine comprises a first coil 40 and a second coil 50 arranged on either side of the reference plate 30. On these coils is wound a microabrasive strip 33, which is thus stretched between the two coils.
  • the first coil 40 is a supply coil equipped with means for exerting a resistant torque; the second coil 50 is a take-up coil controlled by a motor.
  • the microabrasive strip 33 can thus pass from the first reel 40 to the second 50, while scrolling above the reference plate 30, which allows the renewal of the abrasive surface.
  • the two coils 40, 50 are arranged under the upper face of the reference plate 30, two drums 41, 51 being arranged between the coils and the reference plate 30.
  • the microabrasive strip 33 passes over these drums 41, 51 at the outlet of the supply reel 40 and at the entry into the take-up reel 50.
  • These drums are preferably arranged a little below the upper face of the plate 30 so that the microabrasive strip 33 makes a slight angle ⁇ with the horizontal at its entry and exit of the tray, which improves its contact with it.
  • the supply reel 40 is connected to a frame 60 by two ball bearings 41, 42 and two slides 43, 44 whose ends come to bear on two pressure sensors 45, 46 linked to the frame by two adjustable stops 47, 48.
  • the adjustment of the stops makes it possible to balance the tension of the strip over its entire width.
  • the means for exerting a resistive torque on the supply reel 40 can be constituted, in a first variant, by an annular motor 62 mounted directly on one of the bearings 41 or 42, at the end of the slide 43. Means 64 for controlling the this engine are also provided. In a second variant, these means consist of a motor 66 separate from the supply coil 40 and by a transmission belt 68 between this motor 66 and the supply coil 40. The stretched strand 68a of the belt 68 is in a plane perpendicular to the slides 43, 44. Means 64 for controlling this motor are also provided.
  • the two pressure sensors 45, 46 arranged at the ends of the two slides 43, 44, are connected to the control means 64 of the motors 62 or 66 exerting a resistant torque on the supply reel 40.
  • the take-up reel 50 is controlled in rotation by a geared motor 70.
  • This reel can be connected to the geared motor 70 by a means 72 for interrupting the transmission, such as a mechanical coupling or an electromagnetic clutch.
  • sample support head which cooperates with the stretched microabrasive strip. to allow polishing under the conditions set out above.
  • the sample-holder head comprises a flexible disc 142 whose role is illustrated in FIG. 9.
  • the force F applied vertically on the rigid part 140 has the effect of pressing the assembly on the polishing plane 130, the raised patterns 143 coming to bear on this plane (part b ).
  • the bearing force of these reliefs on the polishing plane 130 is unevenly distributed: thus forces F1, at the periphery, relatively large and forces F2, at the center, relatively weak in the example illustrated.
  • the application of a greater force on the rigid part 140 has the effect of causing the wafer 144 to penetrate into the flexible disc 142 (part c ).
  • the depression conforms to the initial deformation of the insert and makes it possible to compensate for the latter.
  • the force F3 exerted by each relief on the polishing plane is then substantially the same over the entire surface of the polishing plane.
  • each protuberance has the same linear speed, whatever its position on the plate.
  • each projection receives a load proportional to its height. Then, after partial leveling, all the growths receive an identical load. We can then consider that the contact is correct at each overshoot. On the other hand, when the height of the overhangs decreases, the distance separating the main plane of the insert and the running-in plane decreases; as the contact between two planes is never perfect, phenomena due to the viscosity of the air appear and tend to cause partial separation of the plate. So we must decrease the speed of movement and / or increase the pressure on the support of the wafer.
  • the removal of material according to the invention excludes the use of any coolant or particle drainage.
  • the work is therefore carried out "dry". If necessary, a vacuum can be created in the work area or the air can be replaced by a light gas such as helium.
  • Determining the characteristics of the flexible disk to be used according to the invention first passes through that of the minimum force Po to be exerted on the wafer to bring the geometry of the front face to match the reference plane.
  • This load Po applied to the wafer will be distributed in a completely heterogeneous manner. Indeed, this load will be concentrated in the middle, the edges of the plate barely coming into contact with the reference plane without transmission of forces.
  • a good approximation consists in taking into account the most difficult relief to bring into contact with the reference plane, by using the preceding formula. This determination amounts to comparing the ratios f / r2 in an area of radius "r" affected by this arrow. Once the maximum ratio has been determined, the effort necessary to recover this deformation is reduced to the entire surface of the flexible disk.
  • the curve in FIG. 10 shows the depression (on the ordinate) as a function of the pressure (on the abscissa), the load being assumed to be distributed over a unit surface.
  • Line A does not take into account the finite thickness of the disc (in other words, it assumes an infinite thickness).
  • Curve B takes this thickness into account.
  • a finite thickness leads to a "hooking" of the material constituting the disc (in general an elastomer).
  • the load P1 gives the value of the pressure on the unit surface chosen to draw the curve. This value is plotted on the curve to obtain the corresponding arrow, ie "f1".
  • the penetration of the flexible material is variable depending on the thickness of the wafer.
  • the load P1 leads to a local pressure proportional to the thickness of the plate at a given point.
  • the support shown in Figure 11 first of all, comprises a rigid body in two parts 150-152 on which the flexible disc 142 comes to take support, and a device 158 allowing three rotations along three perpendicular axes, two of these rotations, used to correctly position and orient the wafer 44 on the reference plane, which may be partial (or of limited amplitude), the third being complete according to an axis perpendicular to the reference plane.
  • the device 158 allows the connection with a vertical axis 160.
  • This device is preferably a spherical bearing or a needle bearing associated with a spherical bearing.
  • the rigid body 150 is surrounded by a peripheral ring 162 in which a recess 163 has been machined. The height of the step 163 is less than the thickness of the plate and its diameter is slightly greater than that of the plate.
  • the plate 44 comes to bear in this recess 163.
  • the ring piece 162 is connected to the rigid body 150 by posts 164 and springs 166.
  • the vertical force applied to the axis 160 does not pass through the peripheral ring 162 but through the ball joint 158, the rigid body 150 and the disc 142.
  • the ring 162 only serves to drive the plate 44 in the movement of circular translation necessary for polishing, movement produced by the horizontal force driving the support (produced for example by the eccentric 37 in FIG. 7).
  • the rigid body 150-152 is pierced with a channel 170 connected by a tube 172 to a vacuum machine not shown. This arrangement keeps the wafer 44 in place during the phases where the support is not pressed against the polishing plane.
  • FIG. 12 shows a detail of the peripheral ring 162, with its recess 163 receiving the plate 44.
  • the ring 162 to which a circular groove 161 is added, which is pierced with a channel 174 connected by a tube 176 very flexible to a vacuum machine not shown.
  • This variant corresponds to polishing requiring greater torque forces than in the case of FIG. 11.
  • the peripheral ring consists of a thin ring 180 cut for example from a steel sheet, this thin ring being rigid in its plane but flexible in the perpendicular direction.
  • This thin ring 180 is coated in a very flexible material 182, for example silicone.
  • Such an annular part is sufficiently rigid in the horizontal plane to transmit the cutting forces, while being flexible enough vertically to match the defects of the insert.
  • FIG. 14 shows, in section, a sub-assembly corresponding to a magnetic writing and reading head in a horizontal structure, of the kind which has already been mentioned in connection with FIG. 1.
  • the sub-assembly of FIG. 14 essentially comprises a silicon substrate 100, two edges of the casing 102 in silica, two vertical pads 104 in iron-nickel. This involves polishing this sub-assembly according to a plane 106 before continuing the operations of forming the upper pole piece.
  • the profile After polishing, the profile has the shape of part b of FIG. 15.
  • the whole of the recorded interval measures 4 mm (which means that the statement relates to the entire "ski" carrying the head).
  • the scale On the ordinate, the scale is in tens of nanometers.
  • the residual overshoot in the natural curvature of the "ski” is less than or equal to 30 nm (this curvature being a fraction of the deformation of the substrate).
  • FIG. 16 shows the head after the operations for forming the non-magnetic spacer 110 and the upper pole pieces 112 made of iron-nickel. Reliefs 114 appear in the center of the head. The final polishing plan is referenced 116.
  • Part b of Figure 17 shows the reading after polishing. On the abscissa, the units are still in micrometers and on the ordinate, in tens of nanometers. No residual overshoot is detected, we only measure the natural curvature of the pad (this curvature being a fraction of the deformation of the substrate).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

  • La présente invention a pour objet une machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée.
  • Une machine conforme au préambule de la revendication 1 est connue, par exemple, par PATENT ABSTRACTS OF JAPAN vol. 8, no. 83 (M-290) (1520) 17 Avril 1984 & JP-A-59 001 151.
  • L'invention trouve une application particulière au polissage de composants microélectroniques intégrés dans des plaquettes de semi conducteur (en silicium par exemple). Il peut s'agir, notamment, de têtes magnétiques d'écriture et de lecture.
  • Des procédés de réalisation de telles têtes sont décrits dans de nombreux documents et notamment dans US-A-4,837,924 et US-A-4,333,229. Le premier document se rapporte à des têtes à structure dite "horizontale" - car formée d'un empilement de couches déposées sur la face supérieure d'une plaquette semi-conductrice- et le second à des têtes à structure dite "verticale" -car formée de couches déposées sur la tranche d'une telle plaquette-.
  • Les micro-usinages effectués sur de telles plaquettes consistent, dans le premier cas, à niveler (ou "planariser") et à polir divers sous-ensembles intermédiaires obtenus au cours du procédé de réalisation, à définir un entrefer et à amener l'ensemble de la tête dans le plan général du substrat, dit encore plan de vol.
  • Dans le second cas, les micro-usinages ont pour but de définir un entrefer et d'ajuster la forme des patins de vol.
  • Bien que pouvant s'appliquer éventuellement à la réalisation de têtes de la deuxième catégorie (têtes verticales), la machine objet de la présente invention est avant tout destinée au polissage d'ensembles ou sous-ensembles correspondants à la première catégorie (têtes horizontales) car c'est dans ce cas que les problèmes technologiques sont les plus ardus.
  • La figure 1 montre, à titre d'exemple de pièce à polir, une tête magnétique d'écriture et de lecture en structure horizontale. L'ensemble représenté correspond à la dernière étape de réalisation avant polissage final. Cet ensemble comprend un substrat de silicium 10 dans lequel un caisson a été gravé, un circuit magnétique 12 en alliage fer-nickel, un double bobinage 14 en cuivre, une couche en silice 16 de 3 à 6»m d'épaisseur, un espaceur amagnétique 18 en silice de 1»m d'épaisseur environ et deux pièces polaires supérieures 20 en fer-nickel. Le plan de polissage final est marqué en trait interrompu et référencé 22.
  • L'enlèvement de matière porte sur les pièces polaires 20 et sur les dépassements 23 en silice. Pour ne pas altérer le circuit magnétique, cet enlèvement ne doit pas diminuer l'épaisseur de la couche uniforme de silice de plus de 0,3»m. Le plan final de polissage définit le plan de vol de la tête.
  • Deux telles têtes sont généralement disposées côte à côte sur deux bandes parallèles dites "skis", définissant deux plans de vol, dans une structure générale en catamaran.
  • Le polissage, qui consiste en un enlèvement de matière en très petite quantité, est une opération bien connue. On la rencontre en métallographie, en optique et en microélectronique. L'une ou l'autre des deux techniques suivantes est utilisée :
    • la rectification à l'outil diamanté : il s'agit d'un usinage dans lequel on forme un "copeau" semi-continu ou continu par deux mouvements combinés relatifs entre l'outil et la pièce à usiner (un mouvement d'avance et un mouvement de coupe) ;
    • le rodage et le polissage : il s'agit d'une abrasion plus ou moins fine (ou écrouissage) et contrôlée de la surface par frottement sur des disques très variés non abrasifs par nature, sur lesquels on apporte un abrasif en pâte ou en solution aqueuse ; une variante consiste à placer, sur un plateau de polissage rotatif, un disque de film abrasif et à arroser celui-ci lors du polissage avec un liquide pour refroidir la pièce et éviter l'encrassement.
  • Le polissage des plaquettes semiconductrices comprenant un très grand nombre de microcomposants intégrés pose des problèmes particuliers et difficiles :
    • tout d'abord, la plaquette est déformée et déformable,
    • par ailleurs, le rodage doit affecter simultanément plusieurs matériaux de duretés très différentes : silice, alumine, alliage alumine/carbure de titane, alliage fer/nickel,
    • les pièces à roder sont de surfaces très petites par rapport à la plaquette de silicium,
    • enfin, il s'agit d'usiner, dans leur épaisseur, des couches déposées sur une plaquette, et, généralement, il faut polir simultanément 600 excroissances correspondant à 600 têtes magnétiques, en dépassement de quelques microns et cela avec une précision de l'ordre du nanomètre, sans diminuer l'épaisseur de la couche mince qui recouvre la plaquette de plus de 200 à 300nm.
  • Les machines de polissage connues ne permettent pas de satisfaire à toutes ces exigences. En particulier, l'usage d'un liquide à grains abrasifs ou d'un film abrasif collé sur un support ne convient pas comme on peut s'en convaincre en liaison avec les figures 2 à 6.
  • La figure 2, tout d'abord, illustre le principe connu du rodage avec liquide chargé de grains abrasifs. La plaquette 10 et ses excroissances 25 sont placées en regard d'un plateau de polissage 23 et le liquide 24, chargé de grains abrasifs, forme un film entre la plaquette et le plan de référence. Le mouvement de translation de la plaquette provoque l'abrasion des excroissances.
  • Mais des phénomènes hydrodynamiques complexes, liés notamment à la formation de mouvements tourbillonnaires autour des excroissances et à des phénomènes de cavitation, conduisent à un polissage défectueux dont le résultat est illustré sur la figure 3. Sur cette figure, la partie a montre une excroissance 25a avant polissage, dont la forme correspond très sensiblement à celle que l'on rencontre dans le cas des têtes magnétiques intégrées, comme on le verra mieux par la suite. Ce profil prend la forme 25b après un début de polissage (partie b) et, enfin, la forme 25c (partie c) en fin de polissage. On voit qu'on n'a pas obtenu le résultat recherché car le plan de vol a été atteint et des pics subsistent. En particulier, les matériaux tendres se trouvent plus creusés que les matériaux durs.
  • Une autre technique connue consiste à utiliser un film plastique microabrasif collé sur un plateau de référence. On voit ainsi, sur la figure 4, un plateau de référence 23 sur lequel un film microabrasif 27 a été collé au moyen de points de colle 28 (aérosols). La couche de colle présente une épaisseur d'environ 100»m. L'épaisseur de la feuille est d'environ 50 à 75»m. L'ensemble présente donc une épaisseur d'environ 150 à 175»m.
  • La figure 5 montre ce moyen abrasif avec une plaquette 10 et ses excroissances 25 à polir. On observe que la présence des excroissances et la relativement forte épaisseur de la couche de polissage entraînent un plissement de celle-ci, par compression locale de la feuille et écrasement des points de colle. Dans ce cas encore, le poli obtenu finalement n'est pas satisfaisant. Les figures 6 montrent schématiquement le profil d'un patin poli 29, avant polissage (figure 6a) et après polissage (figure 6b).
  • On connaît par ailleurs des machines de polissage qui utilisent un film microabrasif, non pas collé sur une surface de reférence mais tendu au-dessus d'un plateau. De telles machines sont décrites dans les documents DE-U-8 717 353 et DOS 26 37 343. Ces machines comprennent une bobine débitrice et une bobine réceptrice entre lesquelles passe, dans un mouvement pas à pas, la bande microabrasive. Cette bande passe au-dessus d'une pièce en matière molle. La pièce à polir, qui est en l'occurrence un pied d'assiette, est tenue par une tête animée d'un mouvement de rotation, Un moyen pneumatique, disposé à la partie inférieure de la machine, permet de plaquer la bande microabrasive sous le pied d'assiette, de sorte que celui-ci vient déformer le film abrasif et s'enfoncer dans la pièce molle. La tension de la bande est obtenue au moyen de pinces ou mors qui permettent simultanément de faire avancer la bande pas à pas.
  • Une telle machine ne convient pas au polissage des plaquettes semiconductrices pour de nombreuses raisons. Tout d'abord, l'enfoncement dans la matière molle est inadmissible pour les raisons déjà indiquées à savoir que les reliefs seraient arrondis et déformés. Il faut donc en fait travailler sur un plateau de référence parfaitement plan et travailler avec un film microabrasif très mince pour que l'on puisse bénéficier de la platitude du plateau de référence.
  • Par ailleurs, si le polissage des pieds d'assiettes autorise des grains d'abrasif gros, le polissage des plaquettes de semiconducteur nécessite des grains beaucoup plus fins. Mais avec de tels grains, il se produit un phénomène de collage de la plaquette sur le film abrasif, au point que la séparation de la plaquette en fin de polissage nécessite la formation d'un coin d'air pour permettre le décollage de la plaquette. Ce phénomène a tendance à provoquer des plissements de la bande microabrasive. Pour éviter ce risque, il faudrait tendre très fortement la bande microabrasive et ceci sur toute sa largeur. Or, ceci est impossible avec la machine du document DE-U-8 717 353 qui ne prévoit à cet effet, que des griffes (ou mors) pinçant la bande sur ses côtés. Avec de tels moyens, on obtiendrait une certaine tension sur les bords de la bande mais pas au centre et de plus les risques de déchirement de la bande seraient réels.
  • Par ailleurs, avec la machine antérieure, il est impossible de faire défiler de manière continue la bande abrasive maintenue sous tension. En effet, l'avance de la bande ne peut s'effectuer que pas à pas, puisque celle-ci est tendue par les griffes qui la pincent.
  • La nécessité d'utiliser des grains de polissage très fins et un film très tendu, qui provoque un collage de la plaquette, entraîne d'autres difficultés qui ne sont pas résolues par les machines décrites dans DE-U-8 717 353 et D-OS-26 37 343. En effet, dans de telles machines, la pière à polir, en l'occurrence une assiette, est simplement maintenue dans un support par une dépression provoquée au-dessus de l'assiette. Une telle dépression, qui devrait être très forte pour maintenir la plaquette semiconductrice, casserait celle-ci.
  • Enfin, une tête à mouvement rotatif telle que celle des documents cités, ne conviendrait pas au polissage de plaquettes semiconductrices puisqu'alors le centre de la plaquette ne serait pas poli. Un mouvement rotatif simple ne peut convenir qu'à des pièces en anneau, comme le pied des assiettes.
  • La présente invention a justement pour but de remédier à ces inconvénients. A cette fin, l'invention prévoit deux types de dispositions :
    • la première, liée à l'utilisation d'une bande microabrasive tendue, prévoit tout d'abord que la bande est tendue au-dessus d'un plateau de référence offrant une surface plane rigide ; ensuite elle prévoit des moyens particuliers de tension de la bande entre la bobine débitrice et la bobine réceptrice et cela sans utilisation de griffes, mors ou pinces, ce qui permet de tendre le film sur toute sa largeur et de manière uniforme ; ceci permet en outre de faire défiler continuement la bande pour la renouveler ;
    • la seconde disposition est liée aux moyens pour supporter la plaquette ; ces moyens sont tels qu'un mouvement de translation circulaire est obtenu ; ce mouvement parti culier impose à la bande abrasive des efforts dont la direction change en permanence (360° par tour) et qui s'exercent tantôt dans le sens longitudinal (soit dans le sens de déplacement, soit dans le sens contraire) tantôt dans le sens transversal ; ces efforts particuliers, qui auraient tendance à provoquer des plissements de la bande, requièrent que celle-ci soit parfaitement tendue, ce qui ramène au problème précédent ; la plaquette étant par nature déformable et déformée, il est prévu un disque de matière souple placé à l'arrière de la plaquette ; enfin, un système à rotule permet d'avoir un point de rotulage le plus près possible du plan de polissage, ce qui diminue l'apparition de couple parasite dans le mouvement de translation circulaire, qui serait particulièrement néfaste dans le cas de ces efforts intenses communiqués à la plaquette pour la déplacer.
  • Tous ces moyens concourent à la résolution des problèmes liés au polissage des plaquettes semiconductrices. On peut résumer ces problèmes ainsi : il s'agit, dans une machine de polissage à film abrasif tendu, de maintenir le film abrasif large (15 à 45 cm environ) très fin (25 à 50 microns) tendu sans plissement (à environ 10 à 50 kg environ, soit 4 à 5 kg au mm² de section de bande). A titre d'exemple, pour une largeur de 300 mm et une épaisseur de 25 »m, la tension sera de 35 kg) sur un plan de référence aussi long que la largeur du film. La bande abrasive ainsi tendue doit pouvoir être mise en mouvement de manière continue et très lentement (0,2 à 20 cm par minute) de manière réglable et contrôlée, et sans-à-coups. Ces deux conditions de fonctionnement (tension et vitesse de défilement) ne doivent en aucun cas être perturbées par les efforts imposés à la bande par l'échantillon à polir. Celui-ci, animé d'un mouvement de translation circulaire, doit être maintenu dans une tête support appropriée, apte à tenir compte de la déformation de l'échantillon et évitant les couples parasites.
  • Les feuilles microabrasives (ou "bandes" ou "films") utilisables dans l'invention peuvent être des feuilles du commerce, comme celles que commercialise la Société 3M. Le film dit "Film Imperial Lapping (ILF)" d'épaisseur 12 ou 25 ou 35 ou 50 ou 75»m peut convenir. Ce film est disponible en rouleau.
  • De façon précise, la présente invention a donc pour objet une machine de polissage qui, comme certaines machines connues, comprend :
    • une bande microabrasive tendue au-dessus d'un plateau entre une bobine débitrice et une bobine réceptrice,
    • une tête support apte à maintenir un échantillon à polir, face à polir en regard de la bande abrasive,
    • une bobine débitrice équipée de moyens pour exercer sur elle un couple résistant et une bobine réceptrice commandée par un moteur,
    caractérisée par le fait que :
    • le plateau est un plateau offrant une face supérieure rigide et plane,
    • la tête support d'échantillon comprend une pièce rigide et un disque de matière souple ayant une certaine épaisseur, ce disque étant fixé à ladite pièce rigide et recevant la plaquette à polir, la pièce rigide étant reliée par un roulement à rotule et un axe vertical à des moyens pour déplacer la tête support dans un mouvement de translation circulaire.
  • De toute façon, les caractéristiques et avantages de l'invention apparaîtront mieux à la lumière de la description qui va suivre. Cette description porte sur des exemples de réalisation donnés à titre explicatif et nullement limitatif et se réfère à des dessins annexés, sur lesquels :
    • la figure 1, déjà décrite, montre un exemple de pièce à polir correspondant à une tête magnétique d'écriture et de lecture,
    • la figure 2, déjà décrite, illustre le principe connu du rodage avec film liquide chargé de grains abrasifs,
    • la figure 3, déjà décrite, montre le profit d'un motif au cours d'un polissage effectué par le principe précédent,
    • la figure 4, déjà décrite, illustre le principe connu du rodage par film plastique microabrasif collé sur un plateau de référence,
    • la figure 5, déjà décrite, montre la déformation subie lors d'un polissage par une feuille microabrasive collée,
    • la figure 6, déjà décrite, montre le profil d'un patin poli par la technique des figures 4 et 5,
    • la figure 7 montre la disposition générale de la machine de l'invention avec une feuille microabrasive tendue et un support de plaquette à translation circulaire,
    • les figures 8a et 8b (respectivement vue de dessus et vue de côté) montrent une machine de polissage conforme à l'invention,
    • la figure 9 montre trois positions (a, b, c) de la tête support et illustre la répartition de la force exercée,
    • la figure 10 est une courbe montrant les variations de l'enfoncement de la plaquette dans le disque souple en fonction de la force exercée sur la tête support,
    • la figure 11 montre, en coupe, un exemple de réalisation de la tête support,
    • la figure 12 montre un détail d'un anneau périphérique,
    • la figure 13 illustre un mode de réalisation de l'anneau périphérique,
    • la figure 14 montre un sous-ensemble intermédiaire dans la réalisation d'une tête magnétique d'écriture et de lecture,
    • la figure 15 montre le profil de ce sous-ensemble avant et après polissage,
    • la figure 16 montre la tête magnétique terminée,
    • la figure 17 montre le profil de cette tête avant et après polissage.
  • La machine représentée sur la figure 7 comprend schématiquement :
    • un plateau de polissage fixe 30,
    • une tête support d'échantillon 32, comprenant une pièce rigide 140 et un disque de matière souple 142 ayant une certaine épaisseur (e). Le diamètre du disque souple est sensiblement le diamètre maximum englobant la zone de la plaquette couverte par les excroissances à polir. Le disque 142 est fixé sur la pièce rigide 140 et reçoit la plaquette à polir 44. Celle-ci se trouve ainsi enfoncée partiellement dans l'épaisseur du disque 142 en cours de polissage par l'effet de la force exercée sur la tête support ; la matière souple du disque 142 peut être un élastomère,
    • des moyens 34 pour exercer une force F sur la tête support 32 afin d'appliquer l'échantillon à polir 44 sur le plateau de polissage 30 et pour déplacer la tête par rapport au plateau, ce moyen pouvant comprendre un excentrique 37.
  • Le moyen de polissage comprend une feuille ou bande microabrasive 33 tendue et plaquée sur un plateau de référence 30. La feuille 33 est tendue par des moyens 35, 35′ disposés de part et d'autre du plateau 30.
  • Les figures 8a et 8b illustrent un mode particulier de réalisation des moyens 35, 35′ aptes à tendre convenablement la feuille abrasive et à permettre le lent défilement de celle-ci au-dessus du plateau. Sur ces figures, la machine est représentée en vue de dessus sur la partie a et en vue de côté sur la partie b.
  • Par souci de simplification, la machine représentée ne comprend pas de support de plaquettes à polir, ni d'excentrique, ni de broche rotative, etc. Les figures 8a et 8b s'en tiennent au plateau de référence et aux divers moyens pour tendre sur ce plateau la bande microabrasive et la faire défiler.
  • Telle que représentée, la machine comprend une première bobine 40 et une seconde bobine 50 disposées de part et d'autre du plateau de référence 30. Sur ces bobines est enroulée une bande microabrasive 33, laquelle se trouve ainsi tendue entre les deux bobines.
  • La première bobine 40 est une bobine débitrice équipée de moyens pour exercer un couple résistant ; la seconde bobine 50 est une bobine réceptrice commandée par un moteur. La bande microabrasive 33 peut ainsi passer de la première bobine 40 à la seconde 50, en défilant au-dessus du plateau de référence 30, ce qui permet le renouvellement de la surface abrasive.
  • Les deux bobines 40, 50 sont disposées sous la face supérieure du plateau de référence 30, deux tambours 41, 51 étant disposés entre les bobines et le plateau de référence 30. La bande microabrasive 33 passe sur ces tambours 41, 51 à la sortie de la bobine débitrice 40 et à l'entrée dans la bobine réceptrice 50. Ces tambours sont de préférence disposés un peu en dessous de la face supérieure du plateau 30 de sorte que la bande microabrasive 33 fait un léger angle ϑ avec l'horizontale à son entrée et sa sortie du plateau, ce qui améliore son contact avec celui-ci.
  • Dans la variante illustrée, la bobine débitrice 40 est reliée à un bâti 60 par deux paliers à rotules 41, 42 et deux glissières 43, 44 dont les extrémités viennent en appui sur deux capteurs de pression 45, 46 liés au bâti par deux butées réglables 47, 48. Le réglage des butées permet d'équilibrer la tension de la bande sur toute sa largeur.
  • Les moyens pour exercer sur la bobine débitrice 40 un couple résistant peuvent être constitués, dans une première variante, par un moteur annulaire 62 monté directement sur l'un des paliers 41 ou 42, en bout de glissière 43. Des moyens 64 de commande de ce moteur sont également prévus. Dans une seconde variante, ces moyens sont constitués par un moteur 66 séparé de la bobine débitrice 40 et par une courroie de transmission 68 entre ce moteur 66 et la bobine débitrice 40. Le brin tendu 68a de la courroie 68 est dans un plan perpendiculaire aux glissières 43, 44. Des moyens 64 de commande de ce moteur sont également prévus.
  • Par ailleurs, les deux capteurs de pression 45, 46, disposés aux extrémités des deux glissières 43, 44, sont reliés aux moyens de commande 64 des moteurs 62 ou 66 exerçant un couple résistant sur la bobine débitrice 40.
  • De son côté, la bobine réceptrice 50 est commandée en rotation par un motoréducteur 70. Cette bobine peut être reliée au motoréducteur 70 par un moyen 72 d'interruption de la transmission, tel qu'un accouplement mécanique ou un embrayage électro-magnétique.
  • On va décrire maintenant plus en détail la structure et les fonctions de la tête support d'échantillon qui coopère avec la bande microabrasive tendue pour permettre un polissage dans les conditions exposées plus haut.
  • Comme représenté sur la figure 7, la tête porte-échantillon comprend un disque souple 142 dont le rôle est illustré sur la figure 9.
  • Sur cette figure, on voit, sur la partie a, la tête support dégagée de la plaquette à polir 144, laquelle a été représentée avec une déformation très exagérée pour bien montrer les fonctions qui vont être remplies par le disque souple 142. Les reliefs à polir sont référencéss 143.
  • La force F appliquée verticalement sur la pièce rigide 140 a pour effet de plaquer l'ensemble sur le plan de polissage 130, les motifs en relief 143 venant prendre appui sur ce plan (partie b). Cependant, du fait de la déformation initiale de la plaquette, la force d'appui de ces reliefs sur le plan de polissage 130 est inégalement répartie : on a ainsi des forces F1, en périphérie, relativement grandes et des forces F2, au centre, relativement faibles dans l'exemple illustré.
  • L'application d'une force plus grande sur la partie rigide 140 a pour effet de faire pénétrer la plaquette 144 dans le disque souple 142 (partie c). L'enfoncement épouse la déformation initiale de la plaquette et permet de compenser celle-ci. La force F3 exercée par chaque relief sur le plan de polissage est alors sensiblement la même sur toute la surface du plan de polissage.
  • Dans ces conditions, on comprend que l'effort exercé sur la plaquette remplit deux fonctions :
    • amener la face principale de la plaquette à épouser la géométrie du plan de réfé rence, quelle que soit la déformation initiale et les défauts d'épaisseur de la plaquette,
    • obtenir sur chaque excroissance une pression suffisante pour que l'enlèvement de matière soit effectif et optimum pour une vitesse de déplacement donnée.
  • Une fois la plaquette appliquée sur le film microabrasif, on déplace le support par rapport au plan de rodage, selon une translation circulaire (rotation du centre de la plaque autour d'un point situé dans le plan de rodage, la plaquette gardant toujours la même orientation). Ainsi, chaque excroissance a une même vitesse linéaire, quelle que soit sa position sur la plaque.
  • Dans la configuration décrite précédemment, chaque excroissance reçoit une charge proportionnelle à sa hauteur. Puis, après nivelage partiel, toutes les excroissances reçoivent une charge identique. On peut alors considérer que le contact est correct au niveau de chaque dépassement. Par contre, lorsque la hauteur des dépassements diminue, la distance séparant le plan principal de la plaquette et le plan de rodage diminue ; comme le contact entre deux plans n'est jamais parfait, les phénomènes dus à la viscosité de l'air apparaissent et ont tendance à provoquer un décollement partiel de la plaque. Aussi doit-on diminuer la vitesse de déplacement et/ou augmenter la pression exercée sur le support de la plaquette.
  • L'enlèvement de matière selon l'invention exclut l'usage de tout liquide de refroidissement ou de drainage de particules. Le travail s'effectue donc "à sec". Si nécessaire, on peut faire le vide dans la zone de travail ou remplacer l'air par un gaz léger comme l'hélium.
  • La détermination des caractéristiques du disque souple à employer selon l'invention passe d'abord par celle de l'effort Po minimum à exercer sur la plaquette pour amener la géométrie de la face avant à épouser le plan de référence.
  • Dans le cas d'une déformation homogène de la plaquette en forme de calotte sphérique, il s'agit de faire fléchir la plaquette de telle sorte que la contrainte issue de la force annule la flèche "f".
  • Les lois de la résistance des matériaux donnent pour Po : Po = (3πE e³f)/5 r²
    Figure imgb0001
    où :
    • E est le module d'élasticité (ou module de YOUNG) du matériau constituant la plaquette,
    • Po est une charge ponctuelle appliquée au centre de la plaquette (sommet du bombé), la plaquette étant en appui sur sa circonférence,
    • e est l'épaisseur moyenne de la plaquette,
    • r est le rayon de la plaquette.
  • Cette charge Po appliquée à la plaquette sera répartie de façon totalement hétérogène. En effet, cette charge sera concentrée au milieu, les bords de la plaquette venant à peine au contact du plan de référence sans transmission d'efforts.
  • Dans le cas de déformations complexes, une bonne approximation consiste à prendre en compte le relief le plus difficile à amener au contact du plan de référence, en utilisant la formule précédente. Cette détermination revient à comparer les rapports f/r² dans une zone de rayon "r" affectée par cette flèche. Une fois le rapport maximum déterminé, on ramène l'effort nécessaire pour récupérer cette déformation à l'ensemble de la surface du disque souple.
  • Il s'agit ensuite de déterminer l'écart de répartition d'effort admissible. C'est un compromis entre l'homogénéité maximum et la valeur maximum de pression admissible par l'abrasif, pour des reliefs donnés (risque de détérioration de la surface abrasive ou des reliefs). On considère en général que 5 à 10% d'écart sont acceptables. On prendra comme effort maximum une valeur P1 égale à 10 à 20 fois la valeur Po calculée comme indiqué plus haut.
  • Enfin seulement, on peut déterminer les caractéristiques du disque. La courbe de la figure 10 montre l'enfoncement (en ordonnées) en fonction de la pression (en abscisses), la charge étant supposée répartie sur une surface unitaire.
  • La droite A ne tient pas compte de l'épaisseur finie du disque (autrement dit elle suppose une épaisseur infinie). La courbe B tient compte de cette épaisseur. Une épaisseur finie conduit à un "talonnement" du matériau constituant le disque (en général un élastomère).
  • La charge P1 donne la valeur de la pression sur la surface unitaire choisie pour tracer la courbe. On reporte cette valeur sur la courbe pour obtenir la flèche correspondante soit "f1".
  • L'enfoncement du matériau souple est variable selon l'épaisseur de la plaquette. La charge P1 conduit à une pression locale proportionnelle à l'épaisseur de la plaque en un point donné.
  • On reporte sur l'axe des ordonnées la valeur de l'écart maximum sur l'épaisseur des plaques, Δ e en le centrant sur f1. On obtient ainsi la variation ΔP1 maximum due à l'écart Δe autour de P1.
  • On vérifie alors que P1 reste compatible avec les 5 à 10% d'homogénéité choisis.
  • Si cette valeur est dépassée, on peut :
    • augmenter l'épaisseur du disque souple, si on se trouve proche de la zone horizontale de la courbe,
    • augmenter sa souplesse et donc rechercher une nouvelle courbe, si l'on se trouve déjà loin du talonnement.
  • On peut observer qu'il n'est pas souhaitable de travailler dans le bas de la courbe, le contact entre disque souple et plaque n'étant pas garanti en tous points.
  • Les variations d'enfoncement du disque souple peuvent avoir d'autres origines :
    • épaisseur variable du disque souple ;
    • mauvaise planéité du support sur lequel est collé le disque ;
    • mauvais collage du disque sur son support.
  • Ces écarts doivent être maintenus dans la limite des 5 à 10% déjà pris en compte.
  • Les mécanismes évoqués plus haut à propos de la détermination de la pression minimum et du support souple, interviennent dans le rôle régulateur du disque souple. En effet, si les excroissances à niveler présentent des hauteurs variables, ce sont les plus hautes qui, dans un premier temps, recevront la plus grande partie de l'effort P1. La plaque subira dans cette zone une flèche qui sera compensée au niveau de la matière souple, par un enfoncement supplémentaire, ce qui se traduira par une augmentation de la pression dans cette zone. Le point sera donc rodé plus rapidement que les autres.
  • Différents modes de réalisation du support de plaquettes vont maintenant être décrits en liaison avec les figures 11 à 13.
  • Le support représenté sur la figure 11, tout d'abord, comprend un corps rigide en deux parties 150-152 sur lequel le disque souple 142 vient prendre appui, et un dispositif 158 permettant trois rotations selon trois axes perpendiculaires, deux de ces rotations, utilisées pour positionner et orienter correctement la plaquette 44 sur le plan de référence, pouvant être partielles (ou d'amplitude limitée), la troisième étant complète suivant un axe perpendiculaire au plan de référence. Le dispositif 158 permet la liaison avec un axe vertical 160. Ce dispositif est de préférence un roulement à rotule ou un roulement à aiguilles associé à une rotule. Le corps rigide 150 est entouré d'un anneau périphérique 162 dans lequel un décrochement 163 a été usiné. La hauteur du décrochement 163 est inférieure à l'épaisseur de la plaquette et son diamètre est légèrement supérieur à celui de la plaquette. La plaquette 44 vient prendre appui dans ce décrochement 163. La pièce en anneau 162 est reliée au corps rigide 150 par des colonnettes 164 et des ressorts 166.
  • L'effort vertical appliqué sur l'axe 160 ne passe pas par l'anneau périphérique 162 mais par la rotule 158, le corps rigide 150 et le disque 142. L'anneau 162 ne sert qu'à entraîner la plaquette 44 dans le mouvement de translation circulaire nécessaire au polissage, mouvement produit par la force horizontale d'entraînement du support (produit par exemple par l'excentrique 37 de la figure 7).
  • Le corps rigide 150-152 est percé d'un canal 170 relié par une tubulure 172 à une machine à vide non représentée. Cette disposition permet de maintenir en place la plaquette 44 pendant les phases où le support n'est pas plaqué sur le plan de polissage.
  • La figure 12 montre un détail de l'anneau périphérique 162, avec son décrochement 163 recevant la plaquette 44. Dans la variante illustrée, c'est l'anneau 162, auquel on ajoute une rainure circulaire 161, qui est percé d'un canal 174 relié par une tubulure 176 très souple à une machine à vide non représentée. Cette variante correspond à des polissages nécessitant des efforts de couple plus importants que dans le cas de la figure 11.
  • Dans la variante illustrée sur la figure 13, l'anneau périphérique est constitué par un anneau mince 180 taillé par exemple dans une feuille d'acier, cet anneau mince étant rigide dans son plan mais souple dans la direction perpendiculaire. Cet anneau mince 180 est enrobé dans une matière très souple 182, par exemple en silicone. Une telle pièce annulaire est suffisamment rigide dans le plan horizontal pour transmettre les efforts de coupe, tout en étant suffisamment souple verticalement pour épouser les défauts de la plaquette.
  • Avec la machine de polissage qui vient d'être décrite, le Demandeur a obtenu des résultats remarquables illustrés sur les figures 14 à 17.
  • La figure 14 montre, en coupe, un sous-ensemble correspondant à une tête magnétique d'écriture et de lecture en structure horizontale, du genre de celle qui a été déjà évoquée à propos de la figure 1. Le sous-ensemble de la figure 14 comprend essentiellement un substrat en silicium 100, deux bords de caisson 102 en silice, deux plots verticaux 104 en fer-nickel. Il s'agit de polir ce sous-ensemble selon un plan 106 avant de poursuivre les opérations de formation de la pièce polaire supérieure.
  • Avant polissage, le profil du sous-ensemble est représenté sur la partie a de la figure 15. En abscisses, la totalité de l'intervalle relevé mesure 1,2 mm (les unités indiquées sont donc en micromètres). En ordonnées, les unités sont en centaines de nanomètres. On voit nettement, sur ce relevé, les deux bords du caisson et, au centre, les deux plots verticaux en fer-nickel.
  • Après polissage, le profil présente la forme de la partie b de la figure 15. La totalité de l'intervalle relevé mesure 4 mm (ce qui signifie que le relevé porte sur la totalité du "ski" portant la tête). En ordonnées, l'échelle est en dizaines de nanomètres. Le dépassement résiduel dans la courbure naturelle du "ski" est inférieur ou égal à 30 nm (cette courbure étant une fraction de la déformation du substrat).
  • La figure 16 montre la tête après les opérations de formation de l'espaceur amagnétique 110 et des pièces polaires supérieures 112 en fer-nickel. Des reliefs 114 apparaissent au centre de la tête. Le plan final de polissage est référencé 116.
  • Sur la partie a de la figure 17, on voit le profil de ce sous-ensemble avant rodage. Les unités sont les mêmes que pour la figure 15a : 1,2 mm pour la totalité de l'axe des abscisses et centaines de nanomètres en ordonnées. Les trois pics correspondants aux trois reliefs des pièces polaires sont bien visibles.
  • La partie b de la figure 17 montre le relevé après polissage. En abscisses, les unités sont encore en micromètres et en ordonnées, en dizaines de nanométres. Aucun dépassement résiduel n'est détecté, on ne mesure que la courbure naturelle du patin (cette courbure étant une fraction de la déformation du substrat).

Claims (13)

  1. Machine de polissage comprenant :
    - une bande microabrasive (33) tendue au-dessus d'un plateau entre une bobine débitrice (40) et une bobine réceptrice,
    - une tête support apte à maintenir un échantillon à polir (44), face à polir en regard de la bande abrasive,
    - une bobine débitrice (40) équipée de moyens (62, 66) pour exercer sur elle un couple résistant et une bobine réceptrice (50) commandée par un moteur,
    caractérisée par le fait que :
    - le plateau est un plateau offrant une face supérieure rigide et plane,
    - la tête support d'échantillon (32) comprend une pièce rigide (40) et un disque de matière souple (42) ayant une certaine épaisseur, ce disque étant fixé à ladite pièce rigide (40) et recevant la plaquette à polir (44), la pièce rigide (40) étant reliée par un roulement à rotule (58) et un axe vertical (60) à des moyens (34) pour déplacer la tête support (32) dans un mouvement de translation circulaire.
  2. Machine selon la revendication 1, caractérisée par le fait que la bobine débitrice (40) est reliée à un bâti (60) par deux paliers à rotules (41, 42) et deux glissières (43, 44) dont les extrémités viennent en appui sur deux capteurs de pression (45, 46) liés au bâti par deux butées réglables (47, 48), le réglage des butées permettant d'équilibrer la tension de la bande sur toute sa largeur.
  3. Machine selon la revendication 2, caractérisée par le fait que les moyens pour exercer sur la bobine débitrice (40) un couple résistant sont constitués par un moteur annulaire (62) monté directement sur un des paliers à rotule (41, 42), en bout de glissière (43), et par des moyens (64) de commande de ce moteur.
  4. Machine selon la revendication 2, caractérisée par le fait que les moyens pour exercer sur la bobine débitrice (40) un couple résistant sont constitués par un moteur (66) séparé de la bobine débitrice (40) et par une courroie de transmission (68) entre ce moteur (66) et la bobine débitrice (40), cette courroie ayant un brin tendu (68a) dans un plan perpendiculaire aux glissières (43, 44) et par des moyens (64) de commande de ce moteur.
  5. Machine selon les revendication 3 ou 4, caractérisée par le fait que les deux capteurs de pression (45, 46) disposés aux extrémités des deux glissières (43, 44) sont reliés aux moyens de commande (64) du moteur (62, 66) exerçant un couple résistant sur la bobine débitrice (40).
  6. Machine selon la revendication 1, caractérisée par le fait que la bobine réceptrice (50) est commandée en rotation par un motoréducteur (70).
  7. Machine selon la revendication 6, caractérisée par le fait que la bobine réceptrice (50) est reliée au motoréducteur (70) par un moyen d'interruption (72) de la transmission, tel qu'un accouplement mécanique ou un embrayage électro-magnétique.
  8. Machine selon la revendication 1, caractérisée par le fait que la bobine débitrice (40) et la bobine réceptrice (50) sont disposées sous la face supérieure du plateau de référence (30), deux tambours (41, 51) étant disposés entre les bobines et le plateau de référence (30), la bande microabrasive (33) passant sur ces tambours (41, 51) à sa sortie de la bobine débitrice (40) et à son entrée sur la bobine réceptrice (50).
  9. Machine selon la revendication 8, caractérisée par le fait que les deux tambours (41, 51) sont disposés sous la face supérieure du plateau de référence (30), la bande microabrasive (33) faisant à son entrée sur le plateau et à sa sortie du plateau un angle (ϑ) par rapport à l'horizontale.
  10. Machine selon la revendication 1, caractérisée par le fait que la pièce rigide (150-152) de la tête support est entourée d'un anneau périphérique (162) présentant une gorge (163) d'un diamètre légèrement supérieur au diamètre de la plaquette (44) et de hauteur légèrement inférieure à l'épaisseur de la plaquette, celle-ci (44) venant alors en appui dans la gorge (163), cet anneau (162) étant relié à la pièce rigide (150) du support de plaquette par des moyens (164) aptes à transmettre à l'anneau (162), donc à la plaquette (44), les efforts liés au déplacement transversal de la tête support par rapport au film microabrasif, la pression exercée sur la tête support étant transmise à la plaquette par la pièce rigide (150-152) et le disque de matière souple (142).
  11. Machine selon la revendication 10, caractérisée par le fait que l'anneau périphérique (162) est constitué d'un mince anneau plan (180), rigide dans son plan mais souple perpendiculairement à ce plan, et d'une manière souple (182) moulée autour dudit mince anneau (180).
  12. Machine selon la revendication 1, caractérisée par le fait que la pièce rigide (150) de la tête support est percée d'un canal (170) traversant également le disque en matière souple (142), ce canal (170) étant relié par une tubulure (172) à une machine à vide.
  13. Machine selon la revendication 10, caractérisée par le fait que l'anneau périphérique (162) est percé d'un canal (174) débouchant dans la gorge (163) où prend appui la plaquette (44), ce canal (174) étant relié par une tubulure souple (176) à une machine à vide.
EP92401532A 1991-06-06 1992-06-04 Machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée Expired - Lifetime EP0517594B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9106869 1991-06-06
FR9106869A FR2677293A1 (fr) 1991-06-06 1991-06-06 Machine de polissage a tete support de plaquettes perfectionnee.
FR9106866A FR2677288B1 (fr) 1991-06-06 1991-06-06 Machine de polissage a feuille microbrasive tendue.
FR9106866 1991-06-06

Publications (2)

Publication Number Publication Date
EP0517594A1 EP0517594A1 (fr) 1992-12-09
EP0517594B1 true EP0517594B1 (fr) 1995-12-13

Family

ID=26228728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401532A Expired - Lifetime EP0517594B1 (fr) 1991-06-06 1992-06-04 Machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée

Country Status (4)

Country Link
US (1) US5335453A (fr)
EP (1) EP0517594B1 (fr)
JP (1) JPH05177523A (fr)
DE (1) DE69206685T2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503131B1 (en) 2001-08-16 2003-01-07 Applied Materials, Inc. Integrated platen assembly for a chemical mechanical planarization system
US6592439B1 (en) 2000-11-10 2003-07-15 Applied Materials, Inc. Platen for retaining polishing material
US7648622B2 (en) 2004-02-27 2010-01-19 Novellus Systems, Inc. System and method for electrochemical mechanical polishing

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447464A (en) * 1993-08-06 1995-09-05 The Whitaker Corporation Automated method of finishing the tip of a terminated optical fiber
US5938504A (en) 1993-11-16 1999-08-17 Applied Materials, Inc. Substrate polishing apparatus
US5733175A (en) 1994-04-25 1998-03-31 Leach; Michael A. Polishing a workpiece using equal velocity at all points overlapping a polisher
US5607341A (en) 1994-08-08 1997-03-04 Leach; Michael A. Method and structure for polishing a wafer during manufacture of integrated circuits
ATE186001T1 (de) 1994-08-09 1999-11-15 Ontrak Systems Inc Linear poliergerät und wafer planarisierungsverfahren
JPH08195363A (ja) 1994-10-11 1996-07-30 Ontrak Syst Inc 流体軸受を有する半導体ウェーハポリシング装置
US5571044A (en) * 1994-10-11 1996-11-05 Ontrak Systems, Inc. Wafer holder for semiconductor wafer polishing machine
US5575707A (en) * 1994-10-11 1996-11-19 Ontrak Systems, Inc. Polishing pad cluster for polishing a semiconductor wafer
US5593344A (en) * 1994-10-11 1997-01-14 Ontrak Systems, Inc. Wafer polishing machine with fluid bearings and drive systems
US7937312B1 (en) 1995-04-26 2011-05-03 Ebay Inc. Facilitating electronic commerce transactions through binding offers
US5908530A (en) * 1995-05-18 1999-06-01 Obsidian, Inc. Apparatus for chemical mechanical polishing
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US5958794A (en) * 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
JP3129172B2 (ja) * 1995-11-14 2001-01-29 日本電気株式会社 研磨装置及び研磨方法
GB2347790B (en) * 1995-11-14 2000-11-01 Nec Corp Method of regulating a retainer ring of a polishing apparatus to an appropriate configuration
US5961372A (en) 1995-12-05 1999-10-05 Applied Materials, Inc. Substrate belt polisher
JPH09225819A (ja) * 1996-02-21 1997-09-02 Shin Etsu Handotai Co Ltd 被加工物の保持機構
US5916012A (en) * 1996-04-26 1999-06-29 Lam Research Corporation Control of chemical-mechanical polishing rate across a substrate surface for a linear polisher
US6413156B1 (en) 1996-05-16 2002-07-02 Ebara Corporation Method and apparatus for polishing workpiece
EP1281476A3 (fr) * 1996-05-16 2003-08-13 Ebara Corporation Procédé et dispositif pour le polissage de pièces
JP2000315665A (ja) 1999-04-29 2000-11-14 Ebara Corp 研磨方法及び装置
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5886535A (en) * 1996-11-08 1999-03-23 W. L. Gore & Associates, Inc. Wafer level burn-in base unit substrate and assembly
AU6887898A (en) * 1997-04-04 1998-10-30 Obsidian, Inc. Polishing media magazine for improved polishing
US6244946B1 (en) 1997-04-08 2001-06-12 Lam Research Corporation Polishing head with removable subcarrier
US6425812B1 (en) 1997-04-08 2002-07-30 Lam Research Corporation Polishing head for chemical mechanical polishing using linear planarization technology
US8092707B2 (en) 1997-04-30 2012-01-10 3M Innovative Properties Company Compositions and methods for modifying a surface suited for semiconductor fabrication
US6194317B1 (en) 1998-04-30 2001-02-27 3M Innovative Properties Company Method of planarizing the upper surface of a semiconductor wafer
US6110025A (en) * 1997-05-07 2000-08-29 Obsidian, Inc. Containment ring for substrate carrier apparatus
US6224465B1 (en) 1997-06-26 2001-05-01 Stuart L. Meyer Methods and apparatus for chemical mechanical planarization using a microreplicated surface
US6113479A (en) 1997-07-25 2000-09-05 Obsidian, Inc. Wafer carrier for chemical mechanical planarization polishing
US6116990A (en) * 1997-07-25 2000-09-12 Applied Materials, Inc. Adjustable low profile gimbal system for chemical mechanical polishing
US6336845B1 (en) 1997-11-12 2002-01-08 Lam Research Corporation Method and apparatus for polishing semiconductor wafers
US6113465A (en) * 1998-06-16 2000-09-05 Speedfam-Ipec Corporation Method and apparatus for improving die planarity and global uniformity of semiconductor wafers in a chemical mechanical polishing context
US6220934B1 (en) * 1998-07-23 2001-04-24 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6086460A (en) * 1998-11-09 2000-07-11 Lam Research Corporation Method and apparatus for conditioning a polishing pad used in chemical mechanical planarization
US6468139B1 (en) * 1998-12-01 2002-10-22 Nutool, Inc. Polishing apparatus and method with a refreshing polishing belt and loadable housing
US7425250B2 (en) * 1998-12-01 2008-09-16 Novellus Systems, Inc. Electrochemical mechanical processing apparatus
US6589105B2 (en) 1998-12-01 2003-07-08 Nutool, Inc. Pad tensioning method and system in a bi-directional linear polisher
US6103628A (en) 1998-12-01 2000-08-15 Nutool, Inc. Reverse linear polisher with loadable housing
US6464571B2 (en) 1998-12-01 2002-10-15 Nutool, Inc. Polishing apparatus and method with belt drive system adapted to extend the lifetime of a refreshing polishing belt provided therein
US6475070B1 (en) * 1999-02-04 2002-11-05 Applied Materials, Inc. Chemical mechanical polishing with a moving polishing sheet
US6241583B1 (en) 1999-02-04 2001-06-05 Applied Materials, Inc. Chemical mechanical polishing with a plurality of polishing sheets
US6244935B1 (en) 1999-02-04 2001-06-12 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet
US6491570B1 (en) 1999-02-25 2002-12-10 Applied Materials, Inc. Polishing media stabilizer
US6358128B1 (en) 1999-03-05 2002-03-19 Ebara Corporation Polishing apparatus
US6354922B1 (en) 1999-08-20 2002-03-12 Ebara Corporation Polishing apparatus
US6227950B1 (en) * 1999-03-08 2001-05-08 Speedfam-Ipec Corporation Dual purpose handoff station for workpiece polishing machine
US6135859A (en) * 1999-04-30 2000-10-24 Applied Materials, Inc. Chemical mechanical polishing with a polishing sheet and a support sheet
EP1052059A3 (fr) 1999-05-03 2001-01-24 Applied Materials, Inc. Procédé de planarisation mécano-chimique
US6419554B2 (en) * 1999-06-24 2002-07-16 Micron Technology, Inc. Fixed abrasive chemical-mechanical planarization of titanium nitride
US6343975B1 (en) 1999-10-05 2002-02-05 Peter Mok Chemical-mechanical polishing apparatus with circular motion pads
US6626744B1 (en) 1999-12-17 2003-09-30 Applied Materials, Inc. Planarization system with multiple polishing pads
US6431959B1 (en) 1999-12-20 2002-08-13 Lam Research Corporation System and method of defect optimization for chemical mechanical planarization of polysilicon
US6306019B1 (en) 1999-12-30 2001-10-23 Lam Research Corporation Method and apparatus for conditioning a polishing pad
WO2001064391A2 (fr) 2000-02-29 2001-09-07 Applied Materials, Inc. Systeme de polissage a tampons de polissage multiples
US6517414B1 (en) 2000-03-10 2003-02-11 Appied Materials, Inc. Method and apparatus for controlling a pad conditioning process of a chemical-mechanical polishing apparatus
US6626743B1 (en) 2000-03-31 2003-09-30 Lam Research Corporation Method and apparatus for conditioning a polishing pad
US6666756B1 (en) 2000-03-31 2003-12-23 Lam Research Corporation Wafer carrier head assembly
US6428394B1 (en) 2000-03-31 2002-08-06 Lam Research Corporation Method and apparatus for chemical mechanical planarization and polishing of semiconductor wafers using a continuous polishing member feed
US6261959B1 (en) 2000-03-31 2001-07-17 Lam Research Corporation Method and apparatus for chemically-mechanically polishing semiconductor wafers
US6616801B1 (en) 2000-03-31 2003-09-09 Lam Research Corporation Method and apparatus for fixed-abrasive substrate manufacturing and wafer polishing in a single process path
US6402591B1 (en) 2000-03-31 2002-06-11 Lam Research Corporation Planarization system for chemical-mechanical polishing
US6435941B1 (en) 2000-05-12 2002-08-20 Appllied Materials, Inc. Apparatus and method for chemical mechanical planarization
US6361414B1 (en) 2000-06-30 2002-03-26 Lam Research Corporation Apparatus and method for conditioning a fixed abrasive polishing pad in a chemical mechanical planarization process
US6645046B1 (en) 2000-06-30 2003-11-11 Lam Research Corporation Conditioning mechanism in a chemical mechanical polishing apparatus for semiconductor wafers
US6500056B1 (en) 2000-06-30 2002-12-31 Lam Research Corporation Linear reciprocating disposable belt polishing method and apparatus
US6626736B2 (en) * 2000-06-30 2003-09-30 Ebara Corporation Polishing apparatus
US6435952B1 (en) 2000-06-30 2002-08-20 Lam Research Corporation Apparatus and method for qualifying a chemical mechanical planarization process
US6495464B1 (en) 2000-06-30 2002-12-17 Lam Research Corporation Method and apparatus for fixed abrasive substrate preparation and use in a cluster CMP tool
US6520833B1 (en) * 2000-06-30 2003-02-18 Lam Research Corporation Oscillating fixed abrasive CMP system and methods for implementing the same
US6419559B1 (en) 2000-07-10 2002-07-16 Applied Materials, Inc. Using a purge gas in a chemical mechanical polishing apparatus with an incrementally advanceable polishing sheet
US6520841B2 (en) 2000-07-10 2003-02-18 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an incrementally advanceable polishing sheet
US6561884B1 (en) 2000-08-29 2003-05-13 Applied Materials, Inc. Web lift system for chemical mechanical planarization
US6488565B1 (en) 2000-08-29 2002-12-03 Applied Materials, Inc. Apparatus for chemical mechanical planarization having nested load cups
US6755723B1 (en) 2000-09-29 2004-06-29 Lam Research Corporation Polishing head assembly
US6482072B1 (en) 2000-10-26 2002-11-19 Applied Materials, Inc. Method and apparatus for providing and controlling delivery of a web of polishing material
US6793565B1 (en) * 2000-11-03 2004-09-21 Speedfam-Ipec Corporation Orbiting indexable belt polishing station for chemical mechanical polishing
US6612914B2 (en) * 2000-12-14 2003-09-02 Applied Materials Inc. Platen with lateral web tensioner
US6875091B2 (en) 2001-01-04 2005-04-05 Lam Research Corporation Method and apparatus for conditioning a polishing pad with sonic energy
US6554688B2 (en) 2001-01-04 2003-04-29 Lam Research Corporation Method and apparatus for conditioning a polishing pad with sonic energy
US6752698B1 (en) 2001-03-19 2004-06-22 Lam Research Corporation Method and apparatus for conditioning fixed-abrasive polishing pads
US6887136B2 (en) * 2001-05-09 2005-05-03 Applied Materials, Inc. Apparatus and methods for multi-step chemical mechanical polishing
US6767427B2 (en) * 2001-06-07 2004-07-27 Lam Research Corporation Apparatus and method for conditioning polishing pad in a chemical mechanical planarization process
JP2004528998A (ja) * 2001-06-12 2004-09-24 ナトゥール・インコーポレイテッド 被加工物を二方向に研磨するための改良された方法及び装置
US6645052B2 (en) 2001-10-26 2003-11-11 Lam Research Corporation Method and apparatus for controlling CMP pad surface finish
US6939203B2 (en) 2002-04-18 2005-09-06 Asm Nutool, Inc. Fluid bearing slide assembly for workpiece polishing
US7025660B2 (en) 2003-08-15 2006-04-11 Lam Research Corporation Assembly and method for generating a hydrodynamic air bearing
US7179159B2 (en) * 2005-05-02 2007-02-20 Applied Materials, Inc. Materials for chemical mechanical polishing
WO2009131945A2 (fr) * 2008-04-25 2009-10-29 Applied Materials, Inc. Système de polissage mécanique chimique à haut débit
US20130115862A1 (en) * 2011-11-09 2013-05-09 Applied Materials, Inc. Chemical mechanical polishing platform architecture
US9950404B1 (en) 2012-03-29 2018-04-24 Alta Devices, Inc. High throughput polishing system for workpieces
US9199354B2 (en) 2012-10-29 2015-12-01 Wayne O. Duescher Flexible diaphragm post-type floating and rigid abrading workholder
US9604339B2 (en) 2012-10-29 2017-03-28 Wayne O. Duescher Vacuum-grooved membrane wafer polishing workholder
US9233452B2 (en) 2012-10-29 2016-01-12 Wayne O. Duescher Vacuum-grooved membrane abrasive polishing wafer workholder
US10926378B2 (en) 2017-07-08 2021-02-23 Wayne O. Duescher Abrasive coated disk islands using magnetic font sheet
CN107378695B (zh) * 2017-08-09 2023-06-27 南京林业大学 一种整竹筒连续去青装置
US11691241B1 (en) * 2019-08-05 2023-07-04 Keltech Engineering, Inc. Abrasive lapping head with floating and rigid workpiece carrier
RU2768435C1 (ru) * 2021-03-26 2022-03-24 Общество с ограниченной ответственностью "ТехноТерм-Саратов" Способ полирования поверхности поликристаллического алмазного покрытия деталей

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR610327A (fr) * 1926-02-02 1926-09-03 Machine à poncer
US3453783A (en) * 1966-06-30 1969-07-08 Texas Instruments Inc Apparatus for holding silicon slices
US3794314A (en) * 1972-01-13 1974-02-26 Coburn Optical Ind Vacuum chuck for ophthalmic lens finishing machinery
US3777442A (en) * 1972-04-03 1973-12-11 Timesavers Inc Wide belt sanding machine with improved support for outboard end of cantilevered center bar
US3924361A (en) * 1973-05-29 1975-12-09 Rca Corp Method of shaping semiconductor workpieces
US3971163A (en) * 1974-12-23 1976-07-27 Dow Corning Corporation Abrasive tape apparatus for contouring a flexible lens
DE2637343C2 (de) * 1976-08-19 1986-10-09 Heinrich Zeidler Maschinenfabrik Gmbh & Co Kg, 8672 Selb Maschine zum Beschleifen der Füße von Tellern oder sonstigem Flachgeschirr
SU688319A1 (ru) * 1978-05-03 1979-09-30 Досчатинский Филиал Центрального Конструкторского Проектно-Технологического Бюро "Медоборудование" Шлифовальное устройство
DE2903962C3 (de) * 1979-02-02 1981-08-27 Goetze Ag, 5093 Burscheid Maschine zum Schleifen ebener Flächen ferromagnetischer Werkstücke
JPS591151A (ja) * 1982-06-28 1984-01-06 Hitachi Ltd テ−プ加工装置
US4579313A (en) * 1985-02-21 1986-04-01 Leco Corporation Sample mounting system
US4612733A (en) * 1985-04-08 1986-09-23 The United States Of America As Represented By The Secretary Of The Air Force Very high speed lap with positive lift effect
US4640687A (en) * 1985-07-02 1987-02-03 Maccarthy Sr Donald W Idler pulley adjuster
DE3609441A1 (de) * 1986-03-20 1987-09-24 Bosch Gmbh Robert Exzenterschleifer mit einer vorrichtung zum veraendern der schleifbewegung
JPH0646452B2 (ja) * 1987-09-21 1994-06-15 富士写真フイルム株式会社 磁気テープクリーニング装置
DE8717353U1 (de) * 1987-12-07 1989-01-05 Heinrich Zeidler Maschinenfabrik Gmbh & Co Kg, 8672 Selb Vorrichtung zum schrittweisen Bewegen und Spannen des Schleifbands von Tellerfuß-Durchlauf-Schleifmaschinen
JPH0624682B2 (ja) * 1987-12-26 1994-04-06 株式会社日進製作所 ラッピングフィルムを用いた超仕上げ装置
JPH01316160A (ja) * 1988-06-13 1989-12-21 Hitachi Electron Eng Co Ltd ディスクの研摩加工方式
US5148639A (en) * 1988-07-29 1992-09-22 Canon Kabushiki Kaisha Surface roughening method for organic electrophotographic photosensitive member
JP2694197B2 (ja) * 1989-10-11 1997-12-24 株式会社ノリタケカンパニーリミテド 研摩テープを使用した平面研摩装置における研摩テープの張力制御装置
US5133156A (en) * 1990-04-19 1992-07-28 Penn Keystone Corporation Adjustable belt sander for wood
US5193316A (en) * 1991-10-29 1993-03-16 Texas Instruments Incorporated Semiconductor wafer polishing using a hydrostatic medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592439B1 (en) 2000-11-10 2003-07-15 Applied Materials, Inc. Platen for retaining polishing material
US6503131B1 (en) 2001-08-16 2003-01-07 Applied Materials, Inc. Integrated platen assembly for a chemical mechanical planarization system
US7648622B2 (en) 2004-02-27 2010-01-19 Novellus Systems, Inc. System and method for electrochemical mechanical polishing

Also Published As

Publication number Publication date
US5335453A (en) 1994-08-09
JPH05177523A (ja) 1993-07-20
DE69206685T2 (de) 1996-07-04
DE69206685D1 (de) 1996-01-25
EP0517594A1 (fr) 1992-12-09

Similar Documents

Publication Publication Date Title
EP0517594B1 (fr) Machine de polissage à bande microabrasive tendue et à tête support de plaquette perfectionnée
EP0517596B1 (fr) Machine de polissage à table porte-échantillon perfectionnée
EP0911431B1 (fr) Amélioration de la résistance mécanique d'une tranche de silicium monocristallin
FR2865676A1 (fr) Tampon de polissage et procede de polissage d'un substrat magnetique optique ou a semi-conducteur
FR2569139A1 (fr) Procede et dispositif pour le rodage ou le polissage de surfaces optiques
FR2880570A1 (fr) Tampon de polissage chimique-physique ayant une configuration de segment de rainure alternee radialement
EP0980303B1 (fr) Dispositif de sciage par fil pour la decoupe de tranches fines utilisant le croisement angulaire d'au moins deux nappes de fils
FR2783055A1 (fr) Support pour lentille optique, et son procede de mise en oeuvre
FR2858875A1 (fr) Procede de realisation de couches minces de materiau semi-conducteur a partir d'une plaquette donneuse
EP1464461B1 (fr) Procédé et dispositif de sciage par fil
EP1593460A1 (fr) Procédé et élément de polissage de surface
EP3623437B1 (fr) Procédé de collage temporaire avec adhesif thermoplastique incorporant une couronne rigide
EP0517595B1 (fr) Machine de polissage à contrôle de pression
EP1984147B1 (fr) Procede de satinage d'un materiau dur
EP0788859B1 (fr) Dispositif de sciage par fil
EP0082748B1 (fr) Machine de rectification plane frontale notamment pour rectifier les extrémités de fibres optiques
FR2465563A1 (fr) Procede et appareil de montage de plaquettes a polir
FR2677288A1 (fr) Machine de polissage a feuille microbrasive tendue.
CH694182A5 (fr) Dispositif de sciage par fil.
EP1352711A1 (fr) Machine de polissage mécanico-chimique d'une plaquette de matériau et dispositif de distribution d'abrasif équipant une telle machine
FR2677293A1 (fr) Machine de polissage a tete support de plaquettes perfectionnee.
FR2629008A1 (fr) Procede et dispositif de clivage d'une plaquette de silicium
FR2638016A1 (fr) Procede de traitement de surface de couches magnetiques
EP2777070B1 (fr) Procédé d'obtention d'un substrat hétérogène pour la fabrication de semi-conducteur et substrat correspondant.
EP0526262B1 (fr) Procédé de polissage de composants microélectroniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19930514

17Q First examination report despatched

Effective date: 19940927

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 69206685

Country of ref document: DE

Date of ref document: 19960125

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000615

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000629

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20010630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030604

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030625

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030627

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050604