EP0506869B1 - Process and device for disposing of substances containing halogenated hydrocarbon compounds - Google Patents

Process and device for disposing of substances containing halogenated hydrocarbon compounds Download PDF

Info

Publication number
EP0506869B1
EP0506869B1 EP91902703A EP91902703A EP0506869B1 EP 0506869 B1 EP0506869 B1 EP 0506869B1 EP 91902703 A EP91902703 A EP 91902703A EP 91902703 A EP91902703 A EP 91902703A EP 0506869 B1 EP0506869 B1 EP 0506869B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
process according
flame
exhaust gas
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91902703A
Other languages
German (de)
French (fr)
Other versions
EP0506869A1 (en
Inventor
Hermann Kissler
Burkhard Klopries
Manfred Paulus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestolit GmbH
Original Assignee
Huels AG
Chemische Werke Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huels AG, Chemische Werke Huels AG filed Critical Huels AG
Publication of EP0506869A1 publication Critical patent/EP0506869A1/en
Application granted granted Critical
Publication of EP0506869B1 publication Critical patent/EP0506869B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/10Apparatus specially adapted for treating harmful chemical agents; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • F23G2209/142Halogen gases, e.g. silane

Definitions

  • the invention relates to a method and an apparatus for the disposal of substances which contain halogenated hydrocarbon compounds or mixtures thereof.
  • hydrocarbons can be decomposed by high-temperature pyrolysis in order to produce a specific fission product from a selected feed, for example from gasoline , for example acetylene.
  • a selected feed for example from gasoline , for example acetylene.
  • hydrogen is burned in a combustion chamber with a slight stoichiometric deficit of oxygen.
  • the hydrocarbon to be split is mixed with the exhaust gas stream and split in a reaction chamber which is adjacent to the combustion chamber and is spatially separated from it. Which fission product is formed depends on the temperature of the exhaust gas flow in the reaction chamber, which is reduced and specifically adjusted by introducing water vapor into the combustion chamber.
  • the dwell time in the reaction chamber is kept very short at around 2 ms so that smaller fission products such as carbon, hydrogen, carbon monoxide and carbon dioxide are not produced to any appreciable extent, and therefore the fission process at the exit of the reaction chamber is ended by quenching with water (quenching).
  • the composition of the substances to be disposed of, containing halogenated hydrocarbon compounds is generally not known, and therefore it cannot be the objective of disposal from the to form defined organic substances to be disposed of.
  • a method with the features specified in the preamble of claim 1 is known from DE-A1-35 17 864.
  • Chlorinated hydrocarbons are pyrolytically decomposed in an elongated reaction chamber in a reducing atmosphere.
  • the required decomposition temperature, specified there at at least 825 ° C. is generated by heating the reaction chamber from the outside or by burning a fuel gas, in particular methane, in the reaction chamber, with oxygen or air being added in excess so that incomplete combustion takes place.
  • a fuel gas in particular methane
  • a disadvantage of the known method is also a long residence time of the substances in the reaction chamber; it is between 1 and 10 s before being drawn off through a valve into a washing and separating station in which the water-soluble reaction products, in particular hydrogen chloride, are washed out and the undissolved, gaseous reaction products are derived. In the meantime, with decreasing exhaust gas temperatures, reforming reactions can occur, in which the formation of dioxins, furans and phosgene is possible.
  • the known method therefore offers no guarantee that no dioxins or furans will form when the halogenated hydrocarbons are decomposed.
  • the invention is based on the object of specifying a method and a device by means of which substances which contain halogenated, in particular chlorinated and / or fluorinated, hydrocarbon compounds or mixtures thereof, the individual constituents of which are not known and can change, can be disposed of in such a way that no dangerous products, especially no dioxins and no furans are produced.
  • the substances to be disposed of are pyrolytically decomposed in a reactive atmosphere.
  • the decomposition takes place at a temperature which is so high that no dioxins and furans and other highly toxic substances can form, but are even decomposed again if they should already be contained in the substance to be disposed of. It is therefore advantageous to keep the decomposition temperature as high as possible, but at least higher than 850 ° C, preferably higher than 1100 ° C.
  • the fuel must therefore be selected so that such a high exhaust gas temperature is definitely reached.
  • the mass flows of fuel, oxygen and substances to be disposed of are matched to one another in such a way that free hydrogen is present in the exhaust gas, but no free oxygen is present.
  • Free oxygen is one of the conditions for the formation of dioxins, furans and phosgene.
  • the water vapor reacting with the carbon comes from the combustion of the fuel and, if necessary, is additionally introduced into the flame and / or before the quenching zone into the hot exhaust gas stream in such a quantity that the pyrolytic decomposition takes place in any case without soot, i.e. the carbon required for the formation of dioxins, furans and phosgene is immediately consumed by the formation of CO and CO2.
  • Halogen released by pyrolysis also reacts with the hydrogen to form hydrogen halide.
  • the residence time of the substances to be disposed of in the hot zone formed by the flame and the hot exhaust gas stream must of course be long enough to enable the substances to decompose completely.
  • the residence time is expediently at least 10 ms, preferably approximately 30 ms, and is thus an order of magnitude longer than that known high-temperature pyrolysis processes.
  • the substances to be disposed of are preferably introduced into the flame at the beginning of the flame or even introduced into the fuel before the fuel is ignited and intimately mixed with it.
  • the fuel is preferably burned with pure oxygen, and in order to keep the costs of the process low, the mass flows of oxygen, the fuel and, if necessary, the amount of additionally introduced water vapor are coordinated so that the for the complete decomposition of a given mass flow of the substance to be disposed of into low-molecular components, the heat of combustion released is approximated to a minimum.
  • High flame temperatures such as can be achieved by using hydrogen and oxygen as fuel gases, enable short reaction times.
  • the residence time is preferably not longer than 100 ms, which is favorable because on the one hand the time for reforming reactions is short and on the other hand high throughputs are made possible.
  • the decomposition can be promoted by carrying it out in a combustion chamber under increased pressure.
  • the pressure is expediently between 2 bar and 10 bar, preferably approximately 5 bar.
  • Such a pressure in the exhaust gas stream is favorable if one wants to continue to use the exhaust gas in a useful manner. That the exhaust gas is beneficial at all Can be used is another advantage of the method according to the invention, because the exhaust gas consists essentially of hydrogen, carbon monoxide and carbon dioxide. Because of the content of carbon monoxide and hydrogen, the exhaust gas can be used, for example, to generate energy in a gas turbine, for the catalytic production of methanol or as a feedstock for Fischer-Tropsch processes for hydrocarbon synthesis.
  • hydrochloric acid and / or hydrofluoric acid which is obtained during the pyrolytic decomposition are separated off beforehand. This is done by washing out and, if necessary, subsequent rectification.
  • water is sprayed into the hot exhaust gas stream at a point where the temperature of the exhaust gas stream is still at least 800 ° C.
  • the water is sprayed in such a quantity and distribution that the exhaust gas stream is quenched (quenched) as quickly as possible to a temperature below 350 ° C., preferably below 280 ° C. This ensures that the critical temperature range in which dioxins, furans and phosgene could be formed is passed through as quickly as possible.
  • the time in which the exhaust gas stream is quenched to below 350 ° C. is preferably of the order of magnitude not more than 1 to 2 ms.
  • the exhaust gas stream enriched with the quench water is either subjected to rectification or cooled further, so that the water vapor condenses and the water-soluble constituents, especially, for example, hydrochloric acid and hydrofluoric acid, if present, go into solution.
  • a concentrated or a dilute acid is formed, which can be used for chemical processes without technical problems.
  • the process according to the invention is suitable for the disposal of all those halogenated hydrocarbon-containing substances which are liquid or gaseous or which can be converted into the liquid or gaseous phase.
  • the method is particularly suitable for the disposal of chlorinated and fluorinated solvents, fungicides, herbicides, bactericides and coolants (PCBs), but also for off-gas combustion in incineration plants that burn plastics, in particular for the decomposition of carbonization gases from copper cable recycling plants, in which there is a risk of formation of dioxins and furans is particularly high, especially since copper catalytically favors their formation, and also for the disposal of dioxin-containing substances, possibly after their pretreatment by extraction or other processes.
  • PCBs chlorinated and fluorinated solvents, fungicides, herbicides, bactericides and coolants
  • the combustion chamber is at the same time the reaction chamber in which the substances to be disposed of are decomposed.
  • the combustion chamber contains, in succession, a flame zone, a zone through which the hot flue gases of the flame flow (here collectively referred to as the "hot zone") and a quenching zone.
  • This makes it possible to use the entire hot zone, including the flame zone, to decompose the substances to be disposed of, thereby extending the residence time and setting stable reaction conditions in the entire combustion chamber until the start of the quenching zone.
  • the method known from DE-A1-35 17 864 Despite long dwell times, stable reaction conditions can hardly be established simply because the soot formed has to be burned off periodically.
  • the quench zone closes off the hot zone and is connected by a flow connection to a condenser which has an outlet opening for the condensed water, in which e.g. the hydrochloric acid and / or hydrofluoric acid is dissolved, and has a further outlet opening through which the uncondensed gases leave the condenser.
  • a condenser which has an outlet opening for the condensed water, in which e.g. the hydrochloric acid and / or hydrofluoric acid is dissolved, and has a further outlet opening through which the uncondensed gases leave the condenser.
  • the gas burner with which the gaseous or gasified fuel is burnt is expediently located at one end of an elongated combustion chamber.
  • the feed line for the substance to be disposed of preferably opens into the flame zone near the gas burner or even into the feed line for one of the combustion gases, even before they reach the gas burner.
  • one or more nozzles for spraying the water or for introducing the water vapor into the combustion chamber are preferably also provided near the gas burner.
  • one or more further nozzles are preferably provided near the gas burner for introducing a reaction-promoting gas into the combustion chamber.
  • a reaction-promoting gas for example, additional hydrogen as a reactant for chlorine or fluorine or additional oxygen as a reactant be initiated as needed for the substance to be disposed of.
  • oxygen is not supplied in such a large amount that the reducing atmosphere becomes an oxidizing atmosphere.
  • Free hydrogen must be present in the exhaust gas stream.
  • the aim is to keep the hydrogen content close to its lower limit in order to achieve a favorable energy balance.
  • the hydrogen content in the exhaust gas is preferably measured (suitable sensors are known to the person skilled in the art, for example heat conduction sensors or lambda probes) and the oxygen supply is regulated accordingly in order to minimize the hydrogen content.
  • the nozzles for introducing the water vapor, the reaction-promoting gas and also the substance to be disposed of are preferably arranged in a ring around the nozzle of the gas burner in order to distribute the supplied substances as evenly as possible in the combustion chamber can.
  • the combustion chamber is preferably formed from a double jacket tube, the annular space located in the double jacket having at least one inlet and at least one outlet for a coolant, so that the combustion chamber wall can be cooled if necessary to protect against overheating.
  • a coolant a coolant that is always sought and achieved. It is best to place the inlet of the annulus in the vicinity of the gas burner, the outlet, however, at the end of the annulus remote from the gas burner, so that the coolant relates to the annulus to the direction of flow in the combustion chamber, flows in direct current. This has the advantage that a fairly even temperature distribution is achieved over the length of the combustion chamber.
  • the cooling effect would be greater and at the same time there would be a greater drop in temperature in the hot zone of the combustion chamber.
  • a uniform temperature distribution is much cheaper and more important than a higher cooling efficiency because it is much easier to ensure that the critical temperature is formed in the entire hot zone, below which dioxins and furans are formed can not fall below.
  • the best coolant for the combustion chamber wall is the water that is needed to quench the exhaust gas flow anyway.
  • the outlet of the annular space is formed by nozzles which penetrate the inner jacket of the double jacket tube and expediently form a ring, so that the water can be sprayed into the hot exhaust gas stream from all directions.
  • the cooling water is fed in with excess pressure and is preferably heated to boiling temperature on its way to the nozzles opening into the combustion chamber.
  • the water is then injected into the exhaust gas stream with a sudden expansion.
  • the cooling water is atomized by the partial evaporation.
  • the resulting fine droplets result in a very quick and effective quenching of the exhaust gas flow to temperatures below of 350 ° C. Below this temperature, dioxins and furans are no longer formed.
  • the exhaust gas stream is preferably quenched to a temperature of less than 280 ° C.
  • a capacitor follows the quench zone.
  • the quenched and water-mixed exhaust gas stream is mixed again in this constriction and then expands into the chamber of the condenser, in which the aqueous components are condensed out and in this way the mass flow entering the condenser into a liquid, aqueous and a gaseous one Phase is divided.
  • the liquid phase leaving the condenser contains, for example, hydrochloric acid and / or hydrofluoric acid and can be worked up using known methods.
  • the gaseous phase leaving the condenser consists essentially of hydrogen, carbon monoxide and carbon dioxide and can be used as an energy source or as a feedstock for chemical processes.
  • the substance to be disposed of can be used to cool the condenser by arranging a supply line for the substance to be disposed of in a thermally conductive connection with the condenser.
  • This has the advantage that the substance to be disposed of is preheated in a desired manner before entering the combustion chamber, which leads to better use of energy.
  • a further heat exchanger inside or on the outside of the condenser can also be used to preheat the water, which may be introduced into the combustion chamber near the burner nozzle. The preheating of this water also helps to make better use of energy.
  • the combustion chamber should be heated to the highest possible temperature, it must be made of a correspondingly heat-resistant material, at least the inner tube for the double-walled tube. In view of the fact that e.g. Hydrochloric acid and / or hydrofluoric acid arise, the material must also withstand their attack.
  • the combustion chamber therefore preferably consists of a nickel-based alloy with at least 20% by weight of molybdenum, in particular nickel with 30% by weight of molybdenum.
  • the device consists of a combustion chamber 1, a gas burner 2 and a condenser 3.
  • the combustion chamber is essentially formed from a double jacket tube 4, to which the gas burner 2 is flanged at one end and the condenser 3 at the opposite end.
  • the mixing chamber 9 is connected to the combustion chamber 1 via a nozzle 10 aligned with the longitudinal axis of the combustion chamber 1. From the nozzle 10 to the start of the double jacket tube, the interior of the burner widens conically in the manner of a diffuser.
  • a supply line 12 provided with a check valve for liquid or gaseous substances to be disposed leads from the side into the housing of the gas burner 2 and opens into the nozzle 10 with a fine nozzle 13, that is to say at a point at which the speed of the fuel Oxygen mixture is greatest and thus the introduction of the substance to be disposed of is easiest.
  • a ring of nozzles 14 is provided, which can be fed on the one hand by a feed line 15 for water and on the other hand by a feed line 16 for a reaction-promoting gas.
  • a line 17 for cooling water opens into the annular gap 18 of the double jacket.
  • the annular gap 18 is connected to the interior of the reaction chamber 1 via a ring of nozzles 19.
  • the combustion chamber narrows conically and opens into a nozzle 20, which in turn the condenser 3 opens.
  • the jacket of the condenser carries on its outside a helically arranged tube 21 serving for heat exchange, the inlet 22 e.g. fed with the substance to be disposed of and its outlet 23 is connected to the supply line 12 opening into the gas burner 2.
  • the condenser 3 has two outlets, an outlet 27 for gaseous medium and an outlet 28 for liquid medium.
  • a sensor 32 for the hydrogen content is provided at the outlet 27, a sensor 32 for the hydrogen content is provided.
  • the sensor 32 is connected to a controller 33 which controls a control valve 34 which is in the feed line 16 for a reaction-promoting gas, in particular oxygen.
  • the controller 33 can regulate the oxygen supply in such a way that the hydrogen content assumes a minimum.
  • the device works as follows: A fuel, in particular hydrogen, is introduced through the supply line 5 and oxygen is introduced via the supply line 6 Mix the mixing chamber 9 and flow into the combustion chamber 1 through the nozzle 10. The fuel / oxygen mixture is ignited at the outlet of the nozzle 10. Through the nozzle 13, the substance to be disposed of is injected with pressure into the fuel / oxygen mixture and finely distributed; it is decomposed in hot zone 29, 30.
  • the hot zone comprises a flame zone 29, in which the flame burns, and a zone 30 through which the hot exhaust gases of the flame flow, which in this example is approximately twice as long as the flame zone 29.
  • the mass flows of fuel and oxygen, as well as the Disposing substances are coordinated so that the decomposition takes place in any case under reducing conditions, namely under excess of hydrogen.
  • hydrogen can additionally be introduced through line 15 and prewarmed water through line 16 as a reaction partner for halogens and carbon, which are formed in the course of the decomposition.
  • the fuel, in particular hydrogen, and oxygen not in a stoichiometric ratio, but from the outset with an oxygen deficit through the supply lines 5 and 6, and by adjusting the ratio to the substance to be disposed of by additionally introducing oxygen or hydrogen optimize the supply line 15 with regard to the composition of the exhaust gas and the energy yield.
  • the length of the combustion chamber 1 is dimensioned such that the decomposition is completed until the quench zone 31, which is in the region of the nozzles 19, is reached.
  • the hot exhaust gases are quenched with water, which is introduced under pressure into the annular gap 18 through the supply line 17, and approximately therein heated to its boiling temperature and expanded suddenly when it was injected into the combustion chamber 1, partially evaporated in the process and very effectively cooled the exhaust gas stream to a temperature below 350 ° C.
  • the cooled exhaust gas stream mixed with water undergoes another thorough mixing in the outlet nozzle 20 and then expands into the condenser 3, in which the water vapor is condensed.
  • the device is expediently operated in such a way that a pressure of approximately 5 bar prevails in the reaction chamber.
  • pure hydrogen is used as fuel, which is burned with pure oxygen.
  • the substance to be decomposed is perchlorethylene, in the second example chlorodifluoromethane, in the third example dichloropropane 1,2 and in the fourth example trichlorotrifluoroethane.
  • the attached table shows the mass flows, the thermal output of the gas burner, the temperature to which the exhaust gas stream is quenched, the conversion in the reaction chamber and the composition of the exhaust gas for all examples.
  • the cubic meter data for hydrogen and oxygen are based on normal pressure.
  • the amount of perchlorethylene which can be reacted is approximately 40% and the amount of dichloropropane 1, 2 and trichlorotrifluoroethane is approximately 200% above the amount of chlorodifluoromethane which is reacted in the same procedure, with the thermal power used can be. In all cases, the implementation is practically complete.
  • the chlorinated hydrocarbons still contained in the exhaust gas are far below 1 ppm, fluorinated hydrocarbons were just as undetectable as dioxins and furans.
  • the amount of hydrogen still present in the exhaust gas is preferably reduced, thereby improving the energy balance by measuring the hydrogen concentration in the exhaust gas stream, preferably behind the condenser, and regulating the oxygen supply in such a way that the hydrogen content tends to a predetermined minimum, which is not less than 1 mol -% is selected so that the reducing conditions in the reaction chamber are retained in any case.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Incineration Of Waste (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

To dispose of liquid and gaseous substances containing halogenated hydrocarbon compounds and/or mixtures thereof, said substances are introduced in front of or into the flame of a gaseous or gasified fuel which forms water vapour on burning. The fuel is chosen and the flow rate of fuel, oxygen and the substances to be disposed of are adapted to each other so that free hydrogen is present in the waste gas and a temperature of at least 850 DEG C is reached. Water is sprayed into the hot stream of waste gas before the temperature of the waste gas falls below 800 DEG C. The sprayed water chills the waste gas stream to a temperature below 350 DEG C. The water-soluble, halogenated reaction products are then removed, together with the water vapour, by condensation.

Description

Technisches GebietTechnical field

Die Erfindung befaßt sich mit einem Verfahren und einer Vorrichtung zum Entsorgen von Substanzen, die halogenierte Kohlenwasserstoffverbindungen oder Gemische davon enthalten.The invention relates to a method and an apparatus for the disposal of substances which contain halogenated hydrocarbon compounds or mixtures thereof.

Stand der TechnikState of the art

Das Entsorgen dieser Substanzen ist ein besonderes Problem. Eine Verbrennung der Substanzen, z.B. in einer Müllverbrennungsanlage, löst das Problem nicht, da bei der Verbrennung giftige Substanzen, z.B. Dioxine, Furane und Phosgen entstehen können. Das gilt auch für das in der DE-35 44 977 C2 offenbarte Verfahren zur Verbrennung organischer Substanzen; wenn man nach diesem bekannten Verfahren chlorierte und fluorierte Kohlenwasserstoffverbindungen verbrennt, können durchaus giftige Reaktionsprodukte entstehen, sie liegen dort jedoch unterhalb der Nachweisgrenze, weil es sich um ein Verfahren zu Analysezwecken handelt, in welchem ohnehin nur geringe Substanzmengen umgesetzt werden und in welchem stets mit einem großen Überschuß an Wasserstoff und Sauerstoff gearbeitet wird.Disposing of these substances is a particular problem. Burning the substances, for example in a waste incineration plant, does not solve the problem, since toxic substances, for example dioxins, furans and phosgene, can arise during the combustion. This also applies to the process for the combustion of organic substances disclosed in DE-35 44 977 C2; if one burns chlorinated and fluorinated hydrocarbon compounds according to this known method Quite toxic reaction products are formed, but they are below the detection limit because it is a method for analysis purposes, in which only small amounts of substance are converted anyway and in which a large excess of hydrogen and oxygen is always used.

Aus der DE-Z Erdöl und Kohle, Erdgas, Petrochemie, 15, Nr. 12, 1962, 977 bis 982, ist es bekannt, dass man Kohlenwasserstoffe durch Hochtemperaturpyrolyse zersetzen kann, um aus einem ausgewählten Einsatzstoff, z.B. aus Benzin, ein bestimmtes Spaltprodukt, z.B. Acetylen, zu gewinnen. Dazu wird in einer Brennkammer Wasserstoff mit einem geringen stöchiometrischen Unterschuss an Sauerstoff verbrannt. Am Ausgang der Brennkammer wird dem Abgasstrom der zu spaltende Kohlenwasserstoff zugemischt und in einer an die Brennkammer anschließenden, von dieser räumlich getrennten Reaktionskammer gespalten. Welches Spaltprodukt entsteht, hängt von der Temperatur des Abgasstroms in der Reaktionskammer ab, welche durch Einleiten von Wasserdampf in die Brennkammer erniedrigt und gezielt eingestellt wird. Die Verweilzeit in der Reaktionskammer wird mit etwa 2 ms sehr kurz gehalten, damit nicht kleinere Spaltprodukte wie Kohlenstoff, Wasserstoff, Kohlenmonoxid und Kohlendioxid in nennenswertem Umfang entstehen, und deshalb wird der Spaltvorgang am Ausgang der Reaktionskammer durch Abschrecken mit Wasser (Quenchen) beendet.From DE-Z petroleum and coal, natural gas, petrochemicals, 15, No. 12, 1962, 977 to 982, it is known that hydrocarbons can be decomposed by high-temperature pyrolysis in order to produce a specific fission product from a selected feed, for example from gasoline , for example acetylene. For this purpose, hydrogen is burned in a combustion chamber with a slight stoichiometric deficit of oxygen. At the outlet of the combustion chamber, the hydrocarbon to be split is mixed with the exhaust gas stream and split in a reaction chamber which is adjacent to the combustion chamber and is spatially separated from it. Which fission product is formed depends on the temperature of the exhaust gas flow in the reaction chamber, which is reduced and specifically adjusted by introducing water vapor into the combustion chamber. The dwell time in the reaction chamber is kept very short at around 2 ms so that smaller fission products such as carbon, hydrogen, carbon monoxide and carbon dioxide are not produced to any appreciable extent, and therefore the fission process at the exit of the reaction chamber is ended by quenching with water (quenching).

Im Gegensatz zu dem bekannten Hochtemperaturpyrolyseverfahren, welches mit bekannten Einsatzstoffen arbeitet und der Erzeugung eines definierten Spaltproduktes dient, ist die Zusammensetzung der zu entsorgenden, halogenierte Kohlenwasserstoffverbindungen enthaltende Substanzen im allgemeinen nicht bekannt, und es kann deshalb auch nicht die Zielsetzung der Entsorgung sein, aus den zu entsorgenden Substanzen definierte andere organische Substanzen zu bilden.In contrast to the known high-temperature pyrolysis process, which works with known feedstocks and is used to generate a defined cleavage product, the composition of the substances to be disposed of, containing halogenated hydrocarbon compounds, is generally not known, and therefore it cannot be the objective of disposal from the to form defined organic substances to be disposed of.

Ein Verfahren mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen ist aus der DE-A1-35 17 864 bekannt. Chlorkohlenwasserstoffe werden in einer langgestreckten Reaktionskammer in reduzierender Atmosphäre pyrolytisch zersetzt. Die erforderliche Zersetzungstemperatur, dort mit mindestens 825°C angegeben, wird durch Beheizen der Reaktionskammer von aussen oder durch Verbrennen eines Brenngases, insbesondere von Methan, in der Reaktionskammer erzeugt, wobei Sauerstoff oder Luft im Unterschuß zugegeben werden, damit eine unvollständige Verbrennung erfolgt. Nachteilig dabei ist, dass dabei freier Kohlenstoff in Gestalt von Ruß gebildet wird, der periodisch in oxidierender Atmosphäre abgebrannt wird. Das Vorhandensein von Kohlenstoff ist aber einer der Risikofaktoren für die Bildung von Dioxinen, Furanen und Phosgen, deren Bildung bei Anwendung des bekannten Verfahrens nicht ausgeschlossen werden kann. Nachteilig bei dem bekannten Verfahren ist ferner eine lange Verweilzeit der Substanzen in der Reaktionskammer; sie beträgt zwischen 1 und 10 s, bevor sie durch ein Ventil hindurch in eine Wasch- und Trennstation abgezogen werden, in welcher die wasserlöslichen Reaktionsprodukte, insbesondere Chlorwasserstoff, ausgewaschen und die nicht gelösten, gasförmigen Reaktionsprodukte abgeleitet werden. Bis dahin kann es bei sinkender Abgastemperatur zu Reformierungsreaktionen kommen, bei denen die Bildung von Dioxinen, Furanen und Phosgen möglich ist. Das haben auch die Verfasser der DE-A1-35 17 864 gesehen und deshalb vorgesehen, die nicht dehalogenierten Kohlenwasserstoffe durch eine Rückführleitung zur erneuten pyrolytischen Umsetzung in die Reaktionskammer zurückzuführen, wobei offen bleibt, wie die nicht dehalogenierten Kohlenwasserstoffe von den übrigen Zersetzungsprodukten getrennt werden sollen. Eine solche Trennung dürfte bei einer praxisgerechten Anwendung des Verfahrens kaum möglich sein. Hinzu kommt, dass es bislang keine Analysemöglichkeiten gibt, die bei der nötigen Empfindlichkeit des Nachweises rasch genug wären, um Dioxine im Abgasstrom nachzuweisen.A method with the features specified in the preamble of claim 1 is known from DE-A1-35 17 864. Chlorinated hydrocarbons are pyrolytically decomposed in an elongated reaction chamber in a reducing atmosphere. The required decomposition temperature, specified there at at least 825 ° C., is generated by heating the reaction chamber from the outside or by burning a fuel gas, in particular methane, in the reaction chamber, with oxygen or air being added in excess so that incomplete combustion takes place. The disadvantage here is that free carbon is formed in the form of soot, which is burned off periodically in an oxidizing atmosphere. However, the presence of carbon is one of the risk factors for the formation of dioxins, furans and phosgene, the formation of which cannot be ruled out using the known method. A disadvantage of the known method is also a long residence time of the substances in the reaction chamber; it is between 1 and 10 s before being drawn off through a valve into a washing and separating station in which the water-soluble reaction products, in particular hydrogen chloride, are washed out and the undissolved, gaseous reaction products are derived. In the meantime, with decreasing exhaust gas temperatures, reforming reactions can occur, in which the formation of dioxins, furans and phosgene is possible. The authors of DE-A1-35 17 864 have also seen this and therefore intended to return the non-dehalogenated hydrocarbons to the reaction chamber through a return line for renewed pyrolytic conversion, whereby it remains open how the non-dehalogenated hydrocarbons are to be separated from the other decomposition products . Such a separation should hardly be possible if the method is used in practice. In addition, there are so far no analysis options that would be fast enough with the necessary sensitivity of the detection to detect dioxins in the exhaust gas stream.

Das bekannte Verfahren bietet deshalb keine Gewähr dafür, dass beim Zersetzen der halogenierten Kohlenwasserstoffe keine Dioxine oder Furane entstehen.The known method therefore offers no guarantee that no dioxins or furans will form when the halogenated hydrocarbons are decomposed.

Aus der DE-A1-35 17 864 ist es darüberhinaus bekannt, Wasser in die Flamme einzuleiten, um die Flammtemperatur zu senken.From DE-A1-35 17 864 it is also known to introduce water into the flame in order to lower the flame temperature.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, durch welche Substanzen, die halogenierte, insbesondere chlorierte und/oder fluorierte Kohlenwasserstoffverbindungen oder Gemische davon enthalten, deren einzelne Bestandteile aber nicht bekannt sind und wechseln können, so entsorgt werden können, dass keine gefährlichen Produkte, insbesondere keine Dioxine und keine Furane entstehen.The invention is based on the object of specifying a method and a device by means of which substances which contain halogenated, in particular chlorinated and / or fluorinated, hydrocarbon compounds or mixtures thereof, the individual constituents of which are not known and can change, can be disposed of in such a way that no dangerous products, especially no dioxins and no furans are produced.

Diese Aufgabe wird gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen. Eine zum Durchführen des Verfahrens besonders geeignete Vorrichtung ist Gegenstand des Anspruchs 16. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by a method with the features specified in claim 1. A device which is particularly suitable for carrying out the method is the subject of claim 16. Advantageous developments of the invention are the subject of the subclaims.

Bei dem erfindungsgemäßen Verfahren werden die zu entsorgenden Substanzen in einer reaktiven Atmosphäre pyrolytisch zersetzt. Die Zersetzung findet bei einer Temperatur statt, welche so hoch ist, dass sich keine Dioxine und Furane und andere hochgiftige Substanzen bilden können, sondern sogar wieder zersetzt werden, wenn sie in der zu entsorgenden Substanz bereits enthalten sein sollten. Es ist deshalb günstig, die Zersetzungstemperatur so hoch wie möglich zu halten, mindestens jedoch höher als 850 °C, vorzugsweise höher als 1100 °C. Der Brennstoff ist deshalb so auszuwählen, dass eine solche hohe Abgastemperatur auf jeden Fall erreicht wird. Dabei ist zu berücksichtigen, dass es nicht ausreicht, einen Brennstoff zu verwenden, der mit einer 850 °C heißen Flamme verbrennt, denn durch die Spaltung der zu entsorgenden Substanzen, ggfs. auch durch das Zusetzen von Wasser bzw. Wasserdampf zur Flamme, wird Energie verbraucht und die Temperatur im Abgasstrom gesenkt. Als Brennstoff besonders geeignet ist reiner Wasserstoff, mit welchem sich hohe Flammtemperaturen (bis zu 2300 °C) und hohe räumliche Energiedichten in der Flamme und im Abgasstrom erreichen lassen. Auch Erdgas ist ein geeigneter Brennstoff, erlaubt jedoch nicht so hohe Abgastemperaturen wie Wasserstoff.In the method according to the invention, the substances to be disposed of are pyrolytically decomposed in a reactive atmosphere. The decomposition takes place at a temperature which is so high that no dioxins and furans and other highly toxic substances can form, but are even decomposed again if they should already be contained in the substance to be disposed of. It is therefore advantageous to keep the decomposition temperature as high as possible, but at least higher than 850 ° C, preferably higher than 1100 ° C. The fuel must therefore be selected so that such a high exhaust gas temperature is definitely reached. It should be taken into account that it is not sufficient to use a fuel that burns with a flame at 850 ° C, because the splitting of the substances to be disposed of, possibly also by adding water or water vapor to the flame, results in energy consumed and the temperature in the exhaust gas stream lowered. Pure hydrogen is particularly suitable as a fuel, with which high flame temperatures (up to 2300 ° C) and high spatial energy densities in the flame and in the exhaust gas flow can be achieved. Natural gas is also a suitable fuel, but does not allow exhaust gas temperatures to be as high as hydrogen.

Damit sich im Abgasstrom bis zum Abkühlen keine unerwünschten Nebenprodukte bilden, werden die zugeführten Massenströme des Brennstoffs, des Sauerstoffs und der zu entsorgenden Substanzen so aufeinander abgestimmt, dass im Abgas freier Wasserstoff vorhanden ist, aber kein freier Sauerstoff vorhanden ist. Freier Sauerstoff ist eine der Bedingungen für die Bildung von Dioxinen, Furanen und Phosgen.So that no undesired by-products form in the exhaust gas stream until it cools down, the mass flows of fuel, oxygen and substances to be disposed of are matched to one another in such a way that free hydrogen is present in the exhaust gas, but no free oxygen is present. Free oxygen is one of the conditions for the formation of dioxins, furans and phosgene.

Eine andere Bedingung für deren Bildung ist das Vorhandensein von Kohlenstoff (Ruß). Die Anwesenheit von Ruß im Abgasstrom wird durch die hohe Abgastemperatur in Verbindung mit dem Vorhandensein von Wasserdampf verhindert: Durch pyrolytische Zersetzung freigesetzter Kohlenstoff reagiert mit Wasserdampf zu Kohlenmonoxid, Kohlendioxid und Wasserstoff. Es kommt auf diese Weise zu einem beträchtlichen Kohlenmonoxidgehalt im Abgas, der durchaus erwünscht ist, weil er die nutzbringende Weiterverwendung des Abgases begünstigt. Vorzugsweise wird das erfindungsgemäße Verfahren durch Steuerung oder Regelung der Massenströme des Brennstoffs, des Sauerstoffs, der zu entsorgenden Substanz und ggfs. des Wasserdampfs so optimiert, dass die Kohlenmonoxidausbeute ein Maximum annimmt. Der mit dem Kohlenstoff reagierende Wasserdampf stammt aus der Verbrennung des Brennstoffs und wird nach Bedarf zusätzlich in solcher Menge in die Flamme und/oder noch vor der Abschreckzone in den heißen Abgasstrom eingeleitet, dass die pyrolytische Zersetzung auf jeden Fall rußfrei erfolgt, d.h. der für eine Bildung von Dioxinen, Furanen und Phosgen erforderliche Kohlenstoff durch Bildung von CO und CO₂ sofort verbraucht wird. Mit dem Wasserstoff reagiert ferner durch Pyrolyse freigesetztes Halogen unter Bildung von Halogenwasserstoff.Another condition for their formation is the presence of carbon (soot). The presence of soot in the exhaust gas flow is prevented by the high exhaust gas temperature in connection with the presence of water vapor: carbon released by pyrolytic decomposition reacts with water vapor to carbon monoxide, carbon dioxide and hydrogen. In this way, there is a considerable carbon monoxide content in the exhaust gas, which is quite desirable because it favors the useful reuse of the exhaust gas. The method according to the invention is preferably optimized by controlling or regulating the mass flows of the fuel, the oxygen, the substance to be disposed of and possibly the water vapor in such a way that the carbon monoxide yield assumes a maximum. The water vapor reacting with the carbon comes from the combustion of the fuel and, if necessary, is additionally introduced into the flame and / or before the quenching zone into the hot exhaust gas stream in such a quantity that the pyrolytic decomposition takes place in any case without soot, i.e. the carbon required for the formation of dioxins, furans and phosgene is immediately consumed by the formation of CO and CO₂. Halogen released by pyrolysis also reacts with the hydrogen to form hydrogen halide.

Die Verweilzeit der zu entsorgenden Substanzen in der aus der Flamme und dem heißen Abgasstrom gebildeten heißen Zone muss natürlich lang genug sein, um eine vollständige Zersetzung der Substanzen zu ermöglichen. Zweckmässigerweise beträgt die Verweilzeit wenigstens 10 ms, vorzugsweise ungefähr 30 ms und ist damit um eine Größenordnung länger als bei dem bekannten Hochtemperaturpyrolyseverfahren. Um eine längere Verweilzeit zu erreichen, werden die zu entsorgenden Substanzen vorzugsweise bereits am Beginn der Flamme in diese eingeleitet oder sogar bereits vor der Zündung des Brennstoffs in den Brennstoff eingeleitet und mit ihm innig vermischt.The residence time of the substances to be disposed of in the hot zone formed by the flame and the hot exhaust gas stream must of course be long enough to enable the substances to decompose completely. The residence time is expediently at least 10 ms, preferably approximately 30 ms, and is thus an order of magnitude longer than that known high-temperature pyrolysis processes. In order to achieve a longer dwell time, the substances to be disposed of are preferably introduced into the flame at the beginning of the flame or even introduced into the fuel before the fuel is ignited and intimately mixed with it.

Um eine möglichst hohe Verbrennungstemperatur zu erreichen, wird der Brennstoff vorzugsweise mit reinem Sauerstoff verbrannt, und um die Kosten des Verfahrens niedrig zu halten, werden die Massenströme des Sauerstoffs, des Brennstoffs und ggfs. die Menge des zusätzlich eingeleiteten Wasserdampfs so aufeinander abgestimmt, dass die zum vollständigen Zersetzen eines vorgegebenen Massenstroms der zu entsorgenden Substanz in niedermolekulare Bestandteile freigesetzte Verbrennungswärme einem Minimum angenähert wird. Hohe Flammtemperaturen, wie sie insbesondere durch den Einsatz von Wasserstoff und Sauerstoff als Brenngase erreicht werden, ermöglichen kurze Reaktionszeiten. Vorzugsweise ist die Verweilzeit nicht höher als 100 ms, was günstig ist, weil einerseits die Zeit für Reformierungsreaktionen kurz ist und andererseits hohe Durchsätze ermöglicht werden.In order to achieve the highest possible combustion temperature, the fuel is preferably burned with pure oxygen, and in order to keep the costs of the process low, the mass flows of oxygen, the fuel and, if necessary, the amount of additionally introduced water vapor are coordinated so that the for the complete decomposition of a given mass flow of the substance to be disposed of into low-molecular components, the heat of combustion released is approximated to a minimum. High flame temperatures, such as can be achieved by using hydrogen and oxygen as fuel gases, enable short reaction times. The residence time is preferably not longer than 100 ms, which is favorable because on the one hand the time for reforming reactions is short and on the other hand high throughputs are made possible.

Die Zersetzung kann dadurch gefördert werden, dass sie in einer Brennkammer unter erhöhtem Druck durchgeführt wird. Der Druck liegt zweckmässigerweise zwischen 2 bar und 10 bar, vorzugsweise bei ungefähr 5 bar. Ein solcher Druck im Abgasstrom ist günstig, wenn man das Abgas nutzbringend weiterverwenden will. Dass das Abgas überhaupt nutzbringend weiterverwendet werden kann, ist ein weiterer Vorteil des erfindungsgemäßen Verfahrens, denn das Abgas besteht im wesentlichen aus Wasserstoff, Kohlenmonoxid und Kohlendioxid. Wegen des Gehaltes an Kohlenmonoxid und Wasserstoff kann man das Abgas beispielsweise zur Energieerzeugung in einer Gasturbine, für die katalytische Herstellung von Methanol oder als Einsatzmaterial für Fischer-Tropsch-Verfahren zur Kohlenwasserstoffsynthese nutzen. Dafür ist jedoch Voraussetzung, dass die bei der pyrolytischen Zersetzung z.B. anfallende Salzsäure und/oder Flußsäure vorher abgetrennt werden. Das geschieht durch Auswaschen und ggfs. anschließende Rektifikation. Zu diesem Zweck wird Wasser in den heißen Abgasstrom eingesprüht, und zwar an einer Stelle, an welcher die Temperatur des Abgasstroms noch mindestens 800 °C beträgt. Ausserdem wird das Wasser in solcher Menge und Verteilung eingesprüht, dass der Abgasstrom auf eine unter 350 °C vorzugsweise unter 280 °C liegende Temperatur möglichst schnell abgeschreckt (gequencht) wird. Dadurch wird sichergestellt, dass der kritische Temperaturbereich, in welchem Dioxine, Furane und Phosgen gebildet werden könnten, möglichst rasch durchlaufen wird. Vorzugsweise beträgt die Zeit, in welcher der Abgasstrom auf unter 350 °C abgeschreckt wird, größenordnungsmässig nicht mehr als 1 bis 2 ms. Der mit dem Quenchwasser angereicherte Abgasstrom wird entweder einer Rektifikation unterzogen oder weiter abgekühlt, so dass der Wasserdampf kondensiert und die wasserlöslichen Bestandteile, vor allem z.B. Salzsäure und Flußsäure, soweit vorhanden, in Lösung gehen. Es entsteht eine konzentrierte oder eine verdünnte Säure, die ohne technische Probleme für chemische Prozesse weiterverwendet werden kann.The decomposition can be promoted by carrying it out in a combustion chamber under increased pressure. The pressure is expediently between 2 bar and 10 bar, preferably approximately 5 bar. Such a pressure in the exhaust gas stream is favorable if one wants to continue to use the exhaust gas in a useful manner. That the exhaust gas is beneficial at all Can be used is another advantage of the method according to the invention, because the exhaust gas consists essentially of hydrogen, carbon monoxide and carbon dioxide. Because of the content of carbon monoxide and hydrogen, the exhaust gas can be used, for example, to generate energy in a gas turbine, for the catalytic production of methanol or as a feedstock for Fischer-Tropsch processes for hydrocarbon synthesis. For this, however, it is a prerequisite that the hydrochloric acid and / or hydrofluoric acid which is obtained during the pyrolytic decomposition, for example, are separated off beforehand. This is done by washing out and, if necessary, subsequent rectification. For this purpose, water is sprayed into the hot exhaust gas stream at a point where the temperature of the exhaust gas stream is still at least 800 ° C. In addition, the water is sprayed in such a quantity and distribution that the exhaust gas stream is quenched (quenched) as quickly as possible to a temperature below 350 ° C., preferably below 280 ° C. This ensures that the critical temperature range in which dioxins, furans and phosgene could be formed is passed through as quickly as possible. The time in which the exhaust gas stream is quenched to below 350 ° C. is preferably of the order of magnitude not more than 1 to 2 ms. The exhaust gas stream enriched with the quench water is either subjected to rectification or cooled further, so that the water vapor condenses and the water-soluble constituents, especially, for example, hydrochloric acid and hydrofluoric acid, if present, go into solution. A concentrated or a dilute acid is formed, which can be used for chemical processes without technical problems.

Um das Abschrecken mit der nötigen Intensität durchführen zu können, wird das Wasser am besten durch Druckverdüsen unmittelbar in den heißen Abgasstrom hinein zerstäubt.In order to be able to carry out the quenching with the necessary intensity, the best way to do this is by spraying water atomized directly into the hot exhaust gas stream.

Das erfindungsgemäße Verfahren eignet sich zur Entsorgung all jener halogenierte Kohlenwasserstoffe enthaltenden Substanzen, die flüssig oder gasförmig sind oder sich in die flüssige oder gasförmige Phase überführen lassen. Insbesondere eignet sich das Verfahren zum Entsorgen von chlorierten und fluorierten Lösungsmitteln, von Fungiziden, Herbiziden, Bakteriziden und Kühlmitteln (PCBs), aber auch zur Abgasverbrennung bei Verbrennungsanlagen, die Kunststoffe verbrennen, insbesondere zur Zersetzung von Schwelgasen aus Kupferkabelverwertungsanlagen, in denen die Gefahr der Bildung von Dioxinen und Furanen besonders hoch ist, zumal Kupfer ihre Bildung katalytisch begünstigt, ferner zum Entsorgen von dioxinhaltigen Stoffen, ggfs. nach deren Vorbehandlung durch Extraktion oder andere Verfahren.The process according to the invention is suitable for the disposal of all those halogenated hydrocarbon-containing substances which are liquid or gaseous or which can be converted into the liquid or gaseous phase. The method is particularly suitable for the disposal of chlorinated and fluorinated solvents, fungicides, herbicides, bactericides and coolants (PCBs), but also for off-gas combustion in incineration plants that burn plastics, in particular for the decomposition of carbonization gases from copper cable recycling plants, in which there is a risk of formation of dioxins and furans is particularly high, especially since copper catalytically favors their formation, and also for the disposal of dioxin-containing substances, possibly after their pretreatment by extraction or other processes.

Bei der erfindungsgemäßen Vorrichtung ist die Brennkammer zugleich die Reaktionskammer, in welcher die zu entsorgenden Substanzen zersetzt werden. Die Brennkammer enthält hintereinander eine Flammzone, eine von den heißen Abgasen der Flamme durchströmte Zone (hier gemeinsam als "heiße Zone" bezeichnet) und eine Abschreckzone. Das macht es möglich, die gesamte heiße Zone, also auch die Flammzone, für das Zersetzen der zu entsorgenden Substanzen zu nutzen, dadurch die Verweilzeit auszudehnen und in der gesamten Brennkammer bis zum Beginn der Abschreckzone stabile Reaktionsbedingungen einzustellen. Bei dem aus der DE-A1-35 17 864 bekannten Verfahren können trotz langer Verweilzeiten stabile Reaktionsbedingungen schon deshalb schwerlich eingestellt werden, weil der gebildete Ruß periodisch abgebrannt werden muss.In the device according to the invention, the combustion chamber is at the same time the reaction chamber in which the substances to be disposed of are decomposed. The combustion chamber contains, in succession, a flame zone, a zone through which the hot flue gases of the flame flow (here collectively referred to as the "hot zone") and a quenching zone. This makes it possible to use the entire hot zone, including the flame zone, to decompose the substances to be disposed of, thereby extending the residence time and setting stable reaction conditions in the entire combustion chamber until the start of the quenching zone. In the method known from DE-A1-35 17 864 Despite long dwell times, stable reaction conditions can hardly be established simply because the soot formed has to be burned off periodically.

Die Abschreckzone schließt die heiße Zone ab und ist durch eine Strömungsverbindung mit einem Kondensator verbunden, der eine Austrittsöffnung für das kondensierte Wasser hat, in welchem z.B. die Salzsäure und/oder Flußsäure gelöst ist, und eine weitere Austrittsöffnung hat, durch welche die nicht kondensierten Gase den Kondensator verlassen.The quench zone closes off the hot zone and is connected by a flow connection to a condenser which has an outlet opening for the condensed water, in which e.g. the hydrochloric acid and / or hydrofluoric acid is dissolved, and has a further outlet opening through which the uncondensed gases leave the condenser.

Zweckmässigerweise befindet sich der Gasbrenner, mit welchem der gasförmige oder vergaste Brennstoff verbrannt wird, an einem Ende einer länglich ausgebildeten Brennkammer. Zur Erzielung einer relativ langen Verweildauer, welche aber kürzer als 100 ms sein sollte, mündet die Zuleitung für die zu entsorgende Substanz vorzugsweise nahe beim Gasbrenner in die Flammzone oder sogar bereits in die Zuleitung für eines der Brenngase, noch bevor diese in den Gasbrenner gelangen. Um erforderlichenfalls auch Wasser oder Wasserdampf in die Brennkammer einleiten zu können, sind vorzugsweise nahe beim Gasbrenner auch eine oder mehrere Düsen zum Einsprühen des Wassers bzw. zum Einleiten des Wasserdampfs in die Brennkammer vorgesehen.The gas burner with which the gaseous or gasified fuel is burnt is expediently located at one end of an elongated combustion chamber. In order to achieve a relatively long residence time, which should be shorter than 100 ms, the feed line for the substance to be disposed of preferably opens into the flame zone near the gas burner or even into the feed line for one of the combustion gases, even before they reach the gas burner. In order to also be able to introduce water or water vapor into the combustion chamber if necessary, one or more nozzles for spraying the water or for introducing the water vapor into the combustion chamber are preferably also provided near the gas burner.

Weiterhin sind nahe beim Gasbrenner vorzugsweise eine oder mehrere weitere Düsen zum Einleiten eines reaktionsfördernden Gases in die Brennkammer vorgesehen. Dadurch kann z.B. zusätzlicher Wasserstoff als Reaktionspartner für Chlor oder Fluor oder zusätzlicher Sauerstoff als Reaktionspartner für die zu entsorgende Substanz nach Bedarf eingeleitet werden. Sauerstoff wird natürlich nicht in so großer Menge zugeführt, dass aus der reduzierenden Atmosphäre eine oxidierende Atmosphäre wird. Im Abgasstrom muß freier Wasserstoff vorhanden sein. Angestrebt wird, den Wasserstoffgehalt nahe bei seinem unteren Grenzwert zu halten, um eine günstige Energiebilanz zu erzielen. Der Wasserstoffgehalt im Abgas wird vorzugsweise gemessen (dazu geeignete Meßfühler sind dem Fachmann bekannt, z.B. Wärmeleitungsmeßfühler oder Lambdasonden) und die Sauerstoffzufuhr entsprechend geregelt, um den Wasserstoffgehalt zu minimieren.Furthermore, one or more further nozzles are preferably provided near the gas burner for introducing a reaction-promoting gas into the combustion chamber. This means, for example, additional hydrogen as a reactant for chlorine or fluorine or additional oxygen as a reactant be initiated as needed for the substance to be disposed of. Of course, oxygen is not supplied in such a large amount that the reducing atmosphere becomes an oxidizing atmosphere. Free hydrogen must be present in the exhaust gas stream. The aim is to keep the hydrogen content close to its lower limit in order to achieve a favorable energy balance. The hydrogen content in the exhaust gas is preferably measured (suitable sensors are known to the person skilled in the art, for example heat conduction sensors or lambda probes) and the oxygen supply is regulated accordingly in order to minimize the hydrogen content.

Die Düsen für das Einleiten des Wasserdampfs, des reaktionsfördernden Gases und auch der zu entsorgenden Substanz (wenn diese nicht schon in die Brennstoffzuleitung eingeleitet wird) sind vorzugsweise kranzförmig um die Düse des Gasbrenners herum angeordnet, um die zugeführten Substanzen möglichst gleichmässig in der Brennkammer verteilen zu können.The nozzles for introducing the water vapor, the reaction-promoting gas and also the substance to be disposed of (if this is not already introduced into the fuel feed line) are preferably arranged in a ring around the nozzle of the gas burner in order to distribute the supplied substances as evenly as possible in the combustion chamber can.

Vorzugsweise ist die Brennkammer aus einem Doppelmantelrohr gebildet, wobei der im Doppelmantel liegende Ringraum wenigstens einen Einlaß und wenigstens einen Auslaß für ein Kühlmittel hat, damit die Brennkammerwand zum Schutz gegen eine Überhitzung erforderlichenfalls gekühlt werden kann. Das ändert aber nichts daran, dass grundsätzlich eine möglichst hohe Brennkammertemperatur angestrebt und erreicht wird. Am besten legt man den Einlaß des Ringraums in die Nachbarschaft des Gasbrenners, den Auslaß hingegen an das vom Gasbrenner entfernte Ende des Ringraums, so dass das Kühlmittel den Ringraum, bezogen auf die Strömungsrichtung in der Brennkammer, im Gleichstrom durchströmt. Das hat den Vorteil, dass man über die Länge der Brennkammer eine recht gleichmässige Temperaturverteilung erzielt. Würde man für die Kühlung das Gegenstromprinzip anwenden, wäre die Kühlwirkung größer und zugleich hätte man in der heißen Zone der Brennkammer einen größeren Temperaturabfall. Für die Zwecke der Erfindung ist jedoch eine gleichmässige Temperaturverteilung viel günstiger und wichtiger als ein höherer Wirkungsgrad bei der Kühlung, weil man bei einer gleichmässigen Temperaturverteilung viel einfacher sicherstellen kann, dass in der gesamten heißen Zone die kritische Temperatur, unterhalb der Dioxine und Furane gebildet werden können, nicht unterschritten wird.The combustion chamber is preferably formed from a double jacket tube, the annular space located in the double jacket having at least one inlet and at least one outlet for a coolant, so that the combustion chamber wall can be cooled if necessary to protect against overheating. However, this does not change the fact that the highest possible combustion chamber temperature is always sought and achieved. It is best to place the inlet of the annulus in the vicinity of the gas burner, the outlet, however, at the end of the annulus remote from the gas burner, so that the coolant relates to the annulus to the direction of flow in the combustion chamber, flows in direct current. This has the advantage that a fairly even temperature distribution is achieved over the length of the combustion chamber. If the countercurrent principle were used for cooling, the cooling effect would be greater and at the same time there would be a greater drop in temperature in the hot zone of the combustion chamber. For the purposes of the invention, however, a uniform temperature distribution is much cheaper and more important than a higher cooling efficiency because it is much easier to ensure that the critical temperature is formed in the entire hot zone, below which dioxins and furans are formed can not fall below.

Als Kühlmittel für die Brennkammerwand verwendet man am besten das Wasser, welches zum Abschrecken des Abgasstromes ohnehin benötigt wird. In diesem Fall wird der Auslaß des Ringraums durch Düsen gebildet, welche den inneren Mantel des Doppelmantelrohrs durchsetzen und zweckmässigerweise einen Kranz bilden, so dass das Wasser aus allen Richtungen in den heißen Abgasstrom eingesprüht werden kann. Das Kühlwasser wird mit Überdruck eingespeist und auf seinem Weg zu den in die Brennkammer mündenden Düsen vorzugsweise bis auf Siedetemperatur erwärmt. Das Einspritzen des Wassers in den Abgasstrom erfolgt dann unter einer schlagartigen Expansion. Durch die damit verbundene partielle Verdampfung wird das Kühlwasser fein verdüst. Die entstehenden feinen Tröpfchen bewirken eine sehr schnelle und wirksame Abschreckung des Abgasstromes auf Temperaturen unterhalb von 350 °C. Unterhalb dieser Temperatur werden Dioxine und Furane nicht mehr gebildet. Um eine Sicherheitsreserve zu haben, wird der Abgasstrom vorzugsweise auf eine Temperatur von weniger als 280°C abgeschreckt.The best coolant for the combustion chamber wall is the water that is needed to quench the exhaust gas flow anyway. In this case, the outlet of the annular space is formed by nozzles which penetrate the inner jacket of the double jacket tube and expediently form a ring, so that the water can be sprayed into the hot exhaust gas stream from all directions. The cooling water is fed in with excess pressure and is preferably heated to boiling temperature on its way to the nozzles opening into the combustion chamber. The water is then injected into the exhaust gas stream with a sudden expansion. The cooling water is atomized by the partial evaporation. The resulting fine droplets result in a very quick and effective quenching of the exhaust gas flow to temperatures below of 350 ° C. Below this temperature, dioxins and furans are no longer formed. In order to have a safety reserve, the exhaust gas stream is preferably quenched to a temperature of less than 280 ° C.

Auf die Quenchzone folgt ein Kondensator. Vorzugsweise befindet sich im Strömungsweg zwischen der Quenchzone und dem Kondensator eine Engstelle, deren Querschnitt sehr viel kleiner ist als der Strömungsquerschnitt der Brennkammer, vorzugsweise um ein bis zwei Größenordnungen kleiner. Das hat den Vorteil, dass sich in der Brennkammer vom Druck im Kondensator weitgehend unbeeinflußte Reaktionsbedingungen einstellen, die man leicht stabil halten kann. Ausserdem erfährt der abgeschreckte und mit Wasser vermischte Abgasstrom in dieser Engstelle eine nochmalige Durchmischung und expandiert anschließend in die Kammer des Kondensators, in welchem die wässrigen Anteile auskondensiert werden und auf diese Weise der in den Kondensator gelangende Massenstrom in eine flüssige, wässrige und in eine gasförmige Phase aufgeteilt wird. Je nach der Zusammensetzung der zu entsorgenden Substanz enthält die den Kondensator verlassende flüssige Phase z.B. Salzsäure und/oder Flußsäure und kann mit bekannten Verfahren aufgearbeitet werden. Die den Kondensator verlassende gasförmige Phase besteht im wesentlichen aus Wasserstoff, Kohlenmonoxid und Kohlendioxid und kann als Energieträger oder als Einsatzstoff für chemische Prozesse verwendet werden.A capacitor follows the quench zone. There is preferably a narrow point in the flow path between the quench zone and the condenser, the cross section of which is very much smaller than the flow cross section of the combustion chamber, preferably one to two orders of magnitude smaller. This has the advantage that reaction conditions which are largely unaffected by the pressure in the condenser occur in the combustion chamber and can easily be kept stable. In addition, the quenched and water-mixed exhaust gas stream is mixed again in this constriction and then expands into the chamber of the condenser, in which the aqueous components are condensed out and in this way the mass flow entering the condenser into a liquid, aqueous and a gaseous one Phase is divided. Depending on the composition of the substance to be disposed of, the liquid phase leaving the condenser contains, for example, hydrochloric acid and / or hydrofluoric acid and can be worked up using known methods. The gaseous phase leaving the condenser consists essentially of hydrogen, carbon monoxide and carbon dioxide and can be used as an energy source or as a feedstock for chemical processes.

Zur Kühlung des Kondensators kann man die zu entsorgende Substanz verwenden, indem man eine Zuleitung für die zu entsorgende Substanz in wärmeleitender Verbindung mit dem Kondensator anordnet. Das hat den Vorteil, dass die zu entsorgende Substanz vor dem Eintritt in die Brennkammer in erwünschter Weise vorgewärmt wird, was zu einer besseren Energieausnutzung führt. Durch einen weiteren Wärmetauscher innerhalb oder auf der Aussenseite des Kondensators kann man dort auch das Wasser vorwärmen, welches ggfs. in der Nähe der Brennerdüse in die Brennkammer eingeleitet wird. Auch die Vorwärmung dieses Wassers dient der besseren Energieausnutzung.The substance to be disposed of can be used to cool the condenser by arranging a supply line for the substance to be disposed of in a thermally conductive connection with the condenser. This has the advantage that the substance to be disposed of is preheated in a desired manner before entering the combustion chamber, which leads to better use of energy. A further heat exchanger inside or on the outside of the condenser can also be used to preheat the water, which may be introduced into the combustion chamber near the burner nozzle. The preheating of this water also helps to make better use of energy.

Da für die Brennkammer möglichst hohe Temperaturen angestrebt werden, muss sie aus einem entsprechend hitzebeständigen Werkstoff bestehen, beim Doppelmantelrohr zumindestens das innere Rohr. Im Hinblick darauf, dass in der Brennkammer z.B. Salzsäure und/oder Flußsäure entstehen, muss der Werkstoff auch deren Angriff standhalten. Vorzugsweise besteht die Brennkammer deshalb aus einer Nickelbasis-Legierung mit wenigstens 20 Gew.-% Molybdän, insbesondere aus Nickel mit 30 Gew.-% Molybdän.Since the combustion chamber should be heated to the highest possible temperature, it must be made of a correspondingly heat-resistant material, at least the inner tube for the double-walled tube. In view of the fact that e.g. Hydrochloric acid and / or hydrofluoric acid arise, the material must also withstand their attack. The combustion chamber therefore preferably consists of a nickel-based alloy with at least 20% by weight of molybdenum, in particular nickel with 30% by weight of molybdenum.

Ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in der beigefügten Zeichnung in einem Längsschnitt dargestellt.An embodiment of the device according to the invention is shown in the accompanying drawing in a longitudinal section.

Die Vorrichtung besteht aus einer Brennkammer 1, einem Gasbrenner 2 und aus einem Kondensator 3. Die Brennkammer ist im wesentlichen aus einem Doppelmantelrohr 4 gebildet, an welches am einen Ende der Gasbrenner 2 und am gegenüberliegenden Ende der Kondensator 3 angeflanscht sind.The device consists of a combustion chamber 1, a gas burner 2 and a condenser 3. The combustion chamber is essentially formed from a double jacket tube 4, to which the gas burner 2 is flanged at one end and the condenser 3 at the opposite end.

Eine Zuleitung 5 für einen gasförmigen Brennstoff und eine Zuleitung 6 für Sauerstoff, in denen jeweils ein Rückschlagventil 7 bzw. 8 liegt, münden in eine im Gasbrenner ausgebildete Mischkammer 9, in welcher der Brennstoff und der Sauerstoff miteinander vermischt werden. Die Mischkammer 9 steht über eine mit der Längsachse der Brennkammer 1 fluchtende Düse 10 mit der Brennkammer 1 in Verbindung. Von der Düse 10 bis zum Beginn des Doppelmantelrohrs erweitert sich der Innenraum des Brenners konisch nach Art eines Diffusors.A feed line 5 for a gaseous fuel and a feed line 6 for oxygen, in each of which a check valve 7 or 8 is located, open into a mixing chamber 9 formed in the gas burner, in which the fuel and the oxygen are mixed with one another. The mixing chamber 9 is connected to the combustion chamber 1 via a nozzle 10 aligned with the longitudinal axis of the combustion chamber 1. From the nozzle 10 to the start of the double jacket tube, the interior of the burner widens conically in the manner of a diffuser.

Eine mit einem Rückschlagventil 11 versehene Zuleitung 12 für zu entsorgende flüssige oder gasförmige Substanzen führt von der Seite her in das Gehäuse des Gasbrenners 2 und mündet mit einer feinen Düse 13 in die Düse 10, also an einer Stelle, an welcher die Geschwindigkeit der Brennstoff-Sauerstoff-Mischung am größten und damit das Einleiten der zu entsorgenden Substanz am einfachsten ist. In dem an die Düse 10 anschließenden konischen Bereich des Gasbrenners ist ein Kranz von Düsen 14 vorgesehen, welche zum einen von einer Zuleitung 15 für Wasser und zum anderen von einer Zuleitung 16 für ein reaktionsförderndes Gas gespeist werden können.A supply line 12 provided with a check valve for liquid or gaseous substances to be disposed leads from the side into the housing of the gas burner 2 and opens into the nozzle 10 with a fine nozzle 13, that is to say at a point at which the speed of the fuel Oxygen mixture is greatest and thus the introduction of the substance to be disposed of is easiest. In the conical region of the gas burner adjoining the nozzle 10, a ring of nozzles 14 is provided, which can be fed on the one hand by a feed line 15 for water and on the other hand by a feed line 16 for a reaction-promoting gas.

Am Beginn des Doppelmantelrohrs 4 mündet eine Leitung 17 für Kühlwasser in den Ringspalt 18 des Doppelmantels. In der Nähe des Endes des Doppelmantels hat der Ringspalt 18 über einen Kranz von Düsen 19 Verbindung mit dem Inneren der Reaktionskammer 1. Im Bereich zwischen den Düsen 19 und dem Kondensator 3 verengt sich die Brennkammer konisch und mündet in eine Düse 20, welche ihrerseits in den Kondensator 3 mündet. Der Mantel des Kondensators trägt auf seiner Aussenseite ein wendelförmig angeordnetes, dem Wärmetausch dienendes Rohr 21, dessen Einlaß 22 z.B. mit der zu entsorgenden Substanz gespeist und dessen Auslaß 23 mit der in den Gasbrenner 2 mündenden Zuleitung 12 verbunden ist. Im Innern des Kondensators 3 befindet sich ein weiterer Rohrwärmetauscher 24, dessen Einlaß 25 mit Wasser gespeist und dessen Auslaß ggfs. über eine nicht dargestellte Zweigleitung mit der Zuleitung 15 verbunden ist.At the beginning of the double jacket tube 4, a line 17 for cooling water opens into the annular gap 18 of the double jacket. In the vicinity of the end of the double jacket, the annular gap 18 is connected to the interior of the reaction chamber 1 via a ring of nozzles 19. In the area between the nozzles 19 and the condenser 3, the combustion chamber narrows conically and opens into a nozzle 20, which in turn the condenser 3 opens. The jacket of the condenser carries on its outside a helically arranged tube 21 serving for heat exchange, the inlet 22 e.g. fed with the substance to be disposed of and its outlet 23 is connected to the supply line 12 opening into the gas burner 2. In the interior of the condenser 3 there is a further tubular heat exchanger 24, the inlet 25 of which is fed with water and the outlet of which is connected to the feed line 15 via a branch line, not shown.

Der Kondensator 3 hat zwei Auslässe, einen Auslaß 27 für gasförmiges Medium und einen Auslaß 28 für flüssiges Medium. Am Auslaß 27 ist ein Meßfühler 32 für den Wasserstoffgehalt vorgesehen. Der Meßfühler 32 ist mit einem Regler 33 verbunden, welcher ein Regelventil 34 steuert, welches in der Zuleitung 16 für ein reaktionsförderndes Gas, insbesondere Sauerstoff, liegt. Der Regler 33 kann die Sauerstoffzufuhr so regeln, dass der Wasserstoffgehalt ein Minimum annimmt.The condenser 3 has two outlets, an outlet 27 for gaseous medium and an outlet 28 for liquid medium. At the outlet 27, a sensor 32 for the hydrogen content is provided. The sensor 32 is connected to a controller 33 which controls a control valve 34 which is in the feed line 16 for a reaction-promoting gas, in particular oxygen. The controller 33 can regulate the oxygen supply in such a way that the hydrogen content assumes a minimum.

Die Vorrichtung arbeitet wie folgt: Durch die Zuleitung 5 wird ein Brennstoff, insbesondere Wasserstoff, und über die Zuleitung 6 Sauerstoff eingeleitet, die sich in der Mischkammer 9 vermischen und durch die Düse 10 in die Brennkammer 1 einströmen. Das Brennstoff/Sauerstoff-Gemisch wird am Ausgang der Düse 10 gezündet. Durch die Düse 13 wird die zu entsorgende Substanz mit Druck in das Brennstoff/Sauerstoff-Gemisch eingedüst und fein verteilt; sie wird in der heißen Zone 29, 30 zersetzt. Die heiße Zone umfaßt eine Flammzone 29, in welcher die Flamme brennt, und eine von den heißen Abgasen der Flamme durchströmte Zone 30, welche in diesem Beispiel ungefähr doppelt so lang ist wie die Flammzone 29. Die Massenströme des Brennstoffs und des Sauerstoffs sowie der zu entsorgenden Substanz werden so aufeinander abgestimmt, dass die Zersetzung auf jeden Fall unter reduzierenden Bedingungen, nämlich unter Wasserstoffüberschuß stattfindet. Ausgehend von einem durch die Leitungen 5 und 6 zugeführten stöchiometrischen Gemisch kann zu diesem Zweck durch die Zuleitung 15 zusätzlich Wasserstoff und durch die Zuleitung 16 zusätzlich vorgewärmtes Wasser als Reaktionspartner für Halogene und Kohlenstoff eingeleitet werden, welche im Verlauf der Zersetzung entstehen. Es ist aber auch möglich, durch die Zuleitungen 5 und 6 den Brennstoff, insbesondere Wasserstoff, und Sauerstoff nicht in stöchiometrischem Verhältnis, sondern von vornherein mit einem Sauerstoffunterschuß zuzuführen und das Verhältnis in Anpassung an die zu entsorgende Substanz durch zusätzliches Einleiten von Sauerstoff oder Wasserstoff durch die Zuleitung 15 hinsichtlich der Zusammensetzung des Abgases und der energetischen Ausbeute zu optimieren. Die Länge der Brennkammer 1 ist so bemessen, dass die Zersetzung bis zum Erreichen der Abschreckzone 31, welche im Bereich der Düsen 19 liegt, abgeschlossen ist. Das Abschrecken der heißen Abgase erfolgt mit Wasser, welches durch die Zuleitung 17 unter Druck in den Ringspalt 18 eingeleitet wird, sich darin ungefähr bis auf seine Siedetemperatur erhitzt und beim Einspritzen in die Brennkammer 1 schlagartig expandiert, dabei teilweise verdampft und den Abgasstrom sehr wirksam auf eine unterhalb von 350 °C liegende Temperatur abkühlt. Der abgekühlte und mit Wasser vermischte Abgasstrom erfährt in der Austrittsdüse 20 eine nochmalige Durchmischung und expandiert anschließend in den Kondensator 3, in welchem der Wasserdampf kondensiert wird. Das Kondensat mit den darin gelösten, aus dem Abgasstrom ausgewaschenen Bestandteilen, vorwiegend z.B. Salzsäure und/oder Flußsäure, verläßt den Kondensator über die Leitung 28; die nicht kondensierten Bestandteile des Abgases, vorwiegend Wasserstoff, Kohlenmonoxid und Kohlendioxid, verlassen den Kondensator durch die Leitung 27. Zweckmässigerweise wird die Vorrichtung so betrieben, dass in der Reaktionskammer ein Druck von ungefähr 5 bar herrscht. Durch entsprechende Bemessung der Strömungswege sorgt man zweckmässigerweise dafür, dass der Druck an der Düse 20 etwa auf die Hälfte abfällt, so dass im Kondensator noch ein Druck von ungefähr 2,5 bar herrscht, welcher für eine nutzbringende Weiterverwendung der nicht kondensierten Abgase günstig ist.The device works as follows: A fuel, in particular hydrogen, is introduced through the supply line 5 and oxygen is introduced via the supply line 6 Mix the mixing chamber 9 and flow into the combustion chamber 1 through the nozzle 10. The fuel / oxygen mixture is ignited at the outlet of the nozzle 10. Through the nozzle 13, the substance to be disposed of is injected with pressure into the fuel / oxygen mixture and finely distributed; it is decomposed in hot zone 29, 30. The hot zone comprises a flame zone 29, in which the flame burns, and a zone 30 through which the hot exhaust gases of the flame flow, which in this example is approximately twice as long as the flame zone 29. The mass flows of fuel and oxygen, as well as the Disposing substances are coordinated so that the decomposition takes place in any case under reducing conditions, namely under excess of hydrogen. Starting from a stoichiometric mixture supplied through lines 5 and 6, hydrogen can additionally be introduced through line 15 and prewarmed water through line 16 as a reaction partner for halogens and carbon, which are formed in the course of the decomposition. However, it is also possible to supply the fuel, in particular hydrogen, and oxygen not in a stoichiometric ratio, but from the outset with an oxygen deficit through the supply lines 5 and 6, and by adjusting the ratio to the substance to be disposed of by additionally introducing oxygen or hydrogen optimize the supply line 15 with regard to the composition of the exhaust gas and the energy yield. The length of the combustion chamber 1 is dimensioned such that the decomposition is completed until the quench zone 31, which is in the region of the nozzles 19, is reached. The hot exhaust gases are quenched with water, which is introduced under pressure into the annular gap 18 through the supply line 17, and approximately therein heated to its boiling temperature and expanded suddenly when it was injected into the combustion chamber 1, partially evaporated in the process and very effectively cooled the exhaust gas stream to a temperature below 350 ° C. The cooled exhaust gas stream mixed with water undergoes another thorough mixing in the outlet nozzle 20 and then expands into the condenser 3, in which the water vapor is condensed. The condensate with the components dissolved therein, washed out of the exhaust gas stream, predominantly, for example, hydrochloric acid and / or hydrofluoric acid, leaves the condenser via line 28; the uncondensed constituents of the exhaust gas, predominantly hydrogen, carbon monoxide and carbon dioxide, leave the condenser through line 27. The device is expediently operated in such a way that a pressure of approximately 5 bar prevails in the reaction chamber. By appropriately dimensioning the flow paths, it is expedient to ensure that the pressure at the nozzle 20 drops by about half, so that there is still a pressure of approximately 2.5 bar in the condenser, which is favorable for the reusable use of the uncondensed exhaust gases.

Abschließend werden noch vier Anwendungsbeispiele angegeben, die zeigen, wie mit einer solchen Vorrichtung halogenierte Kohlenwasserstoffe zersetzt werden können:Finally, four application examples are given, which show how halogenated hydrocarbons can be decomposed with such a device:

In allen Fällen wird als Brennstoff reiner Wasserstoff verwendet, der mit reinem Sauerstoff verbrannt wird. Im ersten Beispiel ist die zu zersetzende Substanz Perchlorethylen, im zweiten Beispiel Chlordifluormethan, im dritten Beispiel Dichlorpropan 1,2 und im vierten Beispiel Trichlortrifluorethan. In der beigefügten Tabelle sind für alle Beispiele die Massenströme, die thermische Leistung des Gasbrenners, die Temperatur, auf welche der Abgasstrom abgeschreckt wird, der Umsatz in der Reaktionskammer und die Zusammensetzung des Abgases angegeben. Die Kubikmeterangaben beim Wasserstoff und Sauerstoff sind auf Normaldruck bezogen.In all cases, pure hydrogen is used as fuel, which is burned with pure oxygen. In the first example the substance to be decomposed is perchlorethylene, in the second example chlorodifluoromethane, in the third example dichloropropane 1,2 and in the fourth example trichlorotrifluoroethane. The attached table shows the mass flows, the thermal output of the gas burner, the temperature to which the exhaust gas stream is quenched, the conversion in the reaction chamber and the composition of the exhaust gas for all examples. The cubic meter data for hydrogen and oxygen are based on normal pressure.

Man sieht, dass bei der eingesetzten thermischen Leistung die Menge des Perchlorethylens, welche umgesetzt werden kann, ungefähr um 40 % und die Menge des Dichlorpropans 1, 2 und des Trichlortrifluorethans ungefähr um 200 % über der Menge des Chlordifluormethans liegt, welche bei gleicher Verfahrensweise umgesetzt werden kann. In allen Fällen ist die Umsetzung praktisch vollständig. Die im Abgas noch enthaltenen Chlorkohlenwasserstoffe liegen weit unter 1 ppm, fluorierte Kohlenwasserstoffe waren ebensowenig nachweisbar wie Dioxine und Furane.It can be seen that the amount of perchlorethylene which can be reacted is approximately 40% and the amount of dichloropropane 1, 2 and trichlorotrifluoroethane is approximately 200% above the amount of chlorodifluoromethane which is reacted in the same procedure, with the thermal power used can be. In all cases, the implementation is practically complete. The chlorinated hydrocarbons still contained in the exhaust gas are far below 1 ppm, fluorinated hydrocarbons were just as undetectable as dioxins and furans.

Die Menge des im Abgas noch vorhandenen Wasserstoffs wird vorzugsweise reduziert und dadurch die Energiebilanz verbessert, indem die Wasserstoffkonzentration im Abgasstrom, vorzugsweise hinter dem Kondensator, gemessen und die Sauerstoffzufuhr so geregelt wird, dass der Wasserstoffgehalt einem vorgegebenen Minimum zustrebt, welches nicht kleiner als 1 Mol-% gewählt wird, so dass die reduzierenden Bedingungen in der Reaktionskammer auf jeden Fall erhalten bleiben.

Figure imgb0001
The amount of hydrogen still present in the exhaust gas is preferably reduced, thereby improving the energy balance by measuring the hydrogen concentration in the exhaust gas stream, preferably behind the condenser, and regulating the oxygen supply in such a way that the hydrogen content tends to a predetermined minimum, which is not less than 1 mol -% is selected so that the reducing conditions in the reaction chamber are retained in any case.
Figure imgb0001

Claims (27)

  1. Process for disposing of liquid and gaseous substances, which contain halogenated hydrocarbon compounds or mixtures thereof, by introducing the substances and, possibly, water upstream of the flame or into the flame of a gaseous or gasified fuel which forms steam on burning, the fuel being selected and the flow rates of the fuel, oxygen and the substances to be disposed of being matched to each other in such a way that a temperature of at least 850°C is reached and the substances to be disposed of are pyrolytically decomposed in a reducing atmosphere, and condensing the water-soluble, halogen-containing reaction products, characterised in that the flow rates of the fuel, oxygen and the substances to be disposed of and, possibly, water introduced upstream of the flame or into the flame are matched to each other in such a way that no carbon is present in the exhaust gas but free hydrogen is present in an amount of at least 1 mol%, and in that water is sprayed into the exhaust gas stream before it has cooled to a temperature below 800°C and by this means the exhaust gas stream is quenched to a temperature below 350°C.
  2. Process according to Claim 1, characterised in that the flow rate of the water introduced upstream of the flame or into the flame is metered so that the pyrolytic decomposition is carried out in a soot-free manner.
  3. Process according to Claim 1 or 2, characterised in that the exhaust gas stream is quenched to a temperature below 300°C, preferably below 280°C.
  4. Process according to one of the preceding claims, characterised in that the residence time of the substances to be disposed of in the hot zone formed by the flame and the exhaust gas stream, before the latter is quenched, is at least 10 ms.
  5. Process according to Claim 4, characterised in that the residence time is about 30 ms.
  6. Process according to one of the preceding claims, characterised in that the residence time is not greater than 100 ms.
  7. Process according to Claim 6, characterised in that the substances to be disposed of and the fuel are intimately mixed together prior to ignition.
  8. Process according to one of the preceding claims, characterised in that the fuel used is hydrogen.
  9. Process according to one of the preceding claims, characterised in that the hydrogen content in the exhaust gas stream is measured and the oxygen supply is regulated depending on the hydrogen content so that the hydrogen content tends to a preset minimum.
  10. Process according to Claim 9, characterised in that the minimum lies in the vicinity of 1 mol%.
  11. Process according to one of the preceding claims, characterised in that the flow rates of the oxygen and the fuel are matched to each other so that the heat of combustion evolved for the complete decomposition of a preset flow rate of the substance to be disposed of into lower molecular components approaches a minimum.
  12. Process according to one of the preceding claims, characterised in that the flow rates of the fuel, the oxygen, the substance to be disposed of and, possibly, the steam are matched to each other so that the carbon monoxide yield is maximised.
  13. Process according to one of the preceding claims, characterised in that the decomposition is carried out in a combustion chamber in which a pressure between 2 bar and 40 bar is maintained.
  14. Process according to Claim 13, characterised in that a superatmospheric pressure of 2 to 10 bar, preferably of about 5 bar, is maintained in the combustion chamber.
  15. Process according to one of the preceding claims, characterised in that the water for quenching the exhaust gas is atomised directly into the exhaust gas stream by pressure spraying.
  16. Device for carrying out the process according to one of the preceding claims, having a combustion chamber (1) into which open a gas burner (2) and a feedline (12) for the substance to be disposed of, the combustion chamber (1) having a flow connection (20) to a condenser (3), which has an outlet opening (28) for a condensate and a further outlet opening (27) for uncondensed gases, characterised in that the combustion chamber (1) has, one after the other, a hot zone (29, 30) and a quenching zone (31), into which open jets (19) for spraying in the water, and in that the quenching zone (31) has the flow connection (20) to the condenser (3).
  17. Device according to Claim 16, characterised in that the hot zone (29, 30) is longer than the zone (29) in which a flame is formed (flame zone), preferably at least twice as long as the flame zone (29).
  18. Device according to Claim 16 or 17, characterised in that the feedline (12) for the substance to be disposed of opens into the gas burner (2), in particular into its jet (10).
  19. Device according to one of Claims 16 to 18, characterised in that one or more jets (14) are provided, in the vicinity of the gas burner (2), for spraying in water or for introducing steam into the combustion chamber (1).
  20. Device according to one of Claims 16 to 19, characterised in that one or more jets (14) are furnished, in the vicinity of the gas burner (2), for introducing a reaction-promoting gas, preferably oxygen into the combustion chamber (1).
  21. Device according to Claim 19 or 20, characterised in that the jets (14) are arranged concentrically or coaxially in relation to the jet (10) of the gas burner (2).
  22. Device according to one of Claims 16 to 21, characterised in that the combustion chamber (1) is formed from a jacketed tube (4) and in that the annular gap (18) formed in the jacket has at least one inlet (17) and at least one outlet (19) for a coolant.
  23. Device according to Claim 22, characterised in that the inlet (17) of the annular gap (18) is provided in the vicinity of the gas burner (2), with the outlet (19), in contrast, being provided at the end of the annular gap (18) remote from the gas burner (2).
  24. Device according to Claim 22 or 23, characterised in that the jets (19) for quenching the exhaust gases form the outlet of the annular gap (18).
  25. Device. according to one of Claims 16 to 24, characterised in that the flow connection (20) between the combustion chamber (1) and the condenser (3) has a cross-section which is smaller by one to two orders of magnitude than the flow cross-section of the combustion chamber (1).
  26. Device according to one of Claims 16 to 25, characterised in that a feedline (21) for the substance to be disposed of is in thermally conducting connection with the condenser (3).
  27. Device according to one of Claims 16 to 26, characterised in that the combustion chamber (1) is composed of a nickel-based alloy containing at least 20% by weight of molybdenum, in particular of nickel containing 30% by weight of molybdenum.
EP91902703A 1989-12-23 1990-12-21 Process and device for disposing of substances containing halogenated hydrocarbon compounds Expired - Lifetime EP0506869B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3942962A DE3942962A1 (en) 1989-12-23 1989-12-23 METHOD FOR DISPOSAL OF SUBSTANCES CONTAINING HALOGENED HYDROCARBON COMPOUNDS OR MIXTURES THEREOF, AND DEVICE FOR CARRYING OUT THE METHOD
DE3942962 1989-12-23
PCT/EP1990/002277 WO1991009650A2 (en) 1989-12-23 1990-12-21 Process and device for disposing of substances containing halogenated hydrocarbon compounds

Publications (2)

Publication Number Publication Date
EP0506869A1 EP0506869A1 (en) 1992-10-07
EP0506869B1 true EP0506869B1 (en) 1994-08-03

Family

ID=6396442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91902703A Expired - Lifetime EP0506869B1 (en) 1989-12-23 1990-12-21 Process and device for disposing of substances containing halogenated hydrocarbon compounds

Country Status (5)

Country Link
EP (1) EP0506869B1 (en)
AT (1) ATE109364T1 (en)
DE (2) DE3942962A1 (en)
DK (1) DK0506869T3 (en)
WO (1) WO1991009650A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851780A2 (en) * 1995-07-18 1998-07-08 Transformation Technologies Ltd. Process for the transformation of halogenated refrigerant gases

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125517C1 (en) * 1991-08-01 1992-10-29 Energiewerke Schwarze Pumpe Ag, O-7610 Schwarze Pumpe, De
FR2724166B1 (en) * 1994-09-05 1997-07-11 Univ Orleans PROCESS AND DEVICE FOR DEHALOGENATION OF ORGANIC COMPOUNDS BY PLASMA
WO1996029143A1 (en) * 1995-03-20 1996-09-26 Schmidt, Hermann Fluid compound thermochemical conversion process and converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1260959A (en) * 1984-05-21 1989-09-26 Sidney W. Benson Conversion of halogenated toxic substances
FR2589372B1 (en) * 1985-10-30 1988-02-05 Charbonnages De France PROCESS FOR DESTRUCTION OF ORGANIC PRODUCTS WITH TOXIC EFFECTS AND PLANT FOR CARRYING OUT SAID METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851780A2 (en) * 1995-07-18 1998-07-08 Transformation Technologies Ltd. Process for the transformation of halogenated refrigerant gases
EP0851780A4 (en) * 1995-07-18 1999-11-17 Transformation Technologies Lt Process for the transformation of halogenated refrigerant gases

Also Published As

Publication number Publication date
ATE109364T1 (en) 1994-08-15
DK0506869T3 (en) 1994-12-05
DE59006728D1 (en) 1994-09-08
WO1991009650A2 (en) 1991-07-11
WO1991009650A3 (en) 1991-09-19
EP0506869A1 (en) 1992-10-07
DE3942962A1 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
DE3752053T2 (en) Process for the destruction of organic waste
DE69017318T2 (en) Combustion process with improved temperature distribution.
DE2917245C2 (en) Process and reactor for producing sulfur
DE69822635T2 (en) Process and burner for the partial oxidation of hydrocarbons
EP3212566B1 (en) Method and plant for the production of synthesis gas
EP1013995A2 (en) Method for thermally treating non-burnable liquids
EP1327106B1 (en) Spray burner for the thermal decomposition of sulphur-containing residues
EP1319151A1 (en) Method for regenerating a residual substance that contains sulfur, and an atomizing burner suited for carrying out said method
DE2122800A1 (en) Process for the production of carbon black
DE1032453B (en) Process for the production of carbon black
EP1182181A1 (en) Premix burner block for partial oxidation processes
DE946835C (en) Process for the production of carbon black
EP0506869B1 (en) Process and device for disposing of substances containing halogenated hydrocarbon compounds
DE2128030A1 (en) Process and device for the production of carbon black
EP0564964A1 (en) Process for the destruction of toxicants produced during the elimination of organic waste
DE3242699C1 (en) Method for the autothermal gasification of solid and liquid fuels in the flue stream
DE10155811C1 (en) Efficiency improvement method, for waste material combustion, has combustion air replaced by oxygen-rich gas mixed with cooling medium
EP0256451A1 (en) Process and device for the production of an inflammable gaseous mixture of liquid fuel, water vapour and combustion air
DE10233931A1 (en) Process for the production of hydrogen cyanide by oxidation of nitrogenous hydrocarbons in a flame
DE3422608C2 (en)
AT202123B (en) Method and device for the production of unsaturated hydrocarbons
DE3025207A1 (en) Gasification of coal etc. using steam and oxygen - with heat provided by turbulent mixing with heat carrier gas in special reactor
DE2934981A1 (en) Liq. waste multiple burner nozzle - has inner waste tube and outer coaxial tube inducing turbulence
EP1462160A2 (en) Process to obtain a high-temperature rection, reactor for the implementation of this process, process to scale-up a reactor and use thereof
DE959365C (en) Process for the production of finely divided metal oxides by the decomposition of metal chlorides with oxygen-containing gases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB LI LU NL

17P Request for examination filed

Effective date: 19920723

17Q First examination report despatched

Effective date: 19921222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HUELS AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940803

Ref country code: BE

Effective date: 19940803

REF Corresponds to:

Ref document number: 109364

Country of ref document: AT

Date of ref document: 19940815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59006728

Country of ref document: DE

Date of ref document: 19940908

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941231

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19951218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19961221

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: VESTOLIT GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001214

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST