EP0515816B1 - Fuel injection pump for internal combustion engines - Google Patents

Fuel injection pump for internal combustion engines Download PDF

Info

Publication number
EP0515816B1
EP0515816B1 EP92106393A EP92106393A EP0515816B1 EP 0515816 B1 EP0515816 B1 EP 0515816B1 EP 92106393 A EP92106393 A EP 92106393A EP 92106393 A EP92106393 A EP 92106393A EP 0515816 B1 EP0515816 B1 EP 0515816B1
Authority
EP
European Patent Office
Prior art keywords
lever
spring
starting
fuel injection
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92106393A
Other languages
German (de)
French (fr)
Other versions
EP0515816A1 (en
Inventor
Carlos Dipl.-Ing. Alvarez-Avila
Karl-Friedrich Ruesseler
Helmut Dr. Dr.-Ing. Tschoeke
Karl Konrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0515816A1 publication Critical patent/EP0515816A1/en
Application granted granted Critical
Publication of EP0515816B1 publication Critical patent/EP0515816B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • F02D1/10Transmission of control impulse to pump control, e.g. with power drive or power assistance mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/447Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means specially adapted to limit fuel delivery or to supply excess of fuel temporarily, e.g. for starting of the engine

Definitions

  • the invention is based on a fuel injection pump with an adjusting device according to the preamble of the main claim.
  • a fuel injection pump known from DE-OS 32 43 349
  • a two-armed lever adjustable by an electrically controlled stepper motor moves a tensioning lever against the force of a control spring via a stop.
  • Due to the force of a centrifugal governor a two-armed start lever, which is connected to a ring slide of a fuel quantity adjusting device, comes into contact with this tensioning lever.
  • This arrangement means that only the full-load injection quantity can be determined as a function of operating parameters. Different injection quantities in all different operating states of the internal combustion engine are required for an optimal combustion process.
  • a fuel injection pump is known, with a fuel quantity adjusting element, which is adjustable via an adjusting element of a regulator, the adjusting element being formed from a starting lever and a tensioning lever.
  • the starting lever can be brought under the influence of a speed-dependent force to a stop of the tensioning lever, a starting spring and an idling spring arrangement being provided between the starting lever and the tensioning lever.
  • the tensioning lever is also held by a tensioning spring arranged in series with a control spring at an adjustable stop which, with its setting position, determines the maximum amount of fuel to be injected, the adjustable stop being adjustable by a stepper motor controlled as a function of the operating parameters of the internal combustion engine.
  • GB-A-2 195 472 shows a further known adjustment device on a fuel injection pump for internal combustion engines, with which the maximum injection quantity for the start and full load operation can be set by an adjustable stop.
  • this adjusting device it is also not possible with this adjusting device to set the maximum injection quantity in the entire operating map of the internal combustion engine to be supplied.
  • the fuel injection pump according to the invention with the characterizing features of the main claim has the advantage that, in addition to the known full-load control, an idle control and starting quantity control that is dependent on the operating state of the engine also takes place. This allows individual control of the injection quantity in all operating states of the internal combustion engine. In addition, different types of operating modes of the internal combustion engine, such as e.g. operation with charging, with height correction or temperature compensation are taken into account. Further advantages and advantageous configurations of the subject matter of the invention can be found in the drawings and the description of the exemplary embodiment.
  • FIG. 1 shows the exemplary embodiment in the starting state of the internal combustion engine with a two-armed lever serving as an adjustable stop
  • FIG. 2 shows the exemplary embodiment during the idling state of the internal combustion engine
  • FIG. 3 shows the position of the adjustable stop in the full load state of the internal combustion engine.
  • FIG. 1 shows a fuel injection pump 1 of the distributor type in a simplified representation in partial section.
  • These pumps have a reciprocating and at the same time rotating pump piston 2 which, when it rotates, controls various fuel outlets for supplying fuel injection points of the internal combustion engine.
  • the amount of fuel is controlled by a ring slide 4 serving as a fuel amount adjusting element, the edge of which controls a relief channel 5 of the pump work chamber, not shown, arranged in the pump piston 2. By opening this channel, the injection of fuel is interrupted by the relief of the pump work space.
  • the ring slide 4 is connected to an angled start lever 6, which is pivotable about an axis 7 fixed to the housing and engages with its spherical end piece on one arm in a recess of the ring slide 4.
  • a speed controller 8 shown in simplified form, which is preferably designed as a centrifugal force controller and which is driven synchronously with the pump speed, acts with the speed-dependent force against the restoring force of a start spring 10.
  • the start lever 6 can be brought into contact with a tension lever 9 by the speed controller 8, which can be pivoted as a one-armed lever about the axis 7 of the start lever 6 and on which the start spring 10, which is designed as a leaf spring, is supported.
  • an idling spring 11 and an intermediate spring 12, which are designed as helical compression springs, are arranged in series with one another between the tensioning lever 9 and the starting lever 6.
  • the tensioning lever 9 has a crank 13, within which a pin 14 protrudes at right angles from the tensioning lever 9, on which a spring plate 32 provided with a sleeve 15 is guided, on the one hand the idling spring 11 on the starting lever side and on the other hand the intermediate spring 12 on the tensioning lever side intervention.
  • a pin 14 protrudes at right angles from the tensioning lever 9, on which a spring plate 32 provided with a sleeve 15 is guided, on the one hand the idling spring 11 on the starting lever side and on the other hand the intermediate spring 12 on the tensioning lever side intervention.
  • an adjustable stop lever 16 is arranged on the side of the speed controller 8, on which the start lever 6 comes into contact with the start spring 10 in the start position when the internal combustion engine is cold started, and with which the starting position of the start lever 6 and thus the starting injection quantity can be set is independent of the starting position of the speed controller 8.
  • This stop lever 16 in addition to its function to start the internal combustion engine by adjusting the start lever 6 and thus the ring slide 4 in the direction of zero delivery, also performs the basic setting of the additional fuel quantity during a cold start.
  • this has a bore through which a bolt 17 is guided, on the start lever side of which a control spring 20 engages via a spring plate 19, which is clamped between this spring plate 19 and a connecting part 18, the connecting part 18 via an eccentric , or lever arm is connected to an adjustment lever 21 located outside the fuel injection pump.
  • the bolt has a head 30, between which and the tensioning lever 9 a tension spring 22 is arranged, which is designed as a compression spring and which is compressed so far in the starting position of the tensioning lever 9 and the adjusting lever 21 that the head 30 on the tensioning lever 9 comes to the plant.
  • the clamping lever 9 is in contact with a stop 23 which is formed on a lever arm end of a two-armed lever 31.
  • This two-armed lever 31 can be pivoted with the stop 23 about an axis 24 fixed to the housing, the pivoting movement being generated by an actuator 25 of a stepping motor 26 acting on the other end of the lever arm.
  • the travel of the actuator 25 in the direction of the lever 31 is limited by a stop 27 which is adjustable and can be formed, for example, by the shape of a screw which can be rotated from the outside and which penetrates through the pump housing wall. So they are different End positions of the actuator 25 and thus the two-armed lever 31 possible.
  • the stepper motor 26 is controlled by a control device 28 which, in accordance with a control value formed from operating parameters of the internal combustion engine, outputs control steps to the stepper motor 26.
  • the actuator 25 is moved up to the adjustable stop 27 before each start-up of the internal combustion engine, in order to be able to approach the control value to be set exactly from this fixed reference point.
  • Both a linear stepping motor and a rotating stepping motor can be used as the stepping motor, wherein when using a rotating stepping motor, the shaft of the stepping motor can drive a threaded spindle as an actuator 25, whereby the actuating forces which the stepping motor has to overcome can be further reduced considerably.
  • Figures 2 and 3 show simplified the same structure as Figure 1, only in different operating states. They are primarily intended to explain the processes during the various operating states.
  • the position of the stop lever 16 determines the starting position of the start lever 6, and thus the position of the ring slide 4 in which the highest amount of fuel is injected.
  • the clamping lever 9 is pressed over the head 30 against the stop 23, which is brought by the stepping motor 26 into its position corresponding to the full load position, which thus also determines the maximum injection quantity possible during the starting process depending on the temperature of the internal combustion engine.
  • the tension spring 22 is overpressed since the control spring 20 has a higher rigidity and pretension than the tension spring 22.
  • the speed controller 8 immediately comes into contact with the start lever 6 because there is no restoring force. When starting, the starting quantity thus results, with the pump piston 2 covering a large useful stroke until it is deactivated.
  • the stepper motor 26 controls the tensioning lever 9 via the adjustable stop 23 in the direction facing away from the speed controller 8.
  • the starting lever 6 is then pressed by the starting spring 10 against a gap limitation of the tensioning lever 9, which forms a starting quantity stop 33 for the additional fuel quantity.
  • the additional fuel quantity is thus controlled as a function of the engine temperature via the start quantity stop 33 on the tensioning lever 9.
  • the fuel quantity adjustment device is in the position of the idle state of the internal combustion engine, the stop 23 displacing the tensioning lever 9 in the direction facing away from the control spring 20 and thus avoiding the starting lever 6 being applied to the tensioning lever 9.
  • the speed controller 8 presses the start lever 6 against the force of the idle spring 11 and the intermediate spring 12 in the direction of the tensioning lever 9, which in turn is supported by the tensioning spring 22 on the head 30 of the retaining bolt 17, a balance of forces being established.
  • the position of the ring slide 4 is thus determined by the interaction of centrifugal force and the force of the springs 10, 11, 12, 22, the control spring 20 being displaced in the direction of the tension spring 22 by means of bolts 17 and part 18.
  • the idle spring 11 regulates the fuel quantity
  • the intermediate spring 12 becomes effective.
  • a wide idling and transition range can thus be regulated with both springs, whereby different control characteristics can be achieved via different spring stiffnesses.
  • the tension spring 22 on the collar of the pin 17 has the task of holding the tension lever 9 on the stop 23 adjustable by the stepping motor 26, for which purpose it has a greater spring stiffness than the springs 11, 12 and a smaller stiffness than the control fields 20.
  • the reference position of the tensioning lever 9 is the basic setting from which idling is regulated, the speed-dependent final limitation being determined by the stop 29.
  • the connecting part 18 and thus the control spring 20 and the retaining bolt 17 are constantly in the idle position during idling operation, that is to say the entire regulation is carried out independently by the adjusting device, there always being a balance of forces between the force of the speed controller 8 and the spring arrangement 11, 12 sets. If a change in the operating state of the internal combustion engine is required, the stepper motor 26 then adjusts the stop 23 via the two-armed lever 31. Likewise, when the load of the internal combustion engine changes, the basic idle setting and thus the cut-off time in idle operation can be influenced via the stepper motor 26.
  • FIG. 3 shows the adjustment device in full load operation.
  • the tension spring 22 is overpressed by the actuating force of the speed controller 8 against the stronger control spring 20 and the head 30 of the retaining bolt 17 lies directly on the tension lever 9.
  • the intermediate, start and idle springs 12, 10, 11 are overpressed and the start lever 6 rests against a stop 29 of the tension lever 9, which is thus coupled to the start lever 6 in the direction of adjustment of the speed controller 8.
  • the control spring 20 is preloaded in the connecting part 18 by a certain amount, which corresponds to the actuating force of the speed controller 8 at the maximum permissible speed. If more power is now to be output from the internal combustion engine, the tensioning lever 9 and at the same time the ring slide 4 are moved in via the adjusting lever 21 and the prestressed control spring 20 Shifted towards higher output.
  • the full load stop 23 thus limits the highest injection quantity during operation of the internal combustion engine, which is generally smaller than the starting quantity.
  • the full-load stop 23 can now be adjusted as a function of operating parameters by means of the stepper motor 26, its position being adjusted via the two-armed lever 31. The most important advantage, however, is the temperature-dependent start quantity control and the avoidance of the associated smoke burst, especially in the idle speed control.
  • a constant or increased constant idling speed can be maintained here regardless of the additional units connected and the engine temperature. This makes it possible in particular to specify a lower idling speed during normal operation of the internal combustion engine, which in turn has a positive effect on the load on the internal combustion engine itself, its pollutant and noise emissions and on fuel consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Kraftstoffeinspritzpumpe mit einer Verstelleinrichtung gemäß der Gattung des Hauptanspruchs aus. Bei einer solchen durch die DE-OS 32 43 349 bekannten Kraftstoffeinspritzpumpe verschiebt ein durch einen elektrisch gesteuerten Schrittmotor verstellbarer zweiarmiger Hebel, über einen Anschlag einen Spannhebel gegen die Kraft einer Regelfeder. An diesen Spannhebel kommt durch die Kraft eines Fliehkraftreglers ein zweiarmiger Starthebel, der mit einem Ringschieber eines Kraftstoffmengenverstellorgans verbunden ist in Anlage. Durch diese Anordnung ist somit ausschließlich die Vollasteinspritzmenge in Abhängigkeit von Betriebsparametern bestimmbar. Für einen optimalen Verbrennungsablauf sind verschiedene Einspritzmengen in allen verschiedenen Betriebszuständen der Brennkraftmaschine nötig. Dies gilt insbesondere für eine Regelung des Leerlaufbetriebes der Brennkraftmaschine, wo es durch das Zuschalten von Zusatzaggregaten des Kraftfahrzeugs wie Hydraulikpumpen, Klimaanlagen und Elektromotoren für unterschiedliche Funktionen sowie durch Temperatureinflüsse zu einer erhöhten Leistungsaufnahme kommen kann. Um bei diesen Schwankungen der Leistungsaufnahme die Drehzahl der Brennkraftmaschine trotzdem auf einem möglichst niedrigen Niveau konstant halten zu können, ist hier eine Regelung der Einspritzmenge in Abhängigkeit von Betriebsparametern der Brennkraftmaschine erforderlich, die der beschriebene Stand der Technik nicht ermöglicht.The invention is based on a fuel injection pump with an adjusting device according to the preamble of the main claim. In such a fuel injection pump known from DE-OS 32 43 349, a two-armed lever adjustable by an electrically controlled stepper motor moves a tensioning lever against the force of a control spring via a stop. Due to the force of a centrifugal governor, a two-armed start lever, which is connected to a ring slide of a fuel quantity adjusting device, comes into contact with this tensioning lever. This arrangement means that only the full-load injection quantity can be determined as a function of operating parameters. Different injection quantities in all different operating states of the internal combustion engine are required for an optimal combustion process. This applies in particular to regulating the idle mode of the internal combustion engine, where the connection of additional units in the motor vehicle, such as hydraulic pumps, air conditioning systems and electric motors for different functions, and temperature influences can lead to increased power consumption. In order to keep the speed of the internal combustion engine as low as possible given these fluctuations in the power consumption To be able to keep the level constant, it is necessary here to regulate the injection quantity as a function of operating parameters of the internal combustion engine, which the prior art described does not allow.

Aus der JP-A-59 155534 ist eine Kraftstoffeinspritzpumpe bekannt, mit einem Kraftstoffmengenverstellorgan, das über ein Stellorgan eines Reglers verstellbar ist, wobei das Stellorgan aus einem Starthebel und einem Spannhebel gebildet ist. Der Starthebel ist dabei unter Einwirkung einer drehzahlabhängigen Kraft an einen Anschlag des Spannhebels bringbar, wobei zwischen Starthebel und Spannhebel eine Startfeder und eine Leerlauffederanordnung vorgesehen sind. Der Spannhebel wird zudem durch eine in Reihe zu einer Regelfeder angeordneten Spannfeder an einem verstellbaren Anschlag gehalten, der mit seiner Einstellage die maximale zur Einspritzung kommende Kraftstoffmenge bestimmt, wobei der verstellbare Anschlag durch einen in Abhängigkeit von Betriebsparametern der Brennkraftmaschine gesteuerten Schrittmotor verstellbar ist. Diese Verstelleinrichtung weist zwar bereits eine Verstellmöglichkeit der maximalen Einspritzmenge auf, die aber dort nur im Start- und Vollastbetrieb wirksam wird, so daß auch mit dieser bekannten Verstelleinrichtung keine Einstellung der Einspritzmenge im Leerlaufbetrieb möglich ist.From JP-A-59 155534 a fuel injection pump is known, with a fuel quantity adjusting element, which is adjustable via an adjusting element of a regulator, the adjusting element being formed from a starting lever and a tensioning lever. The starting lever can be brought under the influence of a speed-dependent force to a stop of the tensioning lever, a starting spring and an idling spring arrangement being provided between the starting lever and the tensioning lever. The tensioning lever is also held by a tensioning spring arranged in series with a control spring at an adjustable stop which, with its setting position, determines the maximum amount of fuel to be injected, the adjustable stop being adjustable by a stepper motor controlled as a function of the operating parameters of the internal combustion engine. Although this adjustment device already has an adjustment option for the maximum injection quantity, which is only effective there in start and full load operation, so that adjustment of the injection quantity in idle operation is also not possible with this known adjustment device.

Die GB-A-2 195 472 zeigt eine weitere bekannte Verstelleinrichtung an einer Kraftstoffeinspritzpumpe für Brennkraftmaschinen, mit der sich die maximale Einspritzmenge für den Start- und Vollastbetrieb durch einen verstellbaren Anschlag einstellen läßt. Dabei ist es jedoch auch mit dieser Verstelleinrichtung nicht möglich, die maximale Einspritzmenge im gesamten Betriebskennfeld der zu versorgenden Brennkraftmaschine einzustellen.GB-A-2 195 472 shows a further known adjustment device on a fuel injection pump for internal combustion engines, with which the maximum injection quantity for the start and full load operation can be set by an adjustable stop. However, it is also not possible with this adjusting device to set the maximum injection quantity in the entire operating map of the internal combustion engine to be supplied.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Kraftstoffeinspritzpumpe mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß neben der bekannten Vollaststeuerung auch eine vom Betriebszustand des Motors abhängige Leerlaufregelung und Startmengensteuerung erfolgt. Damit ist in allen Betriebszuständen der Brennkraftmaschine eine individuelle Regelung der Einspritzmenge möglich. Zudem können bei der Kraftstoffmengenzumessung bei der erfindungsgemäßen Kraftstoffeinspritzpumpe mit geringem Aufwand verschiedene Arten von Betriebsweisen der Brennkraftmaschine, wie z.B. ein Betrieb mit Aufladung, mit Höhenkorrektur oder ein Temperaturausgleich berücksichtigt werden. Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind den Zeichnungen und der Beschreibung des Ausführungsbeispiels entnehmbar.The fuel injection pump according to the invention with the characterizing features of the main claim has the advantage that, in addition to the known full-load control, an idle control and starting quantity control that is dependent on the operating state of the engine also takes place. This allows individual control of the injection quantity in all operating states of the internal combustion engine. In addition, different types of operating modes of the internal combustion engine, such as e.g. operation with charging, with height correction or temperature compensation are taken into account. Further advantages and advantageous configurations of the subject matter of the invention can be found in the drawings and the description of the exemplary embodiment.

Zeichnungdrawing

In den Zeichnungen ist ein Ausführungsbeispiel des Gegenstandes der Erfindung bei drei Betriebszuständen der zughörigen Brennkraftmaschine schematisch dargestellt, die in der nachfolgenden Beschreibung näher erläutert werden. Es zeigen Figur 1 das Ausführungsbeispiel im Startzustand der Brennkraftmaschine mit einem als verstellbaren Anschlag dienenden zweiarmigen Hebel, Figur 2 das Ausführungsbeispiel während des Leerlaufzustandes der Brennkraftmaschine und Figur 3 die Lage des verstellbaren Anschlags im Vollastzustand der Brennkraftmaschine.In the drawings, an embodiment of the object of the invention is shown schematically in three operating states of the associated internal combustion engine, which are explained in more detail in the following description. FIG. 1 shows the exemplary embodiment in the starting state of the internal combustion engine with a two-armed lever serving as an adjustable stop, FIG. 2 shows the exemplary embodiment during the idling state of the internal combustion engine, and FIG. 3 shows the position of the adjustable stop in the full load state of the internal combustion engine.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die Figur 1 zeigt eine Kraftstoffeinspritzpumpe 1 der Verteilerbauart in vereinfachter Darstellung im Teilschnitt. Diese Pumpen weisen einen hin- und hergehenden und zugleich rotierenden Pumpenkolben 2 auf, der bei seiner Drehung verschiedene Kraftstoffauslässe zur Versorgung von Kraftstoffeinspritzstellen der Brennkraftmaschine ansteuert. Die Kraftstoffmenge wird dabei durch einen als Kraftstoffmengenverstellorgan dienenden Ringschieber 4 gesteuert, dessen Kante einen im Pumpenkolben 2 angeordneten Entlastungskanal 5 des nicht dargestellten Pumpenarbeitsraumes steuert. Durch Aufsteuerung dieses Kanals wird durch die Entlastung des Pumpenarbeitsraumes die Einspritzung von Kraftstoff unterbrochen. Der Ringschieber 4 ist mit einem abgewinkelten Starthebel 6 verbunden, der um eine gehäusefeste Achse 7 schwenkbar ist und mit seinem kugelförmigen Endstück an seinem einen Arm in eine Ausnehmung des Ringschiebers 4 greift. Am anderen Arm des Starthebels 6 greift ein vereinfacht dargestellter Drehzahlregler 8, der vorzugsweise als Fliehkraftregler ausgeführt ist und der synchron zur Pumpendrehzahl angetrieben wird, mit drehzahlabhängiger Kraft gegen die Rückstellkraft einer Startfeder 10 an. Der Starthebel 6 ist durch den Drehzahlregler 8 zur Anlage an einen Spannhebel 9 bringbar, der als einarmiger Hebel um die Achse 7 des Starthebels 6 schwenkbar ist und an dem sich die Startfeder 10, die als Blattfeder ausgebildet ist, abstützt. Weiterhin sind zwischen Spannhebel 9 und Starthebel 6 eine Leerlauffeder 11 und eine Zwischenfeder 12, die als Schraubendruckfedern ausgebildet sind, in Reihe zueinander angeordnet. Zur Unterbringung dieser Federn weist der Spannhebel 9 eine Kröpfung 13 auf, innerhalb der vom Spannhebel 9 rechtwinklig ein Stift 14 absteht, auf dem ein mit einer Hülse 15 versehener Federteller 32 geführt ist, an dem einerseits die Leerlauffeder 11 starthebelseitig und andererseits die Zwischenfeder 12 spannhebelseitig eingreifen. Beim Anpressen des fliehkraftbeaufschlagten Starthebels 6 an den Spannhebel 9 dient ein an einem der beiden Hebel 6, 9 angeordneter, präzise gefertigter Anschlag 29 als Anlagepunkt, wobei diese Funktion auch der Stift 14, der im Ausführungsbeispiel lediglich der Führung der Federanordnung dient, übernehmen kann. Im Schwenkbereich des Starthebels 6 ist ein verstellbarer Stopphebel 16 auf der Seite des Drehzahlreglers 8 angeordnet, an dem der Starthebel 6 unter Einwirkung der Startfeder 10 in Startstellung bei Kaltstart der Brennkraftmaschine zur Anlage kommt und mit dem die Ausgangslage des Starthebels 6 und somit die Starteinspritzmenge einstellbar ist, unabhängig von der Ausgangsstellung des Drehzahlreglers 8. Dieser Stopphebel 16, übernimmt somit neben seiner Funktion zum Anstellen der Brennkraftmaschine durch das Verstellen des Starthebels 6 und somit des Ringschiebers 4 in Richtung Nullförderung auch die Grundeinstellung der Kraftstoffmehrmenge bei Kaltstart. Am Ende des Spannhebels 9 weist dieser eine Bohrung auf, durch die ein Bolzen 17 geführt ist, an dem starthebelseitig eine Regelfeder 20 über einen Federteller 19 angreift, die zwischen diesem Federteller 19 und einem Verbindungsteil 18 eingespannt ist, wobei das Verbindungsteil 18 über einen Exzenter, oder Hebelarm mit einem außerhalb der Kraftstoffeinspritzpumpe liegenden Verstellhebel 21 verbunden ist. Am anderen Ende weist der Bolzen einen Kopf 30 auf, zwischen dem und dem Spannhebel 9 eine Spannfeder 22 angeordnet ist, die als Druckfeder ausgeführt ist und die in Startstellung des Spannhebels 9 und des Verstellhebels 21 soweit zusammengepreßt ist, daß der Kopf 30 am Spannhebel 9 zur Anlage kommt. Der Spannhebel 9 befindet sich dabei in Anlage an einen Anschlag 23 der an einem Hebelarmende eines zweiarmigen Hebels 31 ausgebildet ist. Dieser zweiarmige Hebel 31 ist mit dem Anschlag 23 um eine gehäusefeste Achse 24 schwenkbar, wobei die Schwenkbewegung durch ein an dem anderen Hebelarmende angreifendes Stellglied 25, eines Schrittmotors 26 erzeugt wird. Der Stellweg des Stellgliedes 25 in Richtung Hebel 31 ist durch einen Anschlag 27 begrenzt, der einstellbar ist, und z.B. durch die Form einer durch die Pumpengehäusewand dringenden, von außen verdrehbaren Schraube gebildet sein kann. Somit sind unterschiedliche Endstellungen des Stellorgans 25 und damit des zweiarmigen Hebels 31 möglich. Der Schrittmotor 26 wird von einer Steuereinrichtung 28 gesteuert, die entsprechend einem aus Betriebsparametern der Brennkraftmaschine gebildeten Steuerwert gezählte Stellschritte an den Schrittmotor 26 abgibt. In vorteilhafter Weise wird dabei vor jedem Startvorgang der Brennkraftmaschine das Stellorgan 25 bis hin zum einstellbaren Anschlag 27 gefahren, um danach von diesem festen Bezugspunkt aus den einzustellenden Steuerwert exakt anfahren zu können. Als Schrittmotor kann sowohl ein Linearschrittmotor als auch ein Drehschrittmotor verwendet werden, wobei bei der Verwendung eines Drehschrittmotors die Welle des Schrittmotors eine Gewindespindel als Stellglied 25 antreiben kann, wodurch die Stellkräfte, die der Schrittmotor zu überwinden hat, weiterhin erheblich reduziert werden können. Die Figuren 2 und 3 zeigen vereinfacht den gleichen Aufbau wie die Figur 1, nur in anderen Betriebszuständen. Sie sollen vor allem der Erläuterung der Vorgänge während der verschiedenen Betriebszustände dienen. Beim Startvorgang der kalten Brennkraftmaschine gemäß Figur 1, bestimmt die Stellung des Stopphebels 16 die Ausgangslage des Starthebels 6, und somit die Stellung des Ringschiebers 4 in der die höchste Kraftstoffmenge zur Einspritzung kommt. Der Spannhebel 9 wird über den Kopf 30 an den Anschlag 23 gedrückt, der vom Schrittmotor 26 in seine der Vollaststellung entsprechenden Auslage gebracht ist, die damit auch die während des Startvorgangs mögliche maximale Einspritzmenge in Abhängigkeit der Temperatur der Brennkraftmaschine bestimmt. Dabei ist die Spannfeder 22 überdrückt, da die Regelfeder 20 eine höhere Steifigkeit und Vorspannung als die Spannfeder 22 hat. Der Drehzahlregler 8 kommt mit Drehzahlaufnahme sofort in Anlage an den Starthebel 6, da keine Rückstellkraft vorhanden ist. Beim Starten ergibt sich somit die Startmenge, wobei der Pumpenkolben 2 einen großen Nutzhub bis zur Absteuerung zurücklegt. Schon eine geringe Drehzahl genügt, um den Drehzahlregler 8 wirksam werden zu lassen, der dann den Starthebel 6 gegen die weiche Startfeder 10 bis zum Wirksamwerden der Leerlauffeder verschiebt, wobei sich der Starthebel 6 um die gehäusefeste Achse 7 dreht und den Ringschieber in Richtung kleinere Einspritzmenge verschiebt. Beim Start der warmen Brennkraftmaschine steuert der Schrittmotor 26 den Spannhebel 9 über den verstellbaren Anschlag 23 in die vom Drehzahlregler 8 abgewandte Richtung. Der Starthebel 6 wird dann von der Startfeder 10 gegen eine Aufklaffbegrenzung des Spannhebels 9 gepreßt, die einen Startmengenanschlag 33 für die Kraftstoffmehrmenge bildet. Bei einem Warmstart wird die Kraftstoffmehrmenge damit in Abhängigkeit von der Motortemperatur über den Startmengenanschlag 33 am Spannhebel 9 gesteuert. In der Figur 2 befindet sich die Kraftstoffmengenverstelleinrichtung in der Stellung des Leerlaufzustandes der Brennkraftmaschine, wobei der Anschlag 23 den Spannhebel 9 in die von der Regelfeder 20 abgewandte Richtung verschiebt und somit ein Anlegen des Starthebels 6 an den Spannhebel 9 vermeidet. Dabei drückt der Drehzahlregler 8 den Starthebel 6 gegen die Kraft der Leerlauffeder 11 und der Zwischenfeder 12 in Richtung Spannhebel 9, der sich wiederum über die Spannfeder 22 am Kopf 30 des Haltebolzens 17 abstützt, wobei sich ein Kräftegleichgewicht einstellt. Die Position des Ringschiebers 4 wird also durch das Zusammenwirken von Fliehkraft und der Kraft der Federn 10, 11, 12, 22 bestimmt, wobei die Regelfeder 20 mit Bolzen 17 und Teil 18 in Richtung Spannfeder 22 verschoben ist. Im unteren Leerlaufbereich regelt die Leerlauffeder 11 die Kraftstoffmenge, während im oberen Leerlaufbereich, in dem die Leerlauffeder 11 überdrückt und die Hülse 15 über einen Federteller 32 von der Zwischenfeder 12 in Anlage an den Starthebel 6 gebracht ist, die Zwischenfeder 12 wirksam wird. Mit beiden Federn ist somit ein breiter Leerlauf- und Übergangsbereich regelbar, wobei über verschiedene Federsteifigkeiten unterschiedliche Regelkennlinien erreicht werden können. Die Spannfeder 22 am Bund des Bolzens 17 hat dabei die Aufgabe den Spannhebel 9 an dem vom Schrittmotor 26 verstellbaren Anschlag 23 zu halten, wozu sie eine größere Federsteifigkeit als die Federn 11, 12 und eine kleinere Steifigkeit als die Regelfelder 20 aufweist. Wird nun im Leerlaufbereich eine hohe Last übertragen, z.B. durch die Nutzung mehrerer Zusatzaggregate, wird dies über Sensoren aufgenommen und der Steuereinrichtung 28 übermittelt, die dann Verstellsignale an den Schrittmotor 26 weitergibt. Dieser verstellt dann über den zweiarmigen Hebel 31, und dem darauf befindlichen Anschlag 23 den Spannhebel 9 so, daß dieser die für diese Last zur Erhaltung der konstanten Leerlaufdrehzahl oder einer höheren Drehzahl nötige Ausgangsstellung einnimmt. Die Referenzlage des Spannhebels 9 ist dabei die Grundeinstellung von der aus im Leerlauf abgeregelt wird, wobei die drehzahlabhängige Endabregelung durch den Anschlag 29 bestimmt ist. Das Verbindungsteil 18 und damit die Regelfeder 20 und der Haltebolzen 17 befinden sich während des Leerlaufbetriebes ständig in der Leerlaufstellung, das heißt die gesamte Regelung wird von der Verstelleinrichtung selbständig vorgenommen, wobei sich immer ein Kräftegleichgewicht zwischen der Kraft des Drehzahlreglers 8 und der Federanordnung 11, 12 einstellt. Bei einer geforderten Änderung des Betriebszustandes der Brennkraftmaschine verstellt der Schrittmotor 26 daraufhin über den zweiarmigen Hebel 31 den Anschlag 23. Ebenso kann bei veränderter Lastaufnahme der Brennkraftmaschine über den Schrittmotor 26 die Leerlaufgrundeinstellung und damit der Abregelzeitpunkt im Leerlaufbetrieb beeinflußt werden. Die Figur 3 zeigt die Verstelleinrichtung im Vollastbetrieb. Die Spannfeder 22 ist durch die Stellkraft des Drehzahlreglers 8 gegen die stärkere Regelfeder 20 überdrückt und der Kopf 30 des Haltebolzens 17 liegt direkt am Spannhebel 9 an. Die Zwischen-, Start- und Leerlauffedern 12, 10, 11 sind überdrückt und der Starthebel 6 liegt an einem Anschlag 29 des Spannhebels 9 an, der somit in Stellrichtung des Drehzahlreglers 8 an den Starthebel 6 gekoppelt ist. Die Regelfeder 20 ist in dem Ver- bindungsteil 18 um einen bestimmten Betrag vorgespannt, der der Stellkraft des Drehzahlreglers 8 bei höchstzulässiger Drehzahl entspricht. Soll nun mehr Leistung von der Brennkraftmaschine abgegeben werden, so wird über den Verstellhebel 21 und die vorgespannte Regelfeder 20 der Spannhebel 9 und zugleich der Ringschieber 4 in Richtung höherer Fördermenge verschoben. Tritt eine Entlastung des Motors ein und die Drehzahl erhöht sich bei gleichbleibender Fördermenge der Kraftstoffeinspritzpumpe, so drückt bei Erreichen der höchsten Drehzahl und Überwinden der Regelfedervorspannung der Drehzahlregler 8 über den Starthebel 6 den Ringschieber 4 in Richtung abnehmende Fördermenge zurück. Erst nachdem die Vorspannung der Regelfeder 20 von der Wirkung des Drehzahlreglers 8 überwunden ist, wird diese Endabregelung wirksam. Der Vollastanschlag 23 begrenzt damit die höchste Einspritzmenge im Betrieb der Brennkraftmaschine, die in der Regel kleiner ist als die Startmenge. Durch den Schrittmotor 26 kann nun der Vollastanschlag 23 in Abhängigkeit von Betriebsparametern verstellt werden, wobei seine Stellung über den zweiarmigen Hebel 31 verstellt wird. Der wichtigste Vorteil liegt jedoch neben der temperaturabhängigen Startmengensteuerung und dem Vermeiden des damit verbundenen Rauchstoßes, vor allem in der Leerlaufdrehzahlregelung. Hier kann unabhängig von zugeschalteten Zusatzaggregaten und der Motortemperatur, eine konstante oder erhöhte konstante Leerlaufdrehzahl gehalten werden. Damit ist es insbesondere möglich, eine niedrigere Leerlaufdrehzahl bei normalem Betrieb der Brennkraftmaschine vorzugeben, was sich wiederum positiv auf die Belastung der Brennkraftmaschine selbst, deren Schadstoff- und Geräuschemission sowie auf den Kraftstoffverbrauch auswirkt.Figure 1 shows a fuel injection pump 1 of the distributor type in a simplified representation in partial section. These pumps have a reciprocating and at the same time rotating pump piston 2 which, when it rotates, controls various fuel outlets for supplying fuel injection points of the internal combustion engine. The amount of fuel is controlled by a ring slide 4 serving as a fuel amount adjusting element, the edge of which controls a relief channel 5 of the pump work chamber, not shown, arranged in the pump piston 2. By opening this channel, the injection of fuel is interrupted by the relief of the pump work space. The ring slide 4 is connected to an angled start lever 6, which is pivotable about an axis 7 fixed to the housing and engages with its spherical end piece on one arm in a recess of the ring slide 4. On the other arm of the start lever 6, a speed controller 8, shown in simplified form, which is preferably designed as a centrifugal force controller and which is driven synchronously with the pump speed, acts with the speed-dependent force against the restoring force of a start spring 10. The start lever 6 can be brought into contact with a tension lever 9 by the speed controller 8, which can be pivoted as a one-armed lever about the axis 7 of the start lever 6 and on which the start spring 10, which is designed as a leaf spring, is supported. Furthermore, an idling spring 11 and an intermediate spring 12, which are designed as helical compression springs, are arranged in series with one another between the tensioning lever 9 and the starting lever 6. To accommodate these springs, the tensioning lever 9 has a crank 13, within which a pin 14 protrudes at right angles from the tensioning lever 9, on which a spring plate 32 provided with a sleeve 15 is guided, on the one hand the idling spring 11 on the starting lever side and on the other hand the intermediate spring 12 on the tensioning lever side intervention. When pressing the centrifugal force start lever 6 on the clamping lever 9 is used on one of the two levers 6, 9 arranged, precisely manufactured stop 29 as a contact point, this function also being carried out by the pin 14, which in the exemplary embodiment only serves to guide the spring arrangement. In the swivel range of the start lever 6, an adjustable stop lever 16 is arranged on the side of the speed controller 8, on which the start lever 6 comes into contact with the start spring 10 in the start position when the internal combustion engine is cold started, and with which the starting position of the start lever 6 and thus the starting injection quantity can be set is independent of the starting position of the speed controller 8. This stop lever 16, in addition to its function to start the internal combustion engine by adjusting the start lever 6 and thus the ring slide 4 in the direction of zero delivery, also performs the basic setting of the additional fuel quantity during a cold start. At the end of the tensioning lever 9, this has a bore through which a bolt 17 is guided, on the start lever side of which a control spring 20 engages via a spring plate 19, which is clamped between this spring plate 19 and a connecting part 18, the connecting part 18 via an eccentric , or lever arm is connected to an adjustment lever 21 located outside the fuel injection pump. At the other end, the bolt has a head 30, between which and the tensioning lever 9 a tension spring 22 is arranged, which is designed as a compression spring and which is compressed so far in the starting position of the tensioning lever 9 and the adjusting lever 21 that the head 30 on the tensioning lever 9 comes to the plant. The clamping lever 9 is in contact with a stop 23 which is formed on a lever arm end of a two-armed lever 31. This two-armed lever 31 can be pivoted with the stop 23 about an axis 24 fixed to the housing, the pivoting movement being generated by an actuator 25 of a stepping motor 26 acting on the other end of the lever arm. The travel of the actuator 25 in the direction of the lever 31 is limited by a stop 27 which is adjustable and can be formed, for example, by the shape of a screw which can be rotated from the outside and which penetrates through the pump housing wall. So they are different End positions of the actuator 25 and thus the two-armed lever 31 possible. The stepper motor 26 is controlled by a control device 28 which, in accordance with a control value formed from operating parameters of the internal combustion engine, outputs control steps to the stepper motor 26. In an advantageous manner, the actuator 25 is moved up to the adjustable stop 27 before each start-up of the internal combustion engine, in order to be able to approach the control value to be set exactly from this fixed reference point. Both a linear stepping motor and a rotating stepping motor can be used as the stepping motor, wherein when using a rotating stepping motor, the shaft of the stepping motor can drive a threaded spindle as an actuator 25, whereby the actuating forces which the stepping motor has to overcome can be further reduced considerably. Figures 2 and 3 show simplified the same structure as Figure 1, only in different operating states. They are primarily intended to explain the processes during the various operating states. When starting the cold internal combustion engine according to FIG. 1, the position of the stop lever 16 determines the starting position of the start lever 6, and thus the position of the ring slide 4 in which the highest amount of fuel is injected. The clamping lever 9 is pressed over the head 30 against the stop 23, which is brought by the stepping motor 26 into its position corresponding to the full load position, which thus also determines the maximum injection quantity possible during the starting process depending on the temperature of the internal combustion engine. The tension spring 22 is overpressed since the control spring 20 has a higher rigidity and pretension than the tension spring 22. The speed controller 8 immediately comes into contact with the start lever 6 because there is no restoring force. When starting, the starting quantity thus results, with the pump piston 2 covering a large useful stroke until it is deactivated. Even a low speed is sufficient to let the speed controller 8 take effect, which then actuates the start lever 6 against the soft starting spring 10 until the idling spring becomes effective shifts, the starting lever 6 rotates about the axis 7 fixed to the housing and shifts the ring slide in the direction of a smaller injection quantity. When the warm internal combustion engine starts, the stepper motor 26 controls the tensioning lever 9 via the adjustable stop 23 in the direction facing away from the speed controller 8. The starting lever 6 is then pressed by the starting spring 10 against a gap limitation of the tensioning lever 9, which forms a starting quantity stop 33 for the additional fuel quantity. In the case of a warm start, the additional fuel quantity is thus controlled as a function of the engine temperature via the start quantity stop 33 on the tensioning lever 9. In FIG. 2, the fuel quantity adjustment device is in the position of the idle state of the internal combustion engine, the stop 23 displacing the tensioning lever 9 in the direction facing away from the control spring 20 and thus avoiding the starting lever 6 being applied to the tensioning lever 9. The speed controller 8 presses the start lever 6 against the force of the idle spring 11 and the intermediate spring 12 in the direction of the tensioning lever 9, which in turn is supported by the tensioning spring 22 on the head 30 of the retaining bolt 17, a balance of forces being established. The position of the ring slide 4 is thus determined by the interaction of centrifugal force and the force of the springs 10, 11, 12, 22, the control spring 20 being displaced in the direction of the tension spring 22 by means of bolts 17 and part 18. In the lower idle range, the idle spring 11 regulates the fuel quantity, while in the upper idle range, in which the idle spring 11 is depressed and the sleeve 15 is brought into contact with the start lever 6 by the intermediate spring 12 via a spring plate 32, the intermediate spring 12 becomes effective. A wide idling and transition range can thus be regulated with both springs, whereby different control characteristics can be achieved via different spring stiffnesses. The tension spring 22 on the collar of the pin 17 has the task of holding the tension lever 9 on the stop 23 adjustable by the stepping motor 26, for which purpose it has a greater spring stiffness than the springs 11, 12 and a smaller stiffness than the control fields 20. Will now be in the idle range transmit a high load, for example by using several additional units, this is recorded by sensors and transmitted to the control device 28, which then passes on adjustment signals to the stepper motor 26. This then adjusts the tensioning lever 9 via the two-armed lever 31 and the stop 23 located thereon so that it assumes the starting position necessary for this load to maintain the constant idling speed or a higher speed. The reference position of the tensioning lever 9 is the basic setting from which idling is regulated, the speed-dependent final limitation being determined by the stop 29. The connecting part 18 and thus the control spring 20 and the retaining bolt 17 are constantly in the idle position during idling operation, that is to say the entire regulation is carried out independently by the adjusting device, there always being a balance of forces between the force of the speed controller 8 and the spring arrangement 11, 12 sets. If a change in the operating state of the internal combustion engine is required, the stepper motor 26 then adjusts the stop 23 via the two-armed lever 31. Likewise, when the load of the internal combustion engine changes, the basic idle setting and thus the cut-off time in idle operation can be influenced via the stepper motor 26. FIG. 3 shows the adjustment device in full load operation. The tension spring 22 is overpressed by the actuating force of the speed controller 8 against the stronger control spring 20 and the head 30 of the retaining bolt 17 lies directly on the tension lever 9. The intermediate, start and idle springs 12, 10, 11 are overpressed and the start lever 6 rests against a stop 29 of the tension lever 9, which is thus coupled to the start lever 6 in the direction of adjustment of the speed controller 8. The control spring 20 is preloaded in the connecting part 18 by a certain amount, which corresponds to the actuating force of the speed controller 8 at the maximum permissible speed. If more power is now to be output from the internal combustion engine, the tensioning lever 9 and at the same time the ring slide 4 are moved in via the adjusting lever 21 and the prestressed control spring 20 Shifted towards higher output. If the engine is relieved and the speed increases while the fuel injection pump's delivery rate remains the same, when the highest speed is reached and the control spring preload is overcome, the speed controller 8 pushes the ring slide 4 back towards the decreasing delivery rate via the start lever 6. Only after the pretension of the control spring 20 has been overcome by the effect of the speed controller 8, this final limitation becomes effective. The full load stop 23 thus limits the highest injection quantity during operation of the internal combustion engine, which is generally smaller than the starting quantity. The full-load stop 23 can now be adjusted as a function of operating parameters by means of the stepper motor 26, its position being adjusted via the two-armed lever 31. The most important advantage, however, is the temperature-dependent start quantity control and the avoidance of the associated smoke burst, especially in the idle speed control. A constant or increased constant idling speed can be maintained here regardless of the additional units connected and the engine temperature. This makes it possible in particular to specify a lower idling speed during normal operation of the internal combustion engine, which in turn has a positive effect on the load on the internal combustion engine itself, its pollutant and noise emissions and on fuel consumption.

Claims (9)

  1. Fuel injection pump for internal combustion engines, with a fuel quantity adjusting member which is adjustable via an actuator of a controller, the actuator consisting of a starting lever (6) and a tension lever (9), on which the starting lever (6) can be brought to bear against a stop (29) of the tension lever (9) under the effect of a force (8) dependent on engine speed, a starting spring (10) and an idling spring arrangement (11, 12) being located between the starting lever and tension lever, the tension lever (9) being loaded, by a tension spring (22) arranged in series with a control spring (20), in the direction of an adjustable stop (23) which, by means of its set position, determines the maximum fuel quantity being injected, the adjustable stop (23) being adjustable by means of a stepping motor (26) controlled in dependence on operating parameters of the internal combustion engine, characterized in that the starting-lever travel is limited in the direction facing away from the tension lever (9), opposite to the effective direction of the force dependent on engine speed, by a further stop (33) connected to the tension lever (9), and in that, by means of the stepping motor (26) the stop (23) serves both for limiting the full-load injection quantity and setting the starting quantity and for regulating the idling injection quantity, the basic setting of the tension lever (9), from which cutback takes place during idling, being adjustable by means of the adjustable stop (23).
  2. Fuel injection pump according to Claim 1, characterized in that the control spring (20) is a pretensioned spring, one supporting face of which is connected to an adjusting lever (21) and the other supporting face of which is a head (30) of a bolt (17) which is guided through the end of the tension lever (9) and between the head (30) of which and the tension lever (9) is arranged the tension spring (22) which is designed as a compression spring and the spring travel of which is limited by the bearing of the head (30) on the tension lever (9).
  3. Fuel injection pump according to the preceding claims, characterized in that the idling spring arrangement (11, 12) consists of two compression springs connected in series and these have different spring rigidities.
  4. Fuel injection pump according to Claim 3, characterized that there is arranged between the compression springs (11, 12) a spring plate (32), on which is continued a supporting sleeve (15) which can be brought to bear on the starting lever (6).
  5. Fuel injection pump according to Claim 4, characterized in that the supporting sleeve (15) is guided on a pin (14) which is connected to one of the levers, the starting lever (6) or tension lever (9).
  6. Fuel injection pump according to Claim 4 or 5, characterized in that the pin (14) serves for the bearing of the starting lever (6) on the tension lever (9).
  7. Fuel injection pump according to the preceding claims, characterized in that the compression springs (11, 12) take effect against the starting spring (10) only after an adjustment of the starting lever (6).
  8. Fuel injection pump according to Claim 1, characterized in that the adjustable stop (23) is arranged on a two-armed lever (31) which, before each start of the internal combustion engine, is moved by an actuating member (25) of the stepping motor (26) of the internal combustion engine against an adjustable stop (27) fixed relative to the housing (earthing stop).
  9. Fuel injection pump according to the preceding claims, characterized in that a stop lever (16) arranged in the pivoting region of the starting lever (9) determines the initial position of the starting lever when the internal combustion engine is cold, irrespective of the force (8) dependent on the engine speed.
EP92106393A 1991-05-27 1992-04-14 Fuel injection pump for internal combustion engines Expired - Lifetime EP0515816B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4117267A DE4117267A1 (en) 1991-05-27 1991-05-27 FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE4117267 1991-05-27

Publications (2)

Publication Number Publication Date
EP0515816A1 EP0515816A1 (en) 1992-12-02
EP0515816B1 true EP0515816B1 (en) 1995-12-13

Family

ID=6432522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92106393A Expired - Lifetime EP0515816B1 (en) 1991-05-27 1992-04-14 Fuel injection pump for internal combustion engines

Country Status (4)

Country Link
US (1) US5188076A (en)
EP (1) EP0515816B1 (en)
JP (1) JPH05163966A (en)
DE (2) DE4117267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773240B2 (en) 2002-01-28 2004-08-10 Visteon Global Technologies, Inc. Single piston dual chamber fuel pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572972A (en) * 1994-06-10 1996-11-12 Cummins Engine Company, Inc. Mechanical air-fuel control for feedback control of external devices
DE60033875T2 (en) * 1999-01-19 2007-12-20 Kubota Corp. Fuel supply device for a motor
CN100470019C (en) * 2007-06-29 2009-03-18 无锡开普动力有限公司 Electronic speed regulating device of diesel engine
CN102536470A (en) * 2010-12-24 2012-07-04 广西玉柴机器股份有限公司 Secondary throttle device of engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2379699A1 (en) * 1977-02-02 1978-09-01 Cav Roto Diesel IMPROVEMENTS TO MECHANICAL REGULATORS OF THE TYPE CALLED IDLE AND MAXIMUM SPEED REGULATORS, FOR INJECTION PUMPS
US4373994A (en) * 1981-09-28 1983-02-15 Occidental Research Corporation Pyrolysis process and apparatus
DE3147701A1 (en) * 1981-12-02 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR A FUEL FLOW ADJUSTMENT MEMBER OF A FUEL INJECTION PUMP
DE3224748A1 (en) * 1982-07-02 1984-01-05 Robert Bosch Gmbh, 7000 Stuttgart SPEED REGULATOR FOR FUEL INJECTION PUMPS
DE3243349A1 (en) * 1982-11-24 1984-05-24 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP
JPS59131730A (en) * 1983-01-18 1984-07-28 Nissan Motor Co Ltd Idling-speed controlling apparatus
US4656980A (en) * 1984-07-11 1987-04-14 Diesel Kiki Co., Ltd. Centrifugal governor for internal combustion engines
DE3500341A1 (en) * 1984-07-13 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart SPEED REGULATOR FOR FUEL INJECTION PUMPS
US4748954A (en) * 1984-07-16 1988-06-07 Nippon Soken, Inc. Electrostrictive actuator device and fuel injection device using same
DE3430797A1 (en) * 1984-08-22 1986-03-06 Robert Bosch Gmbh, 7000 Stuttgart SPEED REGULATOR FOR FUEL INJECTION PUMPS
DE3433423A1 (en) * 1984-09-12 1986-03-20 Robert Bosch Gmbh, 7000 Stuttgart SPEED REGULATOR FOR FUEL INJECTION PUMPS
DE3435986A1 (en) * 1984-10-01 1986-04-10 Robert Bosch Gmbh, 7000 Stuttgart SPEED REGULATOR FOR FUEL INJECTION PUMPS
AT395896B (en) * 1985-09-20 1993-03-25 Steyr Daimler Puch Ag DEVICE FOR CONTROLLING AN INJECTION PUMP OF AN INJECTION INTERNAL COMBUSTION ENGINE
JPS62117241U (en) * 1986-01-20 1987-07-25
JP2567222B2 (en) * 1986-04-01 1996-12-25 株式会社小松製作所 Engine control method and apparatus for wheeled construction machine
DE3632538A1 (en) * 1986-09-25 1988-03-31 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
JPS63170542A (en) * 1987-01-09 1988-07-14 Toyota Motor Corp Idle injection quantity control method for diesel engine
EP0297288B1 (en) * 1987-06-27 1991-12-27 Robert Bosch Gmbh Fuel injection pump for feeding the combustion chamber of an automotive engine
DE3743060A1 (en) * 1987-12-18 1989-06-29 Bosch Gmbh Robert SPEED REGULATOR FOR FUEL INJECTION PUMPS
DE3901585A1 (en) * 1989-01-20 1990-07-26 Vdo Schindling LOAD ADJUSTMENT DEVICE
DE3901722C1 (en) * 1989-01-21 1989-11-30 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Mechanical speed controller, provided with an electronically controlled adjustment device, for a series injection pump of internal combustion engines with air compression and autoignition
DE3911145C1 (en) * 1989-04-06 1990-04-26 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE3914263C1 (en) * 1989-04-29 1990-09-13 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773240B2 (en) 2002-01-28 2004-08-10 Visteon Global Technologies, Inc. Single piston dual chamber fuel pump

Also Published As

Publication number Publication date
US5188076A (en) 1993-02-23
DE59204644D1 (en) 1996-01-25
JPH05163966A (en) 1993-06-29
EP0515816A1 (en) 1992-12-02
DE4117267A1 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
EP0012309B1 (en) Fuel injection system for diesel engines, especially for automotive diesel engines
DE3300876A1 (en) FUEL INJECTION PUMP
DE4104742A1 (en) METHOD FOR INJECTING FUEL FOR A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE AND FUEL INJECTION DEVICE
EP0515816B1 (en) Fuel injection pump for internal combustion engines
EP0168613B1 (en) Speed governor for a fuel injection pump
DE2731107A1 (en) CONTROL DEVICE FOR CHARGED INJECTION COMBUSTION ENGINES
DE4129837C2 (en) Speed controller for fuel injection pumps of internal combustion engines
EP0166931B1 (en) Speed governor for fuel injection pumps
DE3242108A1 (en) DISTRIBUTOR INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE2612940A1 (en) SPEED REGULATOR FOR A FUEL INJECTION PUMP
EP0158846B1 (en) Centrifugal governor for fuel injection-type internal-combustion engines
DE3322214A1 (en) Injection pump for internal-combustion engines
EP0198166B1 (en) Diaphragm-actuated pneumatic correcting device for a fuel injection pump of an internal-combustion engine
EP0320617A2 (en) Governor for fuel injection pumps
EP0454803B1 (en) Fuel-injection pump for internal-combustion engines
EP0627552A1 (en) fuel injection pump
DE693828C (en) Regulator for injection pumps of internal combustion engines
EP0191930B1 (en) Fuel injection pump for internal-combustion engines
DE3900317C2 (en) Distributor fuel injection pump for internal combustion engines
EP0208898B1 (en) Speed governor for fuel injection pumps
EP0297267A1 (en) Speed controlling device for fuel-injection pumps
DE4221750A1 (en) Fuel injection pump for internal combustion engines
DE3146654A1 (en) Exhaust gas return device on an internal combustion engine
DE3336924C2 (en)
DE1122769B (en) Device for automatic regulation of the fuel injection point in internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19930508

17Q First examination report despatched

Effective date: 19940201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59204644

Country of ref document: DE

Date of ref document: 19960125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020417

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020528

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST