EP0505805A2 - Integriertes Ansaugsystem - Google Patents
Integriertes Ansaugsystem Download PDFInfo
- Publication number
- EP0505805A2 EP0505805A2 EP92103968A EP92103968A EP0505805A2 EP 0505805 A2 EP0505805 A2 EP 0505805A2 EP 92103968 A EP92103968 A EP 92103968A EP 92103968 A EP92103968 A EP 92103968A EP 0505805 A2 EP0505805 A2 EP 0505805A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- suction
- cylinder
- motor
- cylinder head
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 32
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 239000004033 plastic Substances 0.000 claims abstract description 10
- 229920003023 plastic Polymers 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 12
- 238000012546 transfer Methods 0.000 abstract description 9
- 239000007789 gas Substances 0.000 abstract 3
- 239000000463 material Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- SYJPAKDNFZLSMV-HYXAFXHYSA-N (Z)-2-methylpropanal oxime Chemical compound CC(C)\C=N/O SYJPAKDNFZLSMV-HYXAFXHYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/123—Fluid connections
Definitions
- the present invention relates to hermetic compressors and, more particularly, to a suction system for a hermetic compressor.
- Hermetic compressors are utilized for circulating a refrigerant gas through a closed refrigerant system.
- the refrigerant vapor is fed into the interior of the compressor through an intake pipe in the sealed housing defining the compressor.
- the refrigerant vapor is introduced into a compressor cylinder wherein the vapor is compressed by a piston within the cylinder resulting in an increase in temperature.
- the vapor exits the cylinder through an exhaust valve, consequently flowing into the discharge portion of the compressor to circulate through the external refrigerant system to return to the compressor unit.
- hermetic motor compressors employ a shroud over the open end of the motor assembly to attenuate suction noise generated by pressure pulsations produced by the compressor.
- compressor cylinder heads for handling the gas flow for both the discharge and suction sides are manufactured from cast iron or aluminum to provided side-by-side or adjacent suction and discharge cavities separated by dividing walls which were preferably made as thin as possible to allow a maximum suction and discharge plenum volume in the limited amount of available space.
- some efforts to overcome the overheating of the suction gas in the cylinder head suction plenum have resulted in tubular liners fabricated from a low thermal conductivity plastic preventing heat transfer to the suction gas, eliminating the suction plenum in the cylinder head and attaching a suction conduit to the relatively thin valve plate, or manufacturing the suction muffler out of a low thermal conductivity plastic.
- Further arrangements have included utilizing separate discharge and suction cylinder heads for the discharge and suction chambers while the suction cylinder head is formed of a plastic material of low thermal conductivity to minimize heat transfer between the suction and discharge cylinder heads.
- the present invention provides, in a compressor, a one-piece integral suction adaptor accommodating suction porting while defining a suction plenum, disposed on a cylinder head defining separate discharge chambers and porting, which draws suction gas from the interior of the compressor housing.
- the suction adaptor also includes suction porting communicating with a passage in the cylinder block allowing gas to flow through the motor to effect cooling thereof while providing a continuous circulating flow of refrigerant gas into the integral suction adaptor.
- the present invention in one form thereof, provides a one-piece integral suction adaptor disposed on the cylinder head in which a main portion of the refrigerant gas is drawn from the interior of the compressor housing located in the close proximity of the compressor housing intake pipe, or intermediate suction muffler between the intake pipe and the integral suction adaptor, while another portion of the refrigerant gas is drawn through the motor rotor-stator gap to effect cooling of the motor thereof.
- the integral suction adaptor is constructed such that there is a continuous flow of the refrigerant gas through the motor rotor-stator gap necessary for motor cooling, and this portion of refrigerant gas combined with the main portion of the refrigerant gas is delivered to one of the cylinders without contacting any hot surface of the cylinder head or other parts.
- the integral suction adaptor is preferably made from plastic to reduce the transfer of heat from the compressor parts and walls of the housing to the intake refrigerant gas.
- the exterior walls of the discharge cavities of the cylinder head adjacent to the exterior walls of the suction plenums of the integral suction adaptor are spaced from each other to provide an additional thermal barrier and further reduce suction gas heating in the cavities and passage of the cylinder head and integral suction adaptor.
- O-rings are disposed in grooves within the space between the exterior walls of the discharge cavities of the cylinder head and the exterior walls of the suction plenums of the integral suction adaptor allowing a press-fit joining of the integral suction adaptor onto the cylinder head providing vibration dampening while effecting sealing.
- a gas flow system comprises a cylinder head disposed on the valve plate having walls defining a closed discharge chamber, motor cooling means for cooling the motor by flowing refrigerant through said motor, and a low thermal conductivity suction tube defining a suction plenum disposed on said cylinder head having a suction inlet port in fluid communication with the internal low pressure cavity, including an elongate conduit and a first adjutage extending through said cylinder suction opening and extending to the valve plate (but not interfering with it) for bypassing the cylinder head, a motor flowthrough opening communicating with said internal low pressure cavity and adapted to receive refrigerant from the motor cooling means.
- Compressor 10 includes a sealed compressor housing 12 encapsulating the remainder of the compressor components and defining an internal, low pressure cavity 14. Disposed within housing 12 is a cylinder block 16 supporting a crankshaft 18 which is driven by a motor 20 which includes a stator 22 and rotor 24 each having windings thereon. Shock mounts 34 attached to cylinder block 16 and housing 12 suspend the compressor components within housing 12.
- orientation of compressor 10 in the illustrated preferred embodiment is with cylinder block 16 suspended vertically beneath motor 20.
- cylinder block 16 suspended vertically beneath motor 20.
- other orientations of the compressor components are contemplated and fall within the scope and spirit of the present invention.
- crankpins 26 and 27 Attached to crankshaft 18 within cylinder block 16 are crankpins 26 and 27, respectively connected to connecting rods 28 and 29, which are in turn respectively connected to pistons 30 and 31, within respective cylinders 32 and 33.
- the lower end 36 of crankshaft 18 is radially surrounded by bushing 38 in outboard bearing 40 which is fixedly mounted to cylinder block 16 by bearing bolts 42.
- a valve plate 44 is disposed on the end of cylinders 32 and 33 and supports the suction and discharge valving (not shown) to and from the cylinders.
- Valve plate 44 includes a suction aperture 46 (Fig. 2) communicating with a cylinder block passage 48 adjacent stator 22 of motor 20.
- Valve plate 44 also includes cylinder suction apertures 43 and 45 respectively communicating with cylinders 32 and 33.
- Cylinder block passage 48 communicates with stator/rotor cavity 50 and stator/rotor gap 52 to provide a continuous suction path through the stator/rotor gap 52 effecting cooling of motor 20 and providing an additional suction source.
- a cylinder head 54 is mounted over valve plate 44 separated by a gasket 56.
- an integral suction adaptor 58 (to be described in detail hereinbelow) is disposed on cylinder head 54 and is connected to suction muffler 60 by way of suction connector 62.
- integrally formed in cylinder head 54 are discharge cavities 64 and 65 which communicate with discharge port 66, discharge muffler 67, discharge tube 68, and outlet 69 (see FIG. 1).
- a pressure relief valve 70 is also in communication with discharge cavities 64 and 65 should excess pressure in cylinder head 54 require venting.
- integrally formed in cylinder head 54 are cylinder suction openings 72 and 73, and a rotor/stator flowthrough suction opening 74 separated from the high pressure discharge cavities 64 and 65 by cylindrical cylinder head walls 76, 77, and 78 respectively.
- Cylinder suction openings 72 and 73 are disposed over cylinders 32 and 33, respectively, while rotor/stator flowthrough suction opening 74 is disposed over cylinder block passage 48 so as to allow suction gas entry flowing through motor 20.
- cylinder head 54 also includes bolt holes 88 in which bolts 89 (shown in FIG. 1) are accommodated in order to secure cylinder head 54 to cylinder block 16.
- Integral suction adaptor 58 is made from a thermally low conductivity plastic such as Nylon® or Valox®, although other known thermally low conductivity plastics or materials may be utilized, in order to reduce the transfer of heat to the intake refrigerant gas from the compressor parts and walls of the housing.
- Integral suction adaptor 58 includes suction connector 62 integral with a tubular-like conduit 90 defining a suction plenum.
- conduit 90 Along the longitudinal length of conduit 90 nearest suction connector 62 is a rotor/stator suction port 92 defined by a circular protruding wall 94 radially extending from conduit 90 and which is adapted to be received through rotor/stator suction opening 74 of cylinder head 54.
- a rotor/stator suction port 92 defined by a circular protruding wall 94 radially extending from conduit 90 and which is adapted to be received through rotor/stator suction opening 74 of cylinder head 54.
- two cylinder intake ports 96 and 97 defined by adjutages 98 and 99 radially extending from conduit 90 and which are adapted to be respectively received through cylinder suction openings 72 and 73 of cylinder head 54.
- the integral suction adaptor 58 cam be modified to accommodate a one cylinder compressor by having only one cylinder intake port defined by one adjutage.
- integral suction adaptor 58 is coupled to cylinder head 54 by fitting the radially extending ports 92, 96, and 97, which preferably extend (but not interfere) substantially to the surface 49 of valve plate 44, respectively into rotor/stator suction opening 74 and cylinder intake ports 96 and 97, being held into place by O-rings 86, 84, and 85.
- the integral suction adaptor 58 can be slightly displaced to all sides in a plane perpendicular to the axes of cylinders 32 and 33. This connection feature also facilitates assembly because the integral suction adaptor 58 can be pushed in the cylinder head openings.
- the integral suction adaptor 58 can also be strapped across the cylinder head.
- the O-rings also act as damping elements which oppose the transmission of sounds and vibrations from cylinder head 54 to the thinner wall of the integral suction adaptor 58.
- the O-rings work as sealing elements which separate the interior of the rotor/stator suction port and the cylinder intake ports from the interior compressor cavity 14.
- compressor 10 During operation of compressor 10, refrigerant enters housing 12 through inlet pipe 100. Because inlet pipe 100 opens into interior cavity 14 of housing 12, the compressor 10 of FIGS. 1 and 2 is a low back pressure compressor operating at suction pressure. The direction of refrigerant flow is depicted by arrows. The main portion of the intake refrigerant gas is drawn into suction muffler 60 and into plenum conduit 90 which is in fluid communication with cylinder intake ports 96 and 97 which are respectively arranged over and in fluid communication with cylinders 32 and 33.
- integral suction adaptor is in fluid communication with cylinder block passage 48 via suction aperture 46 in valve plate 44 and rotor/stator suction port 72 of the integral suction adaptor 58, a portion of the refrigerant gas is drawn through the stator/rotor gap 52 into the stator/rotor cavity 50 to effect necessary cooling of motor 20, which also provides a continuous flow of refrigerant gas into plenum conduit 90 of the integral suction adaptor 58.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US676959 | 1984-12-03 | ||
US67695991A | 1991-03-28 | 1991-03-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0505805A2 true EP0505805A2 (de) | 1992-09-30 |
EP0505805A3 EP0505805A3 (en) | 1992-11-25 |
EP0505805B1 EP0505805B1 (de) | 1995-03-08 |
Family
ID=24716725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920103968 Expired - Lifetime EP0505805B1 (de) | 1991-03-28 | 1992-03-09 | Integriertes Ansaugsystem |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0505805B1 (de) |
JP (1) | JPH05126050A (de) |
BR (1) | BR9201009A (de) |
CA (1) | CA2063942C (de) |
DE (1) | DE69201580T2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0845595A1 (de) * | 1996-06-14 | 1998-06-03 | Matsushita Refrigeration Company | Hermetisch gekapselter kompressor |
WO1999011929A2 (de) * | 1997-08-29 | 1999-03-11 | Luk Fahrzeug-Hydraulik Gmbh & Co. Kg | Kolbenkompressor für kältemittel mit wärmeisolation |
KR20210043938A (ko) * | 2019-10-14 | 2021-04-22 | 엘지전자 주식회사 | 리니어 압축기 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2951463A1 (de) * | 1979-12-20 | 1981-07-02 | Copeland Corp., Sidney, Ohio | Kompressoransaugsystem |
US4487555A (en) * | 1981-02-13 | 1984-12-11 | Mitsubishi Denki Kabushiki Kaisha | Hermetic motor compressor |
JPS6073072A (ja) * | 1983-09-30 | 1985-04-25 | Toshiba Corp | 密閉形圧縮機 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55150880A (en) * | 1979-05-11 | 1980-11-25 | Isao Muramatsu | Preparation of fish paste product containing fish eggs |
JPS5868753A (ja) * | 1981-10-21 | 1983-04-23 | Fuji Photo Film Co Ltd | カプセルトナ− |
JPH01121575A (ja) * | 1987-11-02 | 1989-05-15 | Matsushita Refrig Co Ltd | 密閉型電動圧縮機 |
-
1992
- 1992-03-09 EP EP19920103968 patent/EP0505805B1/de not_active Expired - Lifetime
- 1992-03-09 DE DE1992601580 patent/DE69201580T2/de not_active Expired - Fee Related
- 1992-03-24 BR BR9201009A patent/BR9201009A/pt not_active IP Right Cessation
- 1992-03-25 CA CA 2063942 patent/CA2063942C/en not_active Expired - Fee Related
- 1992-03-30 JP JP10367692A patent/JPH05126050A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2951463A1 (de) * | 1979-12-20 | 1981-07-02 | Copeland Corp., Sidney, Ohio | Kompressoransaugsystem |
US4487555A (en) * | 1981-02-13 | 1984-12-11 | Mitsubishi Denki Kabushiki Kaisha | Hermetic motor compressor |
JPS6073072A (ja) * | 1983-09-30 | 1985-04-25 | Toshiba Corp | 密閉形圧縮機 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, unexamined applications, M field, vol. 9, no. 213, August 30, 1985 THE PATENT OFFICE JAPANESE GOVERNMENT page 151 M 408 Kokai-no. 60-73 072 (TOSHIBA) & JP-A-60-73 072 (TOSHIBA) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0845595A1 (de) * | 1996-06-14 | 1998-06-03 | Matsushita Refrigeration Company | Hermetisch gekapselter kompressor |
EP0845595A4 (de) * | 1996-06-14 | 2001-03-21 | Matsushita Refrigeration | Hermetisch gekapselter kompressor |
WO1999011929A2 (de) * | 1997-08-29 | 1999-03-11 | Luk Fahrzeug-Hydraulik Gmbh & Co. Kg | Kolbenkompressor für kältemittel mit wärmeisolation |
WO1999011929A3 (de) * | 1997-08-29 | 1999-06-10 | Luk Fahrzeug Hydraulik | Kolbenkompressor für kältemittel mit wärmeisolation |
GB2348467A (en) * | 1997-08-29 | 2000-10-04 | Luk Farhrzeug Hydraulik Gmbh & | Piston compressor for refrigerant, with thermal insulation |
US6457947B1 (en) | 1997-08-29 | 2002-10-01 | Luk Fahrzeug-Hydraulik Gmbh & Co. Kg | Piston compressor for refrigerant, with thermal insulation |
KR20210043938A (ko) * | 2019-10-14 | 2021-04-22 | 엘지전자 주식회사 | 리니어 압축기 |
Also Published As
Publication number | Publication date |
---|---|
JPH05126050A (ja) | 1993-05-21 |
DE69201580D1 (de) | 1995-04-13 |
BR9201009A (pt) | 1992-11-24 |
EP0505805A3 (en) | 1992-11-25 |
CA2063942C (en) | 1996-09-10 |
EP0505805B1 (de) | 1995-03-08 |
DE69201580T2 (de) | 1995-07-06 |
CA2063942A1 (en) | 1992-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5224840A (en) | Integral suction system | |
US7210912B2 (en) | Reciprocating piston compressor having improved noise attenuation | |
US5577898A (en) | Suction muffler arrangement for a hermetic reciprocating compressor | |
US4784581A (en) | Compressor head and suction muffler for hermetic compressor | |
US4911619A (en) | Suction system of hermetic refrigeration compressor | |
CA1151553A (en) | Suction muffler for refrigeration compressor | |
US4964378A (en) | Engine cooling system | |
ITTO970554A1 (it) | Compressore ad aria a due cilindri. | |
US4881879A (en) | Rotary compressor gas routing for muffler system | |
KR101215607B1 (ko) | 열 소산 시스템을 구비하는 밀폐형 압축기 | |
US5556265A (en) | Multi-piston type refrigerant compressor with means for damping suction and discharge gas pulsation | |
CA2231900C (en) | Suction manifolding arterial cylinder blocks and pistons for compressors and pumps | |
EP1450043B1 (de) | Kompressor | |
US20030133813A1 (en) | Gas compressor and method with an improved inlet and discharge valve arrangement | |
EP0505805B1 (de) | Integriertes Ansaugsystem | |
JP3556905B2 (ja) | 垂直軸の周りを回転するクランク軸を有する特に単気筒ディーゼルエンジン等の空冷式内燃エンジン | |
EP1205644B1 (de) | Ölgekühlte Brennkraftmaschine | |
US4549857A (en) | Hermetic motor compressor having a suction inlet and seal | |
EP0322531B1 (de) | Gasleit der Schalldämpfungseinrichtung für Drehkolbenverdichter | |
JP2006077766A (ja) | 多気筒往復圧縮機 | |
USRE33902E (en) | Compressor head and suction muffler for hermetic compressor | |
JP3516879B2 (ja) | 密閉型圧縮機 | |
CN109891094B (zh) | 两级空气压缩机 | |
KR100314013B1 (ko) | 리니어 압축기의 흡입소음기 구조 | |
JPH02264189A (ja) | 横置形回転式圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19930218 |
|
17Q | First examination report despatched |
Effective date: 19940216 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950302 Year of fee payment: 4 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69201580 Country of ref document: DE Date of ref document: 19950413 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960309 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990224 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050309 |