EP0506191B2 - Gelierbare, wässrige Zusammensetzung mit zeitverzögerter Gelierung - Google Patents

Gelierbare, wässrige Zusammensetzung mit zeitverzögerter Gelierung Download PDF

Info

Publication number
EP0506191B2
EP0506191B2 EP92200820A EP92200820A EP0506191B2 EP 0506191 B2 EP0506191 B2 EP 0506191B2 EP 92200820 A EP92200820 A EP 92200820A EP 92200820 A EP92200820 A EP 92200820A EP 0506191 B2 EP0506191 B2 EP 0506191B2
Authority
EP
European Patent Office
Prior art keywords
range
ion
comprised
ligand
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92200820A
Other languages
English (en)
French (fr)
Other versions
EP0506191A1 (de
EP0506191B1 (de
Inventor
Thomas Paul Lockhart
Paola Albonico
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agip SpA
Eni Tecnologie SpA
Original Assignee
Agip SpA
Eniricerche SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11359325&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0506191(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Agip SpA, Eniricerche SpA filed Critical Agip SpA
Publication of EP0506191A1 publication Critical patent/EP0506191A1/de
Application granted granted Critical
Publication of EP0506191B1 publication Critical patent/EP0506191B1/de
Publication of EP0506191B2 publication Critical patent/EP0506191B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery

Definitions

  • the present invention relates to an aqueous gellable composition having a delayed gelling time within wide time and temperature ranges, useful to modify the permeability of high-permeability regions in petroleum reservoirs, in particular high-temperature petroleum reservoirs.
  • the invention relates also to a process for reducing the permeability of a reservoir, which process uses said gellable composition.
  • a proposal of solution to overcome such a problem consists in modifying the permeability of the resevoir either completely or partially occluding the high-permeability regions, so that the flow of the fluid subsequently injected into the reservoir for the recovery of petroleum can be diverted towards the low-permeability regions.
  • compositions having delayed gelling time which compositions generally consist of a crosslinkable polymer, such as, e.g., a polyacrylamide, a multivalent metal ion, and a ligand or sequestering agent for said multivalent metal ion.
  • a crosslinkable polymer such as, e.g., a polyacrylamide
  • a multivalent metal ion such as, e.g., a polyacrylamide
  • a ligand or sequestering agent for said multivalent metal ion for example, in EP-A-0 390 279.
  • EP-A-0 390 282 the use is disclosed of compositions which can be gelled by means of trivalent chrome, which compositions contain, as the retardant agent, an organic ligand selected from the group consisting of the aliphatic or aromatic dicarboxy acids, or from the group consisting of the alpha-hydroxyacids or alpha-aminoacids.
  • a gellable composition having a delayed gelling time which contains a water-soluble polymer, a crosslinking agent constituted by a complex of trivalent chrome with a carboxylate ion, in particular acetate ion, and a retardant agent, generally constituted by acetic acid.
  • EP-A-0170893 discloses the combination of two different ligands, one being a biocidal carboxylate (for example propionate) and the other being a non-biocidal carboxylic acid, like acetic acid.
  • compositions known from the prior art allow delayed gelling times to be obtained, which are generally unsatisfactory for practical uses.
  • the compositions known from the prior art are, in general, unsatisfactory when they are used to occlude large regions of a reservoir and/or regions far away from the injection well, in particular when reservoirs are processed which display high temperatures of their own, which accelerate the gelling rate, with the risk of a premature gel formation, and consequent occlusion of undesired regions.
  • a purpose of the present invention is overcoming the drawbacks which affect the prior art, by means of an aqueous gellable composition, with delayed gelling time, which gelling time can be present within wide ranges of time and temperature, useful to modify the permeability of high-permeability regions in petroleum reservoirs, in particular high-temperature reservoirs.
  • Another purpose of the present invention is a process for reducing the permeability of a petroleum reservoir, which process uses said composition.
  • the present Applicant found, according to the present invention, that some systems, which comprise two carboxylate ligands different from each other, with the first ligand being complexed with trivalent chrome ion, and the second ligand being in free form, lead to unexpectedly good results when they are used as crosslinking/retardant systems in converting gellable organic polymers into gels.
  • these unexpectedly good results consist in that the delayed gelling time and temperature can be preset within wide ranges, as a function of the particular pair of selected ligands, and of their mutual ratio in the crosslinking/retardant system.
  • the present invention relates to an Aqueous gellable composition according to claim 1.
  • the water-soluble organic polymers which can be crosslinked with chrome ion, useful for the purposes of the present invention are generally selected from the group consisting of acrylamide polymers.
  • acrylamide polymers there can be used either acrylamide homopolymers, or acrylamide copolymers with one or more copolymerisable unsaturated monomer(s), such as, e.g., acrylic acid, methacrylamide, sodium 2-acrylamido-2-methyl-propanesulfonate and N-vinyl-2-pyrrolidone.
  • the copolymers of acrylamide with sodium 2-acrylamido-2-methyl-propane-sulfonate, the copolymers of acrylamide with N-vinyl-2-pyrrolidone and the terpolymers of acrylamide with sodium 2-acrylamido-2-methyl-propanesulfonate and N-vinyl-2-pyrrolidone are preferably used.
  • Said acrylamide polymers and copolymers can be either substantially non-hydrolysed (less than 1% of amidic groups hydrolysed into free carboxy groups), or partially hydrolysed (more than 1% of amidic groups hydrolysed into free carboxy groups).
  • the molecular weight of these acrylamide(co)polymers may generally be comprised within the range of from 100,000 to 20,000,000, and, preferably, within the range of from 200,000 to 12,000,000.
  • the concentration of the acrylamide (co)polymer in the gellable composition according to the present invention can generally range from 1,000 to 80,000 ppm (parts per million parts by weight), and preferably will be comprised within the range of from 3,000 to 50,000 ppm and, in the most preferred form of practical embodiment, will be comprised within the range of from 5,000 to 10,000 ppm when fresh water is used, and of from 10,000 to 30,000 when salt water is used (such as, e.g., sea water).
  • the ligand L of the crosslinking/retardant system according to the present invention can be selected from among:-
  • said ligand L is selected from among: acetate, propionate, butyrate, malonate, succinate, glutarate, adipate, glycolate, lactate, alpha-hydroxybutyrate, ascorbate, tartrate, alpha-aminoacetate (glycine) and alpha-amino-beta-hydroxypropionate (serine), alpha-aminobutyrate, phthalate and salicylate ion.
  • said ligands L is acetate ion or malonate ion or glycolate ion.
  • crosslinking/retardant systems are:
  • the crosslinking/retardant system according to the present invention can additionally contain one or more hydroxy ions and/or neutral molecules, such as, e.g., water or pyridine, and other monovalent and divalent inorganic ions, generally Na + and K + , suitable for balancing the charge of the same system.
  • one or more hydroxy ions and/or neutral molecules such as, e.g., water or pyridine, and other monovalent and divalent inorganic ions, generally Na + and K + , suitable for balancing the charge of the same system.
  • the molar ratio of the ligand L' to chrome is selected as a function of the particular pair of ligands selected and of the value of the gelling delay which one wishes to obtain, also on considering the temperature of the region of reservoir to be occluded. As indicated above, such a ratio can generally be comprised within the range of from 0.5 to 100, with preferred values ranging from 0.5 to 50.
  • the amount of crosslinking/retardant system contained in the gellable compositions according to the present invention will be that amount which makes it possible a concentration of chrome ion to be obtained in said composition, which is comprised within the range of from 10 to 5,000 ppm, and preferably within the range of from 25 to 800 ppm, with most preferred values being of from 100 to 600 ppm (parts per million parts by weight).
  • the gellable composition of the present invention can additionally contain one or more stabilizer agent(s) for the polymer, as customarily used, e.g., thiourea.
  • the gellable composition according to the present invention will have a pH value comprised within the range of gelation of the same composition, which can be comprised within the range of from about 2 to about 9, and preferably is of the order of from 4 to 7. Therefore, when either necessary or desired, the pH value of the composition will be adjusted by means of the addition of a mineral acid or base, as needed.
  • a mineral acid suitable far that purpose is, e.g., hydrochloric acid
  • a suitable base is, e.g., sodium hydroxide.
  • aqueous gellable composition according to the present invention can be prepared by simply blending its components, on considering that the sequence of addition is not critic.
  • an aqueous solution is prepared first, which contains the polymer and the optional stabilizer agent, then an aqueous solution of the ligand L' is added to the solution of the polymer, and then the solution of the complex of trivalent chrome with the ligand L is added.
  • This complex can be prepared by means of known techniques, such as described, e.g., in "Inorganic Syntheses”, Vol. 16, pages 80-81, and in “Comprehensive Inorganic Chemistry”, Pergamon Press (Oxford), Vol. 3 (1973), pages 627-700.
  • Water used in the composition can be free from salts, or it can contain salts and, advantageously, the same water contained in the same reservoir can be used.
  • the present invention relates to a process for reducing the permeability in a petroleum reservoir, which process uses the gellable composition disclosed hereinabove.
  • said process comprises the following steps:
  • gellable composition makes it advantageously possible the permeability in high-permeability regions situated deeply in the reservoir, where the temperature is higher, or anyway far away from the injection well, to be reduced, without that an early gelling occurs.
  • the gelling time can be preset within a very wide range, by properly selecting the pair of ligands and their mutual ratio.
  • a further possibility of regulation of the gelling time is given by the ageing time of the complex formed by trivalent chrome ion and ligand L. More particularly, in case of acetate ion, it was found that to longer ageing times of the same complex, shorter gelling times correspond, with the other conditions being the same. In any case, it was found that the use of two different ligands in a same crosslinking/retardant system is essential in order to attain the benefits of the instant invention. These benefits cannot be obtained, e.g., by using the chrome acetate/acetic acid system according to the prior art.
  • compositions according to the present invention turn into a gel with useful delayed-gelatin times within a wide range of temperatures, such as from room temperature up to 120°C or more.
  • temperatures such as from room temperature up to 120°C or more.
  • the present Applicant found that delays of up to one month, or even more, can be accomplished, by operating at temperatures of the order of from 90 to 120°C.
  • the water-soluble, gellable organic polymer a commercial copolymer of acrylamide and sodium 2-acrylamido-2-methyl-1-propane-sulfonate in a weight ratio of approximately 72:25, with about 4% of hydrolysed amidic groups to yield carboxy groups, is used.
  • An aqueous solution of the copolymer is prepared, and thiourea is added to it, to perform the function of stabilizer agent.
  • An aqueous solution is prepared of Cr(acetate) 3 .H 2 O complex is prepared, and the solution is allowed to age 2 days before use.
  • the aqueous, gellable compositions are prepared by mixing, in a test tube provided with screw-threaded cap, the solution of the copolymer and stabilizer agent, with the aged aqueous solution of Cr(acetate) 3 .H 2 O complex, and subsequently adding the ligand L' (optionally as its alkali-metal salt), dissolved in water.
  • the pH value of the resulting solution is adjusted at the value of 5 ⁇ 0.1, with aqueous sodium hydroxide, or aqueous hydrochloric acid, according to as needed.
  • the resulting composition contains 5,000 ppm (parts per million parts by weight) of copolymer, 5,000 ppm of thiourea and 600 ppm of trivalent chrome.
  • water-soluble, gellable organic polymer a commercial copolymer of acrylamide and sodium 2-acrylamido-2-methyl-1-propane-sulfonate in a weight ratio of approximately 57:43, with about 6% of amidic groups hydrolysed to yield carboxy groups, is used.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of copolymer, 5,000 ppm of thiourea and 600 ppm of trivalent chrome.
  • crosslinking/retardant system Cr(acetate) 3 .
  • n malonic acid with n comprised within the range of from 2 to 7.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 600 ppm of trivalent chrome.
  • the aqueous solution of Cr(acetate) 3 .H 2 O complex is aged for 2 days.
  • the concentration of the ligand L' (malonic acid) in the composition is varied within the range of from 0.024 to 0.080 M, so as to have molar ratios of malonic acid/chrome comprised within the range of from 2:1 to 7:1.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 600 ppm of trivalent chrome.
  • the concentration of the ligand L' (salicylic acid) in the composition is varied within the range of from 0.024 to 0.080 M, so as to have molar ratios of salicylic acid/chrome comprised within the range of from 2:1 to 7:1.
  • crosslinking/retardant system Cr(acetate) 3 .
  • n ascorbic acid with n comprised within the range of from 0.7 to 7.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 600 ppm of trivalent chrome.
  • the aqueous solution of Cr(acetate) 3 .H 2 O complex is used 1 day after its preparation.
  • the concentration of the ligand L' (ascorbic acid) in the composition is varied within the range of from 0.008 to 0.080 M, so as to have molar ratios of ascorbic acid/chrome comprised within the range of from 0.7:1 to 7:1.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 200 ppm of trivalent chrome.
  • the Cr(malonate) 3 complex is prepared as described in Inorganic Syntheses, "Malonate Complexes of Chromium-(III)".
  • the concentration of the ligand L' (salicylic acid) in the composition is varied within the range of from 0.008 to 0.024 M, so as to have molar ratios of salicylic acid/chrome comprised within the range of from 2:1 to 6:1. For comparison purposes, a test without the ligand L' is carried out.
  • crosslinking/retardant system Cr(glycolate) 3 .
  • n malonic acid with n comprised within the range of from 2 to 10.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 200 ppm of trivalent chrome.
  • the Cr(glycolate) 3 complex is prepared by using the procedure as described in Inorganic Syntheses, Volume 16, pages 80-81, for the preparation of complexes of Cr-(III) with malonate.
  • the concentration of the ligand L' (malonic acid) in the composition is varied within the range of from 0.008 to 0.04 M, so as to have molar ratios of malonic acid/chrome comprised within the range of from 2:1 to 10:1.
  • the gelation time of this composition is of 23 ⁇ 1 hours.
  • aqueous, gellable compositions with a pH value of 5 ⁇ 0.1 are prepared, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea, 400 ppm of trivalent chrome [supplied as aqueous, about-one-month-aged Cr(acetate) 3 ], and variable amounts of malonic acid.
  • compositions are submitted to gelling at 120°C and in the chart of Figure 1 ( ⁇ line) the gelling time is reported as days (on the ordinate), as a function of the molar concentration of malonic acid (on the abscissa).
  • compositions are prepared, which are very similar to the preceding compositions, with the difference that the crosslinking/retardant system is constituted by Cr(acetate) 3 and acetic acid, with variable amounts of the latter.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 600 ppm of trivalent chrome, supplied as aqueous Cr(acetate) 3 aged for variable times, and salicylic acid in variable amounts.
  • compositions are gelled at 120°C, and the results of this test are summarized in following Table X.
  • Molar concentration of salicylic acid Ageing time of the solution of Cr(acetate) 3 Gelling time 0 15 minutes ⁇ 15 minutes 0.08 M 15 minutes ⁇ 15 minutes 0.024 M 4 hours 2 hours 0.040 M 30 hours 4 hours 0.056 M 132 hours 22 hours 0.080 M 200 hours 62 hours 0.160 M -- 118 hours
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 600 ppm of trivalent chrome, supplied as aqueous, fresh or 24-days-aged Cr(acetate) 3 , and salicylic acid in variable amounts.
  • compositions are gelled at 120°C, and the results are reported in the chart in Figure 2.
  • the values of molar concentration of salicylic acid in the gellable composition are reported on the abscissa, and on the ordinate the gelation time is reported as hours.
  • the " ⁇ " line relates to the compositions which use freshly-prepared chrome acetate and the "-----" line relates to the compositions which use 24-hours-aged chrome acetate.
  • aqueous, gellable compositions are prepared with a pH value of 5 ⁇ 0.1, which contain 5,000 ppm (parts per million parts by weight) of the copolymer of Example 1, 5,000 ppm of thiourea and 200 ppm of trivalent chrome, supplied as aqueous Cr(malonate) 3 , and glycolic acid in variable amounts.
  • compositions are gelled at 90°C and 120°C, and the results are summarized in following Table XI.
  • Example 13 The process is carried out as in Example 13, using 20,000 ppm (parts per million parts by weight) of copolymer of Example 1, and replacing water with synthetic sea water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Colloid Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Claims (14)

  1. Gelierbare wäßrige Zusammensetzung mit verzögerter Gelierung, die so voreinstellbar ist, daß sie innerhalb weiter Zeit- und Temperturbereiche stattfindet, die ein in Wasser lösliches organisches, mit Chrom-Ionen vernetzbares Polymer und ein durch die Formel Cr(L)m - nL' definierbares Vernetzungs-/Verzögerungssystem enthält, und
    L' in einer nicht mit einem Chrom-Ion komplexierten Form vorliegt; worin:
    Cr ein dreiwertiges Chrom-Ion ist;
    L ein organischer Ligand in einer mit einem Chrom-lon komplexierten Form ist, der aus einem Monocarboxylat- oder Dicarboxylat-Ion besteht, das gegebenenfalls eine oder mehrere funktionelle Amino- oder Hydroxy-Gruppe(n) aufweist,
    L' ein organischer Ligand ist, der aus Malon- und Ascorbinsäuren ausgewählt wird; oder, wenn L' Salicylsäure ist, L ausgewählt wird aus: Acetat, Propionat, Butyrat, Malonat, Succinat, Glutarat, Adipat, Glycolat, Lactat, α-Hydroxybutyrat, Ascorbat, Tartrat, α-Aminoacetat (Glycin) und α-Amino-β-hydroxypropionat (Serin), α-Aminobutyrat, Phthalat und in einer mit einem Chrom-Ion komplexierten Form vorliegt;
    m in Abhängigkeit von der Art des Liganden L einen Wert innerhalb des Bereiches von 1 bis 3 aufweist;
    n einen Wert innerhalb des Bereiches von 0,5 bis 100 aufweist;
    mit der Maßgabe, daß der Ligand L in dem Vernetzungs-/Verzögerungssystem von dem Liganden L' verschieden ist.
  2. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß das molare Verhältnis des Liganden L' zu Chrom in dem Vernetzungs-/Verzögerungssystem innerhalb des Bereichs von 0,5:1 bis 50:1 liegt.
  3. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß die Konzentration der Chrom-Ionen in der Zusammensetzung innerhalb des Bereichs von 10 bis 5 000 ppm und vorzugsweise von 25 bis 800 ppm liegt, wobei die am stärksten bevorzugten Werte die Grösenordnung von 100 bis 600 ppm aufweisen.
  4. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß die Konzentration des in Wasser löslichen organischen Polymers im Bereich von 1 000 bis 80 000 ppm, vorzugsweise von 3 000 bis 50 000 ppm liegt und vorzugsweise innerhalb des Bereichs von 5 000 bis 10 000 ppm liegt, wenn frisches Wasser verwendet wird, und von 10 000 bis 30 000 ppm liegt, wenn Salzwasser verwendet wird.
  5. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß der Ligand L ausgewählt wird aus:
    einem aliphatischen Monocarboxylat-Ion R-COO-,
    einem aliphatischen Dicarboxylat-Ion
    -OOC-(CH2)a-COO- und relevanten Monoestern und Monoamiden,
    einem aliphatischen α-Hydroxycarboxylat-Ion
    R'-CH(OH)-COO- und dessen Lactonen,
    einem aliphatischen α-Aminocarboxylat-Ion
    R"-CH(NH2)-COO-,
    einem aromatischen α-Dicarboxylat-lon und einem aromatischen α-Hydroxycarboxylat-Ion,
    in einer mit einem Chrom-Ion komplexierten Form, worin:
    R ein C1-C6-Alkyl-Rest ist;
    a einen Wert im Bereich von 0 bis 4 aufweist,
    R' ein Wasserstoffatom oder ein Alkyl- oder Hydroxyalkyl-Rest ist, der 1 bis 6 Kohlenstoffatome in seinem Alkyl- oder Hydroxyalkyl-Anteil aufweist;
    R" ein Wasserstoffatom oder ein Alkyl- oder Hydroxyalkyl-Rest ist, der in seinem Alkyl- oder Hydroxyalkyl-Anteil 1 bis 6 Kohlenstoffatome aufweist;
    wenn der Ligand L' aus Malon- und Ascorbinsäuren ausgewählt wird.
  6. Zusammmensetzung nach Anspruch 5,
    dadurch gekennzeichnet, das der Ligand L ausgewählt wird aus: Acetat, Propionat, Butyrat, Malonat, Succinat, Glutarat, Adipat, Glycolat, Lactat, α-Hydroxybutyrat, Ascorbat, Tartrat, α-Aminoacetat (Glycin) und α-Amino-β-hydroxypropionat (Serin), α-Aminobutyrat, Phthalat- und Salicylat-Ion.
  7. Zusammensetzung nach Anspruch 1
    dadurch gekennzeichnet, daß der Ligand L ein Acetat- oder Malonat- oder Glycolat-lon ist.
  8. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß das Vernetzungs-/Verzögerungssystem ausgewählt wird aus:
    Cr(acetat)3 · n-Malonsäure,
    worin n innerhalb des Bereichs von 0,5 bis 100 liegt;
    Cr(acetat)3 · n-Salycilsäure,
    worin n innerhalb des Bereichs von 0,5 bis 50 liegt;
    Cr(acetat)3 · n-Ascorbinsäure,
    worin n innerhalb des Bereichs von 0,5 bis 100 liegt;
    Cr(malonat)3 · n-Salycilsäure,
    worin n innerhalb des Bereichs von 0,5 bis 50 liegt; und
    Cr(glycolat)3 · n-Malonsäure,
    worin n innerhalb des Bereichs von 0,5 bis 100 liegt.
  9. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß das Vernetzungs-/Verzögerungssystem zusätzlich ein oder mehrere Hydroxy-Ionen und/oder neutrale Moleküle und vorzugsweise Wasser oder Pyridin und andere monovalente und divalente anorganische Ionen und vorzugsweise Na+ und K+ enthält, die zum Ausgleich der Ladung des Systems geeignet sind.
  10. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß das organische Polymer ausgewählt wird aus der Gruppe, die aus Acrylamid-Homopolymeren und Acrylamid-Copolymeren mit einem oder mehreren copolymerisierbaren ungesättigten Monomer(en) besteht, ausgewählt aus der Gruppe, die aus Acrylsäure, Methacrylamid, Natrium-2-acrylamido-2-methylpropansulfonat und N-Vinyl-2-pyrrolidon besteht, wobei die Acrylamid-Homopolymere oder Copolymere ein Molekulargewicht aufweisen, das innerhalb des Bereichs von 100 000 bis 20 000 000 und vorzugsweise von 200 000 bis 12 000 000 liegt, wobei die Acrylamid-Homopolymere und Copolymere im wesentlichen nicht hydrolysiert sind (weniger als 1 % der Amid-Gruppen sind zu freien Carboxygruppen hydrolysiert) oder teilweise hydrolysiert sind (mehr als 1 % der Amid-Gruppen sind zu freien Carboxygruppen hydrolysiert).
  11. Zusammensetzung nach Anspruch 10,
    dadurch gekennzeichnet, daß die Copolymere von Acrylamid mit Natrium-2-acrylamido-2-methylpropansulfonat, die Copolymere von Acrylamid mit N-Vinyl-2-pyrrolidon und die Terpolymere von Acrylamid mit Natrium-2-acrylamido-2-methyl-propansulfonat und N-Vinyl-2-pyrrolidon verwendet werden.
  12. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß sie außerdem einen oder mehrere Stabilisator(en) für das Polymer und vorzugsweise Thioharnstoff enthält.
  13. Zusammensetzung nach Anspruch 1,
    dadurch gekennzeichnet, daß sie einen pH-Wert innerhalb des Bereichs von etwa 2 bis etwa 9 und vorzugsweise von der Größenordnung von 4 bis 7 aufweist.
  14. Verfahren zur Verringerung der Permeabilität in einem Petroleum-Reservoir, welches Verfahren die folgenden Schritte umfaßt:
    (a) Herstellung einer gelierbaren wäßrigen Zusammensetzung;
    (b) Einspritzen der gelierbaren Zusammensetzung durch mindestens ein Bohrloch in das Petroleum-Reservoir;
    (c) Durchfließenlassen der Zusammensetzung durch das Reservoir bis es den zu behandelnden Bereich hoher Permeabilität erreicht und im wesentlichen anfüllt; und
    (d) Einleiten der Gelierung der Zusammensetzung, wobei die Permeabilität des vorstehend genannten Bereichs in der Folge verringert wird;
    dadurch gekennzeichnet, daß eine gelierbare Zusammensetzung nach einem der Ansprüche 1 bis 13 verwendet wird.
EP92200820A 1991-03-28 1992-03-21 Gelierbare, wässrige Zusammensetzung mit zeitverzögerter Gelierung Expired - Lifetime EP0506191B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI910858A IT1245383B (it) 1991-03-28 1991-03-28 Composizione acquosa gelificabile avente tempo di gelificazione ritardato
ITMI910858 1991-03-28

Publications (3)

Publication Number Publication Date
EP0506191A1 EP0506191A1 (de) 1992-09-30
EP0506191B1 EP0506191B1 (de) 1995-12-13
EP0506191B2 true EP0506191B2 (de) 1998-08-12

Family

ID=11359325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92200820A Expired - Lifetime EP0506191B2 (de) 1991-03-28 1992-03-21 Gelierbare, wässrige Zusammensetzung mit zeitverzögerter Gelierung

Country Status (10)

Country Link
US (1) US5338465A (de)
EP (1) EP0506191B2 (de)
JP (1) JPH05125354A (de)
BR (1) BR9201086A (de)
CA (1) CA2063877C (de)
DK (1) DK0506191T4 (de)
ES (1) ES2081553T5 (de)
IT (1) IT1245383B (de)
MX (1) MX9201404A (de)
NO (1) NO302841B1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415229A (en) * 1994-01-03 1995-05-16 Marathon Oil Company Hydrocarbon recovery process utilizing a gel prepared from a polymer and a preformed crosslinking agent
US5431226A (en) * 1994-01-03 1995-07-11 Marathan Oil Company Process for reducing permeability in a high-temperature subterranean hydrocarbon-bearing formation utilizing a decarboxylated crosslinking agent
US5421411A (en) * 1994-01-03 1995-06-06 Marathon Oil Company Process for reducing permeability in a subterranean hydrocarbon-bearing formation utilizing a gelation solution having a controlled gelation rate
EA199901013A1 (ru) * 1997-05-16 2000-06-26 Амген Инк. Гели пролонгированного действия
US6152234A (en) 1998-06-10 2000-11-28 Atlantic Richfield Company Method for strengthening a subterranean formation
US6189615B1 (en) 1998-12-15 2001-02-20 Marathon Oil Company Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6166103A (en) * 1998-12-21 2000-12-26 Atlantic Richfield Company Aqueous gelable compositions with delayed gelling times
US6156819A (en) * 1998-12-21 2000-12-05 Atlantic Richfield Company Use of low- and high-molecular-weight polymers in well treatments
US6133204A (en) * 1999-02-09 2000-10-17 Atlantic Richfield Company Use of oil-based gel-breaker/inhibitor compounds with polymer gels in well treatments
US6265355B1 (en) 1999-02-09 2001-07-24 Atlantic Richfield Company Gel-breaker composition and a method for breaking a gel
AU2002347160A1 (en) * 2001-12-07 2003-06-17 Aqueolic Canada Ltd. Method for terminating or reducing water flow in a subterranean formation
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7091160B2 (en) * 2004-06-24 2006-08-15 Halliburton Energy Services, Inc. Methods and compositions for reducing subterranean formation permeabilities
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US8688161B2 (en) * 2006-02-22 2014-04-01 Qualcomm Incorporated System and method for creating an ad hoc group in a push-to-talk system
US7772162B2 (en) * 2006-03-27 2010-08-10 Board Of Regents, The University Of Texas System Use of fluorocarbon surfactants to improve the productivity of gas and gas condensate wells
US20070225176A1 (en) * 2006-03-27 2007-09-27 Pope Gary A Use of fluorocarbon surfactants to improve the productivity of gas and gas condensate wells
US20080047706A1 (en) * 2006-08-23 2008-02-28 Pope Gary A Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
US20080051300A1 (en) * 2006-08-23 2008-02-28 Pope Gary A Compositions and method for improving the productivity of hydrocarbon producing wells
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
WO2008118242A1 (en) * 2007-03-23 2008-10-02 Board Of Regents, The University Of Texas System Compositions and methods for treating a water blocked well
MX2009010142A (es) * 2007-03-23 2010-03-22 Univ Texas Composiciones y metodos para tratar un pozo de agua bloqueado.
MX2009010143A (es) * 2007-03-23 2010-03-22 Univ Texas Metodo para tratar una formacion fracturada.
WO2008118239A1 (en) * 2007-03-23 2008-10-02 Board Of Regents, The University Of Texas System Method for treating a hydrocarbon formation
US9353309B2 (en) 2007-03-23 2016-05-31 Board Of Regents, The University Of Texas System Method for treating a formation with a solvent
EP2134803A4 (de) * 2007-03-23 2011-08-03 Univ Texas Verfahren und system zur behandlung von kohlenwasserstoffformationen
US7857078B2 (en) * 2007-05-29 2010-12-28 Baker Hughes Incorporated Cutting tools and methods of making the same
BRPI0819664B1 (pt) * 2007-11-30 2018-11-13 3M Innovative Properties Co métodos para melhorar a produtividade de poços de produção de petróleo
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US8975217B2 (en) * 2009-06-23 2015-03-10 Halliburton Energy Services, Inc. Methods for treating a well with a cross-linked water-soluble polymer-complexed metal cation network and an aromatic compound capable of forming a chelating agent to uncross-link the polymer
BR112012003035A2 (pt) * 2009-08-12 2016-04-19 Basf Se sais orgânicos para a redução de permeabilidades da rocha.
US8653011B2 (en) * 2009-11-12 2014-02-18 Schlumberger Technology Corporation Gelled hydrocarbon system and method with dual-function viscosifier/breaker additive
US8663596B2 (en) * 2010-01-25 2014-03-04 Fluor Enterprises, Inc. Reactor, a structure packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
US8361432B2 (en) 2010-12-08 2013-01-29 Fluor Enterprises, Inc. Reactor, a retained catalyst structure, and a method for improving decomposition of polysulfides and removal of hydrogen sulfide in liquid sulfur
JP5995306B2 (ja) * 2012-03-22 2016-09-21 国立研究開発法人産業技術総合研究所 低分子ゲル化剤及び該ゲル化剤を用いたヒドロゲル
US9796909B2 (en) * 2013-01-18 2017-10-24 Conocophillips Company Nanogels for delayed gelation
US10689965B2 (en) * 2013-08-26 2020-06-23 Repsol, S.A. Field development plan selection system, method and program product
AU2015350513B2 (en) 2014-11-19 2019-08-15 Conocophillips Company Delayed gelation of polymers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552217A (en) * 1984-07-09 1985-11-12 Phillips Petroleum Company Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
US4636572A (en) * 1985-03-11 1987-01-13 Phillips Petroleum Company Permeability contrast correction employing propionate-sequestered chromium(III) prepared by nitrite/dichromate redox
US4683949A (en) * 1985-12-10 1987-08-04 Marathon Oil Company Conformance improvement in a subterranean hydrocarbon-bearing formation using a polymer gel
US4706754A (en) * 1986-03-14 1987-11-17 Marathon Oil Company Oil recovery process using a delayed polymer gel
US4770245A (en) * 1986-10-14 1988-09-13 Marathon Oil Company Rate-controlled polymer gelation process for oil recovery applications
US4917186A (en) * 1989-02-16 1990-04-17 Phillips Petroleum Company Altering subterranean formation permeability
US5010954A (en) * 1989-03-30 1991-04-30 Marathon Oil Company Gel composition and method of treatment
IT1229219B (it) * 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa gelificabile e suo uso nel recupero assistito del petrolio.
IT1229218B (it) * 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa tamponata gelificabile e suo impiego nei procedimenti di recupero assistito del petrolio.
IT1229217B (it) * 1989-03-31 1991-07-26 Eniricerche S P A Agip S P A Composizione acquosa gelificabile e suo impiego nei procedimenti di recupero assistito del petrolio.
US5069281A (en) * 1990-11-05 1991-12-03 Marathon Oil Company Process for enhanced delayed in situ gelation of chromium polyacrylamide gels

Also Published As

Publication number Publication date
NO302841B1 (no) 1998-04-27
NO921053D0 (no) 1992-03-18
DK0506191T3 (da) 1996-03-04
DK0506191T4 (da) 1999-05-17
IT1245383B (it) 1994-09-20
ITMI910858A0 (it) 1991-03-28
CA2063877A1 (en) 1992-09-29
NO921053L (no) 1992-09-29
US5338465A (en) 1994-08-16
CA2063877C (en) 2003-05-13
MX9201404A (es) 1992-09-01
ITMI910858A1 (it) 1992-09-28
BR9201086A (pt) 1992-11-24
EP0506191A1 (de) 1992-09-30
ES2081553T5 (es) 1999-02-16
ES2081553T3 (es) 1996-03-16
EP0506191B1 (de) 1995-12-13
JPH05125354A (ja) 1993-05-21

Similar Documents

Publication Publication Date Title
EP0506191B2 (de) Gelierbare, wässrige Zusammensetzung mit zeitverzögerter Gelierung
US5143958A (en) Gellable aqueous composition and its use in enhanced petroleum
US5219476A (en) Gellable aqueous composition and its use in enhanced petroleum recovery
US5131469A (en) Gellable aqueous compositions and its use in enhanced petroleum recovery
EP0506192B1 (de) Gellierbare wässrige Zusammensetzung, verwendbar zum Modifizieren der Permeabilität eines Erdölreservoirs
US4552217A (en) Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
CA2107550C (en) Gelling compositions useful for oil field applications
US6196317B1 (en) Method and compositions for reducing the permeabilities of subterranean zones
US5789351A (en) Compositions useful for treating oil-bearing formation
US6176315B1 (en) Preventing flow through subterranean zones
EP0544377B1 (de) Wässrige gelierbare Zusammensetzung enthaltend ein Anti-Syneresis-Agens
US5069281A (en) Process for enhanced delayed in situ gelation of chromium polyacrylamide gels
NO300183B1 (no) Fremgangsmåte til å endre permeabiliteten av en underjordisk formasjon og anvendelse av en blanding av ioner i denne
US5133408A (en) Rate controllable gel for conformance improvement treatment in a subterranean hydrocarbon-bearing formation
US4678032A (en) Polymer and method for permeability profile control under severe reservoir conditions
US4629747A (en) Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
CA2013468C (en) Method and composition for reducing the permeability of a high-permeability zone in an oil reservoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK ES FR GB NL

17P Request for examination filed

Effective date: 19930113

17Q First examination report despatched

Effective date: 19940125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK ES FR GB NL

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081553

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: MARATHON OIL COMPANY

Effective date: 19960912

NLR1 Nl: opposition has been filed with the epo

Opponent name: MARATHON OIL COMPANY

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19980812

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DK ES FR GB NL

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19981111

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070326

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070329

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070319

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080322