EP0508067B1 - Vorrichtung zum Regulieren des durchströmten Querschnitts einer Turbomaschine - Google Patents

Vorrichtung zum Regulieren des durchströmten Querschnitts einer Turbomaschine Download PDF

Info

Publication number
EP0508067B1
EP0508067B1 EP92102795A EP92102795A EP0508067B1 EP 0508067 B1 EP0508067 B1 EP 0508067B1 EP 92102795 A EP92102795 A EP 92102795A EP 92102795 A EP92102795 A EP 92102795A EP 0508067 B1 EP0508067 B1 EP 0508067B1
Authority
EP
European Patent Office
Prior art keywords
turbine
valve
steam
inlet
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92102795A
Other languages
English (en)
French (fr)
Other versions
EP0508067A1 (de
Inventor
Dieter Freuschle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0508067A1 publication Critical patent/EP0508067A1/de
Application granted granted Critical
Publication of EP0508067B1 publication Critical patent/EP0508067B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom
    • F05D2250/411Movement of components with one degree of freedom in rotation

Definitions

  • the invention relates to a device for the regulated loading of the diffuser of axially flowed through turbomachines, in particular of extraction steam turbines, with a control slide arranged at least two inlet windows for the working medium and arranged upstream of the diffuser.
  • the nozzle group control is particularly suitable for systems in which high partial load efficiency is required.
  • the first turbine stage which is usually equipped with a constant pressure or Curtis blading, also called a control stage, has a plurality of admission sectors, the steam inflow from the steam generator to each of the admission sectors having one special control valve is set. It is customary to open one control valve after the other with increasing output of the steam turbine. For a given load condition, therefore, a more or less large number of control valves is generally fully open and therefore does not cause throttling. Only one of the control valves will be partially open and cause an additional throttle loss. This loss can, however, be kept to a modest extent, because it only affects the partial mass flow flowing through the respective control valve.
  • Devices for regulating the cross-section through which a turbomachine flows are also used in steam extraction turbines. They allow a variable steam mass flow to be branched out of the turbine, for example for process purposes.
  • controlled withdrawals are known in which the entire mass flow after flowing through a turbine part led out of the turbine, regulated and then reintroduced into the subsequent sub-turbine.
  • overflow control valves are flanged onto the turbine housing, with which the steam quantity flowing into the subsequent turbine part is controlled and the extraction pressure is thereby kept constant.
  • devices with which the free cross-section through which flow is changed in the guide apparatus for regulating the steam mass flow are also known in the form of adjustable guide vanes.
  • the guide vanes can be rotated about their own longitudinal axis in order to reduce the cross section.
  • the fulcrum can be on the front edge of the blade, within the blade profile or on the rear edge of the blade.
  • the cross-section through which the flow is flowing can be completely blocked on the occasion of an adjustment.
  • the aerodynamically important blade geometry is also retained.
  • the inflow and outflow of the guide vanes are changed to a greater or lesser extent, which impairs the operation of at least the immediately following rotor blades.
  • the working medium here low-pressure steam
  • the working medium enters the guide blading directly via axial rotary valves with a large number of lockable entry windows.
  • the invention has for its object to provide a simple adjusting device for nozzle group control, while avoiding the above-mentioned number of control valves, with which the inflow conditions to the guide device and the outflow conditions from the guide device remain unchanged.
  • a channel element is arranged between the control slide and the guide apparatus, with a plurality of inflow channels which connect the inlet windows of the control slide to the nozzles of the guide apparatus, the control slide being rotatable by 180 ° in the circumferential direction for increasing opening and closing of the inflow channels .
  • each individual nozzle of the diffuser is acted on via its own inflow channel.
  • the advantages of the invention can be seen in particular in the high efficiency that can be achieved.
  • a large number of lossless operating points can be driven, and on the other hand, there is an optimal inflow for the nozzles in question.
  • the extraction turbine shown in FIG. 1 is a single-shaft, two-part turbine with internally controlled extraction 1, for example for process steam. It consists of a high pressure turbine 3 in the back pressure type and a low pressure turbine 3 'in the condensation type. The latter is necessary to compensate for the fluctuations in the power requirement of the company if, for example, the frequency must also be maintained in addition to the regulated steam pressure in the extraction 1.
  • the rotor blades of the two partial turbines are arranged on a common rotor 4.
  • the blade carriers 6, 6 ' are suspended in the largely cylindrical turbine housing 5 so that they can be moved by heat.
  • the live steam flows into the diffuser 7 of the high-pressure turbine 3 via an inlet housing 2 connected to the turbine housing 5, from where it acts on the control stage blading of the control wheel 8.
  • This control stage blading usually works according to the constant pressure principle and is carried out in one stage in the case shown.
  • the steam then flows through the reaction blading of the high-pressure turbine 3, which is only shown symbolically, and reaches the high-pressure exhaust steam 9.
  • the steam to be expanded remains within the turbine housing 5.
  • the steam not removed in 1 flows through the low-pressure turbine 3 '. From the outlet, the steam reaches the exhaust steam housing, not shown, and from there into a condenser, on the cooled pipes of which the now relaxed steam is deposited.
  • the new regulating device can be used both on the high-pressure turbine 3 for fresh steam regulation and on the low-pressure turbine 3 'for regulating the extraction.
  • the guide apparatus 7 on the high-pressure turbine consists of a nozzle box, which is integrated in a channel element 10 designed as a ring.
  • the individual nozzles in this case 42 in number, can either be inserted and caulked in the channel ring or welded into the channel ring.
  • the two-part channel ring which will generally be designed with a horizontal partial plane, is on the one hand suspended in the inlet housing 2 and, on the other hand, surrounds the compensating piston 11 of the high-pressure turbine with its radially inner diameter. On its inner circumference, it is provided with a labyrinth 12 over its axial extent in order to form the piston seal.
  • the channel ring 10 is provided over its circumference with two symmetrically arranged sectors of inflow channels 13. These inflow channels, of which each sector has 20 pieces, each open into a nozzle of the guide apparatus (FIG. 5). This ensures optimal inflow to the nozzles. In the present case, only the inflow channel 13a opening when the machine starts up extends over two nozzle divisions in order to keep the mechanical stresses on the control wheel within limits. The dimensions of the inflow channels are unchanged.
  • the adaptation to the swallowing capacity of the blading is advantageously done via the geometry of the nozzles. For example, their width can be adapted to the prevailing conditions over the circumference and / or their radial height.
  • the inflow channels 13 are guided radially out of the channel ring.
  • the actual inlet openings of the channels of the upper sector and the lower sector are offset from one another in the axial direction (FIG. 1) and are accordingly located on two different levels.
  • this two-part radial slide which is also formed with a horizontal partial plane, is a ring which surrounds the channel ring 10 with its inner diameter and seals against it.
  • the ring must be able to operate in the closed state, i.e. without the inflow of steam into the inflow channels, to be able to absorb the maximum pressure drop without great deformation. Since the permanently open entry windows are acted upon by the working medium even in the non-flowed state, the radial slide is equipped with sealing strips (not shown) for sealing purposes in its axial extension on both sides of the entry window.
  • the aforementioned rotation of the radial slide by 180 ° can be done in a simple manner according to FIG. 3.
  • the slide On one of its end faces, the slide is provided over the circumference with a toothing 17 (only partially shown) into which a pinion inserted from the outside and driven through the upper part of the inlet housing 2 engages.
  • the radial slide valve which is only shown schematically, is provided by four roller bolts 18, which are evenly distributed over the circumference.
  • valve points i.e. almost lossless operating points
  • the new solution thus corresponds to the effect of 20 of the control valves mentioned at the beginning.
  • the simultaneous loading of opposite inflow channels enables the subsequent turbine part to be warmed up evenly and avoids any additional bearing load.
  • FIG. 1 and FIG. 7 show an exemplary embodiment of the invention in the area of internally regulated steam extraction. Since there are significantly lower vapor pressures and thus pressure drops in this area, a simplified variant can be used. This has the additional advantage that the axial flow direction of the steam is not interrupted at the point of withdrawal. In addition, it is characterized by a short axial length.
  • the channel element here is a channel disk 19, in which the control device 20 of the control stage is integrated.
  • the two-part channel disk which will also generally be designed with a horizontal partial plane, is on the one hand suspended in the turbine housing 5 and, on the other hand, surrounds the low-pressure rotor 4 of the turbine with its radially inner diameter. On its inner circumference, it is provided with a labyrinth over its axial extent to form a seal.
  • the channel disk 19 is provided with two symmetrically arranged sectors of inflow channels 21 over its circumference. These inflow channels, each sector having 20 pieces, each lead into a nozzle of the control apparatus 20. Only the inflow channels 21a opening or closing last, in the present case, extend over two nozzle divisions in order to keep the mechanical loads on the downstream control wheel within limits.
  • the inflow channels 21 are guided axially or obliquely axially out of the channel disk 19.
  • the actual inlet openings of the channels of the upper sector and the lower sector are offset from one another in the radial direction and are therefore located in two different radial planes.
  • the non-extracted steam passes through a control slide 23 provided with two entry windows 22.
  • this two-part axial slide which is also formed with a horizontal partial plane, is a disk which rests against the end face of the channel disk, is guided there and seals against it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Vorrichtung zur regulierten Beaufschlagung des Leitapparates von axial durchströmten Turbomaschinen, insbesondere von Entnahmedampfturbinen, mit einem stromaufwärts des Leitapparates angeordneten, mindestens zwei Eintrittsfenster für das Arbeitsmedium aufweisenden Kontrollschieber,
  • Stand der Technik
  • Bei Dampfturbinen ist die Düsengruppenregelung besonders geeignet für Anlagen, bei denen hohe Teillastwirkungsgrade verlangt werden. Die in der Regel mit einer Gleichdruck- oder einer Curtis-Beschaufelung ausgerüstete erste Turbinenstufe, auch Regelstufe genannt, weist dabei mehrere Beaufschlagungssektoren auf, wobei der Dampfzufluss aus dem Dampferzeuger zu jedem der Beaufschlagungssektoren mit einem besonderen Regelventil eingestellt wird. Hierbei ist es üblich, mit zunehmender Leistung der Dampfturbine in stetiger Weise ein Regelventil nach dem andern zu öffnen. Bei einem gegebenen Lastzustand ist deshalb im allgemeinen eine mehr oder weniger grosse Anzahl Regelventile voll geöffnet und verursacht somit keine Drosselung. Nur eines der Regelventile wird teilweise geöffnet sein und einen zusätzlichen Drosselverlust bewirken. Dieser Verlust kann indes in bescheidenem Rahmen gehalten werden, weil er nur den durch das betreffende Regelventil strömende Teilmassenstrom betrifft. Und diese Teilmenge wird umso geringer sein, je grösser die Anzahl der Beaufschlagungssektoren ist. Hieraus ergibt sich, dass idealerweise unendlich viele Regelventile und Beaufschlagungssektoren vorzusehen sind. In der Praxis sind denn auch Maschinen bekannt, die bis zu 10 Beaufschlagungssektoren und dazugehörige Regelventile aufweisen und damit eine sehr feinstufige Regelung gestatten. Am weitesten verbreitet ist indes die Anordnung mit 4 Segmenten; auf diese Weise arbeiten heute nahezu alle Zwischenüberhitzerturbinen. So ist es möglich, bei 4 Ventilen eine Düsenflächenverteilung von 20%, 20%, 30%, 30% über den Umfang vorzunehmen. Damit können während des Maschinenbetriebes Ventilpunkte mit etwa folgenden Leistungen gefahren werden: 30%, 60%, 90%, 100%. Bei den heute üblichen, hohen Dampftemperaturen sind meistens die zuerst öffnenden Düsenflächen symmetrisch im Unterteil und Oberteil des Gehäuses angeordnet, damit beim Anfahren asymmetrische Temperaturverteilungen vermieden werden.
  • Vorrichtungen zum Regulieren des durchströmten Querschnitts einer Turbomaschine gelangen auch bei Dampf- Entnahmeturbinen zur Anwendung. Sie gestatten das Abzweigen eines variablen Dampfmassenstromes, beispielsweise zu Prozesszwecken, aus der Turbine. Bei konventionellen, axial durchströmten Dampfturbinen sind solche geregelte Entnahmen bekannt, bei welchen der ganze Massenstrom nach Durchströmen eines Turbinenteils aus der Turbine herausgeleitet, geregelt und anschliessend wieder in die nachfolgende Teilturbine eingeführt wird. Für jede intern geregelte Entnahme sind mehrere nacheinander öffnende Überström-Stellventile am Turbinengehäuse angeflanscht, mit denen die in den anschliessenden Turbinenteil strömende Dampfmenge gesteuert und dadurch der Entnahmedruck konstant gehalten wird.
  • Desweiteren sind Vorrichtungen, mit denen der freie durchströmte Querschnitt im Leitapparat zur Regulierung des Dampfmassenstromes verändert wird, ebenfalls in Form von verstellbaren Leitschaufeln bekannt. Dabei können beispielsweise die Leitschaufeln um ihre eigene Längsachse gedreht werden, um den Querschnitt zu reduzieren. Der Drehpunkt kann an der Schaufelvorderkante, innerhalb des Schaufelprofils oder an der Schaufelhinterkante liegen. Bei all diesen Varianten kann anlässlich einer Verstellung der durchströmte Querschnitt vollständig versperrt werden. Auch die strömungstechnisch wichtige Schaufelgeometrie bleibt erhalten. Jedoch wird bei diesen Lösungen die Zuströmung und die Abströmung der Leitschaufeln mehr oder weniger stark verändert, was die Arbeitsweise zumindest der direkt nachfolgenden Laufschaufeln beeinträchtigt.
  • Vorrichtungen der eingangs genannten Art sind bekannt aus dem Zeitschriftenartikel "Zur Entwicklung von Niederdruck-Dampfsteuerorganen, derzeitiger Stand und zukünftige Möglichkeiten", Machinenbautechnik, Berlin, 38 (1989), Seiten 17 ff. In einer ersten Variante tritt das Arbeitsmittel, hier Niederdruckdampf,über Radial-Drehschieber mit einer grossen Anzahl von versperrbaren Eintrittsfenstern in eine ringförmige, dem Leitgitter vorgelagerte Kammer ein. In einer zweiten Variante tritt gelangt das Arbeitsmittel über Axial-Drehschieber mit einer grossen Anzahl von versperrbaren Eintrittsfenstern unmittelbar in die Leitbeschaufelung ein. Beide Lösungen eignen sich für Drosselregelung, wobei vom voll geöffneten Zustand bis zur völligen Absperrung die Drehschieber jeweils um eine Fensterteilung zu verschieben sind.
  • Darstellung der Erfindung
  • Die Erfindung liegt die Aufgabe zugrunde, unter Vermeidung der oben erwähnten Anzahl von Regelventilen eine einfache Verstellvorrichtung für Düsengruppenregelung zu schaffen, mit welcher die Zuströmbedingungen zum Leitapparat und die Abströmbedingungen vom Leitapparat unverändert bleiben.
  • Erfindungsgemäss wird dies dadurch erreicht, dass zwischen Kontrollschieber und Leitapparat ein Kanalelement angeordnet ist mit einer Mehrzahl von Zuströmkanälen, welche die Eintrittsfenster des Kontrollschiebers mit den Düsen des Leitapparates verbinden, wobei der Kontrollschieber zur zunehmenden Öffnung respektiv Schliessung der Zuströmkanäle in Umfangsrichtung um 180° drehbar ist.
  • Es ist zweckmässig, wenn jede einzelne Düse des Leitapparates über einen eigenen Zuströmkanal beaufschlagt wird.
  • Die Vorteile der Erfindung sind, abgesehen von der Einfachheit der Massnahme, insbesondere im erzielbaren hohen Wirkungsgrad zu sehen. Zum einen kann eine grosse Anzahl verlustloser Betriebspunkte gefahren werden, und zum andern liegt für die jeweils beaufschlagten Düsen eine optimale Zuströmung vor.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist zwei Ausführungsbeispiele der Erfindung anhand einer axialdurchströmten Entnahme-Dampfturbine dargestellt.
  • Es zeigen:
  • Fig.1
    einen schematischen Längsschnitt durch eine Entnahme-Damptturbine;
    Fig.2
    einen Querschnitt durch eine erste Ausführungsvariante der Erfindung im Hochdruck-Eintrittsteil der Turbine gemäss Linie 2-2 in Fig.1;
    Fig.3
    einen Querschnitt durch den Hochdruck-Eintrittsteil der Turbine gemäss Linie 3-3 in Fig.1;
    Fig.4
    einen Teilquerschnitt durch die Regelvorrichtung gemäss Detail Z in Fig.2, jedoch in geschlossenem Zustand;
    Fig.5
    die teilweise Abwicklung eines Zylinderschnittes in der Ebene gemäss Linie 5-5 in Fig.1 auf halber Höhe der Leitbeschaufelung;
    Fig.6
    die Abwicklung des Verstellelementes im Hochdruck-Eintrittsteil der Turbine;
    Fig.7
    einen Querschnitt durch eine zweite Ausführungsvariante der Erfindung im Niederdruck-Eintrittsteil der Turbine gemäss Linie 7-7 in Fig.1.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise die eigentlichen Einlassorgane, die Lager mitsamt ihren Lagergehäusen, die diversen Anzapfungen, der Abdampfteil sowie das angetriebene Element, beispielsweise ein Generator. Die Strömungsrichtung des Arbeitsmittels ist mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • Bei der in Fig 1. dargestellten Entnahmeturbine handelt es sich um eine einwellige zweiteilige Turbine mit intern geregelter Entnahme 1 für beispielsweise Prozessdampf. Sie besteht aus einer Hochdruckturbine 3 in Gegendruckbauart und einer Niederdruckturbine 3' in Kondensationsbauart. Letztere ist zum Ausgleich der Schwankungen im Leistungsbedarf des Betriebes erforderlich, wenn beispielsweise ausser dem geregelten Dampfdruck in der Entnahme 1 auch noch die Frequenz gehalten werden muss.
  • Die Laufbeschauflungen der zwei Teilturbinen sind auf einem gemeinsamen Rotor 4 angeordnet. Im weitgehend zylindrischen Turbinengehäuse 5 sind die Schaufelträger 6, 6' wärmebeweglich eingehängt. Ueber ein mit dem Turbinengehäuse 5 verbundenes Einlassgehäuse 2 strömt der Frischdampf in den Leitapparat 7 der Hochdruckturbine 3 ein, von wo er die Regelstufenbeschauflung des Regelrades 8 beaufschlagt. Diese Regelstufenbeschauflung arbeitet üblicherweise nach dem Gleichdruckprinzip und ist im gezeigten Fall einstufig ausgeführt. Der Dampf durchströmt anschliessend die nur symbolisch dargestellte Reaktionsbeschaufelung der Hochdruckturbine 3 und gelangt in den Hochdruckabdampf 9. Im Gegensatz zur eingangs erwähnten Lösung mit Überström-Stellventilen verbleibt der weiter zu entspannende Dampf innerhalb des Turbinengehäuses 5. Der nicht in 1 entnommene Dampf durchströmt die Niederdruckturbine 3'. Aus deren Austritt gelangt der Dampf in das nicht gezeigte Abdampfgehäuse und von dort in einen Kondensator, an dessen gekühlten Rohren der nunmehr entspannte Dampf niedergeschlagen wird.
  • Soweit sind Entnahme-Kondensationsturbinen bekannt. Die neue Regulierungsvorrichtung kann sowohl an der Hochdruckturbine 3 für die Frischdampfregulierung als auch an der Niederdruckturbine 3' für die Entnahmeregulierung angewendet werden.
  • Gemäss Fig.1 besteht an der Hochdruckturbine der Leitapparat 7 aus einem Düsenkasten, welcher in ein als Ring ausgebildetetes Kanalelement 10 integriert ist. Je nach Dampfdaten können die einzelnen Düsen, im vorliegenden Fall 42 an der Anzahl, entweder in den Kanalring eingeschoben und verstemmt oder aber in den Kanalring eingeschweisst sein. Der zweiteilige Kanalring, welcher in der Regel mit horizontaler Teilebene ausgeführt sein wird, ist einerseits im Einlassgehäuse 2 eingehängt und umgibt andererseits mit seinem radial inneren Durchmesser den Ausgleichkolben 11 der Hochdruckturbine. An seinem Inneren Umfang ist er über seine axiale Erstrekkung mit einem Labyrinth 12 zwecks Bildung der Kolbendichtung versehen.
  • Gemäss Fig.2 ist der Kanalring 10 über seinem Umfang mit zwei symmetrisch angeordneten Sektoren von Zuströmkanälen 13 versehen. Diese Zuströmkanäle, von denen jeder Sektor 20 Stück aufweist, münden jeweils in eine Düse des Leitapparates (Fig.5). Dadurch ist die optimale Zuströmung zu den Düsen gewährleistet. Nur der beim Anfahren der Maschine zuerst öffnende Zuströmkanal 13a erstreckt sich im vorliegenden Fall über zwei Düsenteilungen, um die mechanischen Beanspruchungen des Regelrades in Grenzen zu halten. Die Zuströmkanäle sind in ihren Abmessungen unverändert. Die Anpassung an die Schluckfähigkeit der Beschaufelung geschieht mit Vorteil über die Geometriewahl der Düsen. So kann beispielsweise deren Weite über den Umfang und/oder deren radiale Höhe an die jeweils vorliegenden Verhältnisse angepasst werden. Am eintrittseitigen Ende werden die Zuströmkanäle 13 radial aus dem Kanalring herausgeführt. Dabei sind die eigentlichen Einlassöffnungen der Kanäle des oberen Sektors und des unteren Sektors in axialer Richtung zueinander versetzt (Fig.1), befinden sich demnach in zwei unterschiedlichen Ebenen.
  • In die Zuströmkanäle 13 gelangt der Dampf über einen mit zwei Eintrittsfenstern 15 versehenen Kontrollschieber 14. Dieser, ebenfalls mit horizontaler Teilebene ausgebildete zweiteilieger Radialschieber ist im einfachsten Fall ein Ring, der mit seinem inneren Durchmesser den Kanalring 10 umgibt und gegen ihn dichtet. Der Ring muss während des Maschinenbetriebes in der Lage sein, in geschlossenenem Zustand, d.h. ohne Dampfeinströmung in die Zuströmkanäle, das maximal auftretende Druckgefälle ohne grosse Verformung aufnehmen zu können. Da die permanent offenen Eintrittsfenster auch im nichtdurchströmten Zustand vom Arbeitsmittel beaufschlagt sind, ist der Radialschieber zu Dichtzwecken in seiner axialen Erstreckung beidseitig der Eintrittsfenster mit (nicht dargestellten) Dichtstreifen ausgerüstet. Die beiden Eintrittsfenster 15, welche gegeneinander die gleiche axiale Versetzung aufweisen wie die korrespondierenden Einlassöffnungen der Zuströmkanäle 13, erstrecken sich in Umfangsrichtung über einen Winkelbereich, der jenem der 20 zugehörigen Zuströmkanäle entspricht. Hieraus ergibt sich, dass der Radialschieber von der voll geschlossenen bis zur voll geöffneten Stellung um 180° verdrehbar sein soll. Da eine Dichtung bei geschlossener Stellung nicht nur seitlich der Eintrittsfenster erforderlich ist, sondern auch in Umfangsrichtung, ist der Kanalring gemäss Fig.4 in der Ebene der kooperierenden Eintrittsfenster und angrenzend an die Zuströmkanäle 13a mit einer entsprechenden Zackendichtung 16 ausgerüstet, um die Leckageströmung zu begrenzen.
  • Die erwähnte Verdrehung des Radialschiebers um 180° kann auf einfache Art gemäss Fig.3 erfolgen. An einer seiner Stirnseiten ist der Schieber über den Umfang mit einer (nur teilweise dargestellten) Verzahnung 17 versehen, in die ein durch das Oberteil des Einlassgehäuses 2 eingeführtes, von aussen angetriebenes Ritzel eingreift. Die nur schematisch gezeigte Lagerung des Radialschiebers erfolgt über vier über dem Umfang gleichmässig verteilte Rollbolzen 18.
  • Anlässlich der Verdrehung aus dem geschlossenen Zustand (Fig.4) öffnen zunächst die beiden gegenüberliegenden Zuströmkanäle 13a und mit zunehmender Drehung des Radialschiebers werden jeweils weitere einander gegenüberliegende Zuströmkanäle 13 vom Arbeitsmittel durchströmt. Im vorliegenden Fall können somit mit der Anlage 20 sogenannte Ventilpunkte, d.h., annähernd verlustlose Betriebspunkte gefahren werden. Die neue Lösung entspricht damit der Wirkung von 20 der eingangs erwähnten Stellventilen. Darüberhinaus ermöglicht die stets gleichzeitige Beaufschlagung von gegenüberliegenden Zuströmkanälen eine gleichmässige Aufwärmung des anschliessenden Turbinenteils und vermeidet jede zusätzliche Lagerbelastung.
  • Der rechte Teil der Fig.1 und die Fig.7 zeigen ein Ausführungsbeispiel der Erfindung im Bereich der intern geregelten Dampfentnahme. Da in diesem Bereich wesentlich niedrigere Dampfdrücke und somit auch Druckgefälle vorliegen, kann eine vereinfachte Variante zum Zuge kommen. Diese weist zusätzlich noch den Vorteil auf, dass die axiale Flussrichtung des Dampfes an der Entnahmestelle nicht unterbrochen ist. Darüberhinaus zeichnet sie sich durch eine kurze axiale Baulänge aus.
  • Das Kanalelement ist hier eine Kanalscheibe 19, in welche der Leitapparat 20 der Regelstufe integriert ist. Die zweiteilige Kanalscheibe, welche ebenfalls in der Regel mit horizontaler Teilebene ausgeführt sein wird, ist einerseits im Turbinengehäuse 5 eingehängt und umgibt andererseits mit ihrem radial inneren Durchmesser den Niederdruckrotor 4 der Turbine. An ihrem inneren Umfang ist sie über ihre axiale Erstreckung mit einem Labyrinth zwecks Bildung einer Dichtung versehen.
  • Die Kanalscheibe 19 ist über ihren Umfang mit zwei symmetrisch angeordneten Sektoren von Zuströmkanälen 21 versehen. Diese Zuströmkanäle, von denen jeder Sektor 20 Stück aufweist, münden jeweils in eine Düse des Leitapparates 20. Nur die zuerst öffnenden respektiv zuletzt schliessenden Zuströmkanäle 21a erstrecken sich im vorliegenden Fall über zwei Düsenteilungen, um die mechanischen Beanspruchungen des stromabwärtigen Regelrades in Grenzen zu halten.
  • Am eintrittseitigen Ende werden die Zuströmkanäle 21 axial oder schrägaxial aus der Kanalscheibe 19 herausgeführt. Dabei sind die eigentlichen Einlassöffnungen der Kanäle des oberen Sektors und des unteren Sektors in radialer Richtung zueinander versetzt, befinden sich demnach in zwei unterschiedlichen Radialebenen.
  • In die Zuströmkanäle 21 gelangt der nichtentnommene Dampf über einen mit zwei Eintrittsfenstern 22 versehenen Kontrollschieber 23. Dieser, ebenfalls mit horizontaler Teilebene ausgebildete zweiteiliege Axialschieber ist im einfachsten Fall eine Scheibe, die an der Stirnseite der Kanalscheibe anliegt, dort geführt wird und gegen diese dichtet. Die beiden Eintrittsfenster 22, welche gegeneinander die gleiche radiale Versetzung aufweisen wie die korrespondierenden Einlassöffnungen der Zuströmkanäle 21, erstrecken sich in Umfangsrichtung über einen Winkelbereich, der jenem der 20 zugehörigen Zuströmkanäle entspricht. Hieraus ergibt sich, dass der Axialschieber von der voll geschlossenen bis zur voll geöffneten Stellung um 180° verdrehbar sein muss.

Claims (4)

  1. Vorrichtung zur regulierten Beaufschlagung des Leitapparates (7,20) von axial durchströmten Turbomaschinen, insbesondere von Entnahmedampfturbinen (3,3'), mit einem stromaufwärts des Leitapparates angeordneten, mindestens zwei Eintrittsfenster (15,22) für das Arbeitsmedium aufweisenden Kontrollschieber (14,23),
       dadurch gekennzeichnet,
       dass zwischen Kontrollschieber (14,23) und Leitapparat (7,20) ein Kanalelement (10,19) angeordnet ist mit einer Mehrzahl von Zuströmkanälen (13,21), welche die Eintrittsfenster (15,22) des Kontrollschiebers (14,23) mit den Düsen des Leitapparates (7,20) verbinden, wobei der Kontrollschieber zur zunehmenden Öffnung respektiv Schliessung der Zuströmkanäle in Umfangsrichtung um 180° drehbar ist.
  2. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass das Kanalelement ein Kanalring (10) und der Kontrollschieber ein Radialschieber (14) ist, wobei der Kanalring (10) mit seinem radial inneren Durchmesser den Ausgeichkolben (11) der Turbine (3) umgibt und auf einem radial äusseren Durchmesser vom Radialschieber (14) umgeben ist, und wobei die mindestens zwei Eintrittsfenster (15) im Radialschieber in axialer Richtung zueinander versetzt sind.
  3. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass das Kanalelement eine Kanalscheibe (21) und der Kontrollschieber ein Axialschieber (23) ist, wobei die mindestens zwei Eintrittsfenster (22) im Axialschieber (23) in radialer Richtung zueinander versetzt sind.
  4. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass jede Düse des Leitapparates (7,20) über einen eigenen Zuströmkanal (13,21) vom Arbeitsmitel beaufschlagt ist.
EP92102795A 1991-04-08 1992-02-20 Vorrichtung zum Regulieren des durchströmten Querschnitts einer Turbomaschine Expired - Lifetime EP0508067B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1022/91 1991-04-08
CH102291 1991-04-08

Publications (2)

Publication Number Publication Date
EP0508067A1 EP0508067A1 (de) 1992-10-14
EP0508067B1 true EP0508067B1 (de) 1995-07-12

Family

ID=4200625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102795A Expired - Lifetime EP0508067B1 (de) 1991-04-08 1992-02-20 Vorrichtung zum Regulieren des durchströmten Querschnitts einer Turbomaschine

Country Status (3)

Country Link
US (1) US5269648A (de)
EP (1) EP0508067B1 (de)
DE (1) DE59202840D1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4214775A1 (de) * 1992-05-04 1993-11-11 Abb Patent Gmbh Dampfturbine mit einem Drehschieber
DE4214773A1 (de) * 1992-05-04 1993-11-11 Abb Patent Gmbh Dampfturbine mit einem Drehschieber zur Steuerung des Dampfdurchsatzes
JPH06312158A (ja) * 1993-04-30 1994-11-08 Matsui Mfg Co 空気振動波発生方法及びその装置
US5494405A (en) * 1995-03-20 1996-02-27 Westinghouse Electric Corporation Method of modifying a steam turbine
SE509390C2 (sv) * 1996-05-15 1999-01-18 Abb Stal Ab Ångturbin
CZ301591B6 (cs) * 2004-05-27 2010-04-28 Siemens Aktiengesellschaft Zarízení pro regulaci tlaku v odberu turbíny
EP1835131A1 (de) 2006-03-15 2007-09-19 Siemens Aktiengesellschaft Gasturbine für ein thermisches Kraftwerk und Verfahren zum Betreiben einer derartigen Gasturbine
DE102007056889A1 (de) * 2007-11-26 2009-05-28 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader mit mindestens einer Turbine variabler Turbinengeometrie
DE102009010608B4 (de) * 2009-02-25 2011-06-16 Siemens Aktiengesellschaft Gestaltung der Einströmkammer mit radialer Zuströmung und Aufteilung des Frischdampfstroms in 2 Abschnitten
JP5615150B2 (ja) * 2010-12-06 2014-10-29 三菱重工業株式会社 原子力発電プラントおよび原子力発電プラントの運転方法
DE102011006658A1 (de) * 2011-04-01 2012-02-16 Siemens Aktiengesellschaft Wirkungsgraderhöhung einer Regelstufe einer Gleichdruckturbine
US20130064665A1 (en) * 2011-09-13 2013-03-14 General Electric Company Low pressure steam turbine including pivotable nozzle
KR101831837B1 (ko) * 2016-12-15 2018-02-23 한국에너지기술연구원 상시 부분분사운전 효율 향상을 위한 부분분사운전 터빈장치 및 이를 이용한 터빈장치 작동방법
DE102017005641A1 (de) * 2017-06-17 2018-12-20 EXCELLENCE Gesellschaft zur Obhutsverwaltung erlesener Liegenschaften und Vermögensanlagen mbH Verfahren für dezentrale mit Biomasse betriebene Blockheizkraftwerke im kleineren Leistungsbereich
CN111156052B (zh) * 2020-01-03 2021-07-09 清华大学 旋转式可变喷嘴部分进气径流式涡轮
CN111005771B (zh) * 2020-01-03 2021-05-14 清华大学 旋转式可变喷嘴部分进气轴流式涡轮
CN111535876B (zh) * 2020-04-07 2022-05-10 东方电气集团东方汽轮机有限公司 给水泵汽轮机调节阀与喷嘴组一体式结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE630147C (de) * 1936-05-20 Siemens Schuckertwerke Akt Ges Turbine mit einer durch Zu- und Abschalten von Duesen oder Duesengruppen veraenderbaren Beaufschlagung
US707727A (en) * 1901-05-10 1902-08-26 Richard Schulz Steam-turbine.
US746388A (en) * 1903-05-23 1903-12-08 Frederick A Scheffler Steam-turbine.
US884719A (en) * 1908-01-22 1908-04-14 Richard Cramp Turbine.
US958430A (en) * 1908-12-12 1910-05-17 Charles Algernon Parsons Turbine.
US3209537A (en) * 1960-05-02 1965-10-05 Bendix Corp Motive fluid control for a re-expansion gas turbine engine
CH428775A (de) * 1965-09-24 1967-01-31 Escher Wyss Ag Dampf- oder Gasturbine
GB2076065B (en) * 1980-05-20 1983-11-23 Forster Terence Owen Turbine
EP0419871A1 (de) * 1989-09-29 1991-04-03 React Energy Ltd. Turbine

Also Published As

Publication number Publication date
US5269648A (en) 1993-12-14
DE59202840D1 (de) 1995-08-17
EP0508067A1 (de) 1992-10-14

Similar Documents

Publication Publication Date Title
EP0508067B1 (de) Vorrichtung zum Regulieren des durchströmten Querschnitts einer Turbomaschine
EP0906494B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP0568909B1 (de) Dampfturbine mit einem Drehschieber
DE69933601T2 (de) Gasturbine
EP2123860B1 (de) Kombinierter Wirbelgleichrichter
DE2913548C2 (de) Wellenkühlung für ein Gasturbinentriebwerk
DE3226052A1 (de) Deckbandaufbau fuer ein gasturbinentriebwerk
EP1611315B1 (de) Turbomaschine
EP1111189B1 (de) Kühlluftführung für den Turbinenrotor eines Gasturbinen-Triebwerkes
DE2654525C1 (de) Stroemungsmaschine mit einer Regeleinrichtung zur Konstanthaltung des Radialspielraums zwischen den Rotorschaufelspitzen und der Statorkonstruktion
DE3206209A1 (de) "luftsteuervorrichtung fuer ein gasturbinentriebwerk
DE2836864A1 (de) Reibungsturbine
DE2262883A1 (de) Zentrifugalpumpe mit variablem diffusor
EP0447886A1 (de) Axialdurchströmte Gasturbine
EP1000224A1 (de) Kühlluftverteilung in einer turbinenstufe einer gasturbine
CH647844A5 (de) Stroemungsmaschine mit einem im wesentlichen scheibenfoermigen laufrad.
EP0992656B1 (de) Strömungsmaschine zum Verdichten oder Entspannen eines komprimierbaren Mediums
EP0118769A2 (de) Mehrstufige Deckbandturbine
DE2503493A1 (de) Thermische turbomaschine, insbesondere niederdruck-dampfturbine
DE3424141A1 (de) Luftspeicher-gasturbine
DE3242713C2 (de)
EP0568905B1 (de) Dampfturbine mit einem Drehschieber zur Steuerung des Dampfdurchsatzes
WO2006072528A1 (de) Gasturbine mit einem vordrallerzeuger sowie ein verfahren zum betreiben einer gasturbine
DE2435153A1 (de) Turbomaschine, insbesondere dampfturbine mit hoher dampfeintrittstemperatur
EP0651162B1 (de) Verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI

17P Request for examination filed

Effective date: 19930326

17Q First examination report despatched

Effective date: 19940216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REF Corresponds to:

Ref document number: 59202840

Country of ref document: DE

Date of ref document: 19950817

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970305

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050220