EP0504052A1 - Appareil électroménager à programmateur comprenant une base de temps électromécanique et une base de temps électronique - Google Patents

Appareil électroménager à programmateur comprenant une base de temps électromécanique et une base de temps électronique Download PDF

Info

Publication number
EP0504052A1
EP0504052A1 EP92400646A EP92400646A EP0504052A1 EP 0504052 A1 EP0504052 A1 EP 0504052A1 EP 92400646 A EP92400646 A EP 92400646A EP 92400646 A EP92400646 A EP 92400646A EP 0504052 A1 EP0504052 A1 EP 0504052A1
Authority
EP
European Patent Office
Prior art keywords
micromotor
program
time
module
electromechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92400646A
Other languages
German (de)
English (en)
Inventor
Martine Gonon
Michel Kubacsi
Bruno Montagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Industrielle dAppareils Menagers SA CIAPEM
Original Assignee
Compagnie Industrielle dAppareils Menagers SA CIAPEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Industrielle dAppareils Menagers SA CIAPEM filed Critical Compagnie Industrielle dAppareils Menagers SA CIAPEM
Publication of EP0504052A1 publication Critical patent/EP0504052A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H43/00Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed
    • H01H43/10Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed with timing of actuation of contacts due to a part rotating at substantially constant speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/06Timing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2101/12Washing temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/16Washing liquid temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/10Temperature of washing liquids; Heating means therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/52Changing sequence of operational steps; Carrying out additional operational steps; Modifying operational steps, e.g. by extending duration of steps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/56Remaining operation time; Remaining operational cycles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H43/00Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed
    • H01H43/10Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed with timing of actuation of contacts due to a part rotating at substantially constant speed
    • H01H2043/108Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed with timing of actuation of contacts due to a part rotating at substantially constant speed where at least some contacts of electromechanical timer give instructions to electronic timer and/or the timing motor is under control of electronic timer, e.g. hybrid timer

Definitions

  • the invention relates to an appliance with a programmer such as a washing machine, a dryer or a dishwasher.
  • washing machine To simplify the presentation we will refer in what follows most of the time to a washing machine. However, the invention generally applies to any type of household appliance with a programmer.
  • washing machines operate automatically under the control of a programmer. Most of the time, this latter includes an electromechanical part with an electric motor driving a system of cams acting on control switches for the various parts of the machine: solenoid valve, heating resistor, drain pump. This electromechanical element is most often associated with an electronic module.
  • the time base, or clock of the programmer is determined only by the rotation of a cam which rotates continuously; in the second type the clock is only electronic, that is to say incorporated into the electronic module.
  • the electronic module In the first type of programmer - called a continuously rotating cam - the electronic module is generally used to control the speed, direction and times of rotation of the drum drive motor, and for safety functions.
  • the most efficient programmers allow you to vary the duration of the various operating phases of the washing machine depending on the type of fabric and / or load.
  • the electromechanical element is then dimensioned on the program of longer duration than can run the machine and a second motor is coupled to the cams to make them advance more quickly in certain cases, for example when the load of laundry is low.
  • Such a programmer usually has several basic times. It is complex and therefore expensive to produce.
  • the second type of programmer with an electronic clock only, the electromechanical element of which - which has no time base function - consists of an electric motor driving cam means whose purpose is to act on switches or power switches, is also expensive because it is equipped with a powerful microprocessor and a control of passage of steps of the electromechanical element.
  • the electronic module is equipped with EEPROM memories, or means are provided so that the position of the cam block of the 'electromechanical element gives information on the state of execution of the program by means of coding between the cams and the electronic module, all program steps must of course be coded.
  • the invention provides an inexpensive programmer making it possible to vary at will the duration of each operating phase of the device which it equips.
  • the programmer of the device comprises an electromechanical element with an electric motor, preferably a single one, driving a continuously rotating cam and having a time base (also preferably unique); it is characterized in that it further comprises an electronic module which has a clock constituting a second time base of the programmer and which is capable of controlling the stopping of the motor of the electromechanical element for determined times.
  • the time base which controls the program will be either that of the electromechanical element, or that of the electronic module.
  • the electromechanical element can be made very simple without significantly increasing the cost of the electronic module.
  • this electromechanical element does not require - unlike the programmers in which the time base is only in the electronic module - means for controlling passage of steps or systematic coding of all the programming steps.
  • the program execution status is directly represented by the position of the cam block without the need for complex decoding.
  • the position of the cam block is not coded. In this case it is the proper position of this block of cams of the electromechanical element which represents the state of execution of the program.
  • the position of the cam block is coded, which gives information directly to the electronic module to restart the execution of the program after restoration of the power supply.
  • coding is simpler than with a time-only electronic program because the number of steps can be reduced.
  • the time base can be brought in at will, either mostly on the electromechanical element, or mostly on the electronic module. There is thus a degree of freedom which makes it possible to optimize the cost of producing the programmer with a simple electromechanical element and / or an equally simple microprocessor.
  • the invention makes it possible to reduce the number of programming steps which, on the electromechanical element, are necessary for carrying out a washing; it is thus possible to increase the number of different cycles which can be controlled by the same programmer.
  • the electromechanical element of the programmer is dimensioned to impose the program of shorter duration and / or to carry out the sequence of the minimum number of different "electrical states" which are necessary to execute a program. In this way, rapid washing or washing at reduced load or soaking functions are carried out with a single motor and a single time delay for the electromechanical element. For the other programs, the increase in duration is determined by the electronic module which controls the stops of the electromechanical element motor. Thus it is not necessary that this electromechanical element comprises a second motor for controlling the rapid rotation of the cam; and it is not necessary either that this electromechanical element has several internal timers.
  • the electronic module controls the direction of rotation of the drum drive motor and that the cam (s) of the electromechanical element do not intervene for this control.
  • the single time base imposed by the rotation of a cam is advantageously short, preferably less than 3 minutes.
  • a value of the single time base of the electromechanical element will be chosen, the lower the more often the clock of the electronic module is used and / or the more complex the programming, ie that is, it allows a greater number of possibilities for operating cycles.
  • the electromechanical element With a short electromechanical element time base, the electromechanical element can be simplified as much as possible and involve the time base electronics for practically every phase of the device program.
  • Such a household appliance (not shown as a whole) usually comprises a perforated drum containing the laundry and driven in rotation in one direction and in another by a motor 10 ( Figure 1).
  • the perforated drum is placed in a tank containing water and detergents.
  • the operation of the washing machine is fully automatic, under the control of a programmer.
  • the latter therefore controls the various operations of the device: opening and closing of a water supply solenoid valve, introduction of the various detergents, supply of the water heating resistor (s), control of operation of the drum drive motor 10, operation of the drain pump and safety checks.
  • the programmer comprises an electromechanical member 11 with synchronous electric motor 12 driving a continuously rotating cam which itself drives a cam block 13 (sometimes called “cam block” 13) acting on switches (not shown) for controlling the various components of the washing machine: solenoid valves, water heating resistor (s), drain pump, motor supply 10. It also includes an electronic module 14 which, according to one aspect of the invention, controls the supply of the synchronous motor 12 of the member 11.
  • the electric motor 10 for driving the drum will be called “motor” and the motor 12 for driving the cams 13 will be called “micromotor”.
  • the progression, or advance by step of the cam block is controlled by the continuously rotating cam. More precisely, a revolution of the continuously rotating cam causes, in the example, a rotation of 6 ° of the cam block and this rotation of 6 ° corresponds to a passage of steps and therefore to a modification of the state d 'a switch or an electrical situation.
  • the electronic module 14 comprises a microcontroller or microprocessor 15 having a clock which constitutes a second time base of the programmer, the first time base being the rotation of the continuously rotating cam driven by the micromotor 12.
  • the microcontroller or microprocessor 15 may be replaced by any other electronic device performing the same function.
  • the microcontroller 15 receives, by coding wires 161, information on certain positions of the cam unit 13.
  • the microcontroller can permanently receive information on the state of execution of the washing program, which allows, in particular after switching off then restoring the electrical power supply to the machine, restarting the program where it stopped at the time of switching off.
  • the restarting of the operation after cutting the power supply will be carried out according to the position of the cams of the electromechanical element.
  • the microcontroller 15 controls by one of its outputs 151, and by means of an interface 17, the direction of rotation of the motor 10. In fact, as will be seen below in detail, it is necessary, when the microphone -motor is stopped on command of the micro-controller 15, that the latter continues to supply the power to the drive motor 10 in one direction and in the other of the tank
  • FIG. 1 also shows an input 15 2 of the microcontroller 15 which is connected to a member 18, such as a potentiometer, for adjusting the temperature of the washing water, which is located on the control panel of machine and therefore adjustable by the user.
  • a member 18 such as a potentiometer
  • an input 153 of the microcontroller 15 receives a signal supplied by a probe 19 for measuring the temperature of the water in the tank of the washing machine.
  • the signals supplied by the potentiometer 18 and the probe 19 allow the microcontroller to control the supply of the water heating resistor.
  • the microprocessor acts on the power supply of the micromotor 12 driving the cams 13 which open or close a switch for switching on the heating resistance of the water.
  • An output 154 of the microcontroller 15 is connected to the trigger of a triac 16 (FIGS. 1 and 2) for controlling the power of the micromotor 12
  • the triac 16 is in parallel on the micromotor 12, this assembly in parallel being itself in series with a current limiting resistor 20.
  • the micromotor 12 stops when the triac 16 is conductive
  • the triac 161 is in series with the micromotor 121.
  • the micromotor 121 rotates when the triac 161 is conductive.
  • FIG. 2a there is provided a switch 100 in parallel on the resistor 20, this switch 100 being controlled by the electromechanical member. It allows in certain cases, when the clock is imposed by the electromechanical element itself, to control the powering down of the micromotor 12
  • a switch 101 is in parallel on the triac 16ac.
  • the electromechanical member 11 is dimensioned so that, in the absence of a power supply interruption to the micromotor 12 controlled by the module 14, the program executed is the program of shorter duration than the machine executes. For the other programs, therefore of longer durations, the module 14 intervenes at least once to interrupt the rotation of the micromotor 12; The module 14 therefore extends the execution time of the program by this stop time. Alternatively, even the shortest program involves one or more stops of the micromotor 12; this variant can be used to simplify organ 11 as much as possible.
  • the electronic time base of the module 14 it is preferable for the electronic time base of the module 14 to intervene for phases of the program extending over a relatively long period, for example of several minutes, and during which the member 11 does not command no switch. In fact, the less the member 11 intervenes, that is to say the more the micromotor 12 is stopped, the simpler the production of the cam assembly 13.
  • the operation phase of the device which is generally the longest is that of heating the water of washing.
  • the first example to be described relates to this phase.
  • T p is the temperature programmed using potentiometer 18
  • K is the coefficient of rise in the temperature of the detergent bath as a function of time, expressed in degrees per minute
  • t0 is the basic time, expressed in minutes, of the member 11 (one turn of the continuously rotating cam). This time is for example 1.5 minutes.
  • the time base of module 14 is however usable to carry out heating stages with or without stirring of the linen.
  • Bearings can also be carried out without mixing or with reduced mixing. It is then soaking. In this case, the duration of the plateau is longer. Soaking is effective for washing particularly dirty laundry.
  • FIG. 4 is a diagram showing the temperature T of the water as a function of the time t during the heating period.
  • Phase I between instants 0 and t1, is executed as described above for heating.
  • the module 14 determines the time of the bearing II during which a stirring is carried out. This time is preferably an integer, Q, of base time t0 of the member 11.
  • the module 14 stops the micromotor 12 during the time (t2 - t1) of the level less the basic time t0, that is to say in the present case (Q - 1) t0. As a result of this time (Q - 1) t0 the micromotor 12 turns again and at the end of a rotation of the time base cam we go to the next step, that is to say that we start again to heat the water in the detergent bath
  • the micromotor 12 stops when the microprocessor receives from the probe 19 the information that the temperature of the bath is T p1 (the temperature of the first level) and that, by the wires 161, it receives the information that the heating switch is open. As a variant, it is only the information provided by the wires 161 which initiate the command to stop the micromotor 12 by the microprocessor 15.
  • the microprocessor controls the start of the micromotor 12 when the measured temperature T B is lower from Kt0 to T p , being the whole number of (heating) steps that the cam must take to reach the end of the heating phase.
  • the microprocessor 15 If, for a temperature level, not a stirring but a soaking is desired, that is to say a level of longer duration but without stirring, or with little stirring, we programs the microprocessor 15 so that it stops the rotation of the micromotor 12 for a longer time.
  • this time is a multiple of the basic time t0 of the electromechanical member 11 and of the time Qt0 of the corresponding stirring stage.
  • the electromechanical member 11 is preferably dimensioned so that with the shortest program there is no need to stop the micromotor 12 except may be in the heating and / or stirring phase after the desired temperature has been reached.
  • the shortest program is usually the quick wash program, sometimes called "flash", or the "half load” program.
  • Such a quick wash or reduced load function generally requires less water to rinse.
  • the member 11 being programmed to perform a certain number (for example four) of rinses, the selector or activated control button makes it possible, by acting on a switch associated with the cams, to avoid emptying between two successive rinses.
  • the member 11 is such that these two successive rinses, without intermediate emptying, have the same duration as a rinsing. usual if the engine 12 does not stop.
  • the microprocessor 15 controls the stopping of the micromotor 12 so that each of these two successive rinses, then separated by a drain, have the same duration as the other rinses.
  • the program of shorter duration does not involve stopping the micromotor 12 (except for heating and / or stirring after the desired temperature has been reached) if the base time t0 of the member 11 is sufficiently long, for example of the order of 1 minute 30 seconds or 2 minutes.
  • a cut in the power supply to the machine the position of the cams makes it possible to determine the state of execution of the program and to resume the latter at the place where it had stopped when power was restored. If the cut-off occurs while the micromotor was stopped (the module 14 then controlling the operations of the programmer), the program restarts at the location determined by the cam block and it resumes at its beginning the phase controlled by the module 14 and which had been partially executed.
  • the basic time t0 of the member 11 is relatively short, for example of the order of 30 seconds, even the shortest program will involve, for stirring, stops of the micromotor 12 controlled by the member 14.
  • the micromotor 12 is, for a given phase of the program, blocked for a time (f - 1) t0, ft0 (f integer) being the mixing time corresponding to the fast program, and for a normal washing program this micromotor 12 is stopped for a time (g - 1) t0 for the same phase of the program, gt0 (whole g) being greater than ft0.
  • the stirring time after heating is the shortest.
  • the member 11 is dimensioned to impose, after heating, a stirring time (the shortest) corresponding to the heating at the highest temperature.
  • the microprocessor controls the stopping of the micromotor 12 for a time all the longer as this temperature is lower.
  • the stopping times of the micromotor 12 are for example in memory of the module 14, in a table giving these stopping times as a function of the heating temperature.
  • the button 50 has a notch 51 which can be positioned either on a PL mark or on a L start program mark.
  • the PL position corresponds to a prewash and the L position to a washing without prewash.
  • the button 52 has a notch 53 which can be positioned opposite the marks C, D, E, F, etc., corresponding to the desired temperature.
  • the prewash is most often provided only with a cycle at 90 ° C. Even if it is planned with a cycle at lower temperature, the total execution time corresponds to the longest program: duration of a prewash and duration of the cycle at the highest temperature.
  • the invention makes it possible to adapt the execution time of the program to the programmed temperature, that is to say that, in one embodiment, it is provided that the prewash can be associated with any cycle, that is that is, the total duration will therefore be the duration of the prewash plus that of the programmed cycle. If the user selects a prewash the rotary switch 50 is positioned on this prewash mark. And the microprocessor 15 is programmed so that the cycle following the prewash corresponds to the temperature displayed by the potentiometer 18 (associated with the member 52).
  • the member 50 actuated by the user rotates during the execution of the program from the starting position (prewash PL in the example) until the final position F. This rotation takes place at an angle slightly less than 360 °.
  • the rotary member 55 actuated by the user rotates by a much smaller angle between the start and the end of the execution of the program.
  • the member 55 rotates from position C1 to position D1, this position D1 corresponding to the end of the program.
  • the switch executes another program, for example of synthetic textiles, and turns to the F1 position.
  • One of these positions may correspond to a delayed start.
  • the number of programs which it is possible to select in such an embodiment is all the more important as the number of operations which the electromechanical member with continuously rotating cam has to carry out is low.
  • the number of programming possibilities is all the more important the lower the number of steps of the member 11, which are necessary for carrying out a program. Since with the invention this number of programming steps is reduced, the number of independent programs which it is possible to implement on the electromechanical element is therefore increased.
  • Such an organization of the command is called an organization in "chained programs".
  • One revolution of the member 55 corresponds to the total number N of steps that the cam block can execute.
  • Each program execution corresponds to a rotation of a determined angle of the rotary member 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

Appareil électroménager à programmateur comportant un organe électromécanique (11) à micromoteur (12) synchrone entraînant une came à rotation continue formant une première base de temps et entraînant un bloc de cames agissant sur des interrupteurs ou commutateurs de commande. Un module électronique (14) à microprocesseur (15) permet d'autres commandes. Le module (14) comporte une seconde base de temps pour commander l'arrêt du micromoteur (12) de l'organe électromécanique (11) pendant des temps déterminés. <IMAGE>

Description

  • L'invention est relative à un appareil électroménager à programmateur tel qu'un lave-linge, un sèche-linge ou un lave-vaisselle.
  • Pour simplifier l'exposé on se référera dans ce qui suit la plupart du temps à un lave-linge. Toutefois l'invention s'applique de façon générale à tout type d'appareil électroménager à programmateur.
  • Aujourd'hui les lave-linge fonctionnent de façon automatique sous la commande d'un programmateur. Ce dernier comporte la plupart du temps une partie électromécanique à moteur électrique entraînant un système de cames agissant sur des interrupteurs de commande des divers organes de la machine : électrovanne, résistance chauffante, pompe de vidange. A cet élément électromécanique est associé le plus souvent un module électronique.
  • Il existe deux types de programmateurs (mixtes) à élément électromécanique et module électronique. Dans le premier type la base de temps, ou horloge, du programmateur est déterminée uniquement par la rotation d'une came qui tourne en permanence; dans le second type l'horloge est seulement électronique, c'est-à-dire incorporée au module électronique.
  • Dans le premier type de programmateur - appelé à came à rotation continue - le module électronique est utilisé en général pour commander la vitesse, le sens et les durées de rotation du moteur d'entraînement du tambour, et pour des fonctions de sécurité. Les programmateurs les plus performants permettent de faire varier la durée des diverses phases de fonctionnement du lave-linge en fonction du type de textile et/ou de la charge. L'élément électromécanique est alors dimensionné sur le programme de plus longue durée que peut exécuter la machine et un second moteur est couplé aux cames pour les faire avancer plus rapidement dans certains cas, par exemple quand la charge de linge est faible. Un tel programmateur comporte habituellement plusieurs temps de base. Il est de réalisation complexe et donc onéreux.
  • Le second type de programmateur, à horloge uniquement électronique dont l'élément électromécanique - qui n'a pas de fonction de base de temps - est constitué par un moteur électrique entraînant des moyens de came dont le but est d'agir sur des interrupteurs ou commutateurs de puissance, est également onéreux car il est équipé d'un microprocesseur performant et d'un contrôle de passages de pas de l'élément électromécanique. De plus, pour mémoriser l'état d'exécution du programme en cas d'interruption de l'alimentation en énergie électrique, soit le module électronique est équipé de mémoires EEPROM, soit des moyens sont prévus pour que la position du bloc cames de l'élément électromécanique donne une information sur l'état d'exécution du programme grâce à des moyens de codage entre les cames et le module électronique, tous les pas de programmes devant bien entendu être codés. Ces moyens de mémorisation de l'état d'exécution du programme qu'ils soient à mémoire EEPROM ou à codage augmentent encore le prix du programmateur.
  • L'invention fournit un programmateur peu onéreux permettant de faire varier à volonté la durée de chaque phase de fonctionnement de l'appareil qu'il équipe.
  • Le programmateur de l'appareil selon l'invention comprend un élément électromécanique à moteur électrique, de préférence unique, entraînant une came à rotation continue et présentant une base de temps (également de préférence unique); il est caractérisé en ce qu'il comporte en outre un module électronique qui présente une horloge constituant une seconde base de temps du programmateur et qui est apte à commander l'arrêt du moteur de l'élément électromécanique pendant des temps déterminés.
  • Pour chaque pas de programmation de l'appareil, c'est-à-dire pour chaque situation électrique de ce dernier, la base de temps qui commande le programme sera soit celle de l'élément électromécanique, soit celle du module électronique.
  • De cette manière l'élément électromécanique peut être de réalisation très simple sans que soit sensiblement augmenté le coût du module électronique. En particulier cet élément électromécanique ne nécessite pas - contrairement aux programmateurs dans lesquels la base de temps est uniquement dans le module électronique - de moyens de contrôle de passage de pas ni de codage systématique de tous les pas de programmation. En cas d'arrêt d'alimentation de la machine, l'état d'exécution du programme est représenté directement par la position du bloc de cames sans qu'il soit indispensable de prévoir de décodage complexe.
  • Dans une réalisation la position du bloc de cames n'est pas codée. Dans ce cas c'est la position propre de ce bloc de cames de l'élément électromécanique qui représente l'état d'exécution du programme.
  • Dans une autre réalisation la position du bloc de cames est codée, ce qui donne directement une information au module électronique pour redémarrer l'exécution du programme après rétablissement de l'alimentation. Dans ce cas le codage est plus simple qu'avec un programme à base de temps seulement électronique car le nombre de pas peut être réduit.
  • On peut faire intervenir à volonté la base de temps soit en majorité sur l'élément électromécanique, soit en majorité sur le module électronique. On dispose ainsi d'un degré de liberté qui permet d'optimiser le coût de réalisation du programmateur avec un élément électromécanique simple et/ou un microprocesseur également simple.
  • Etant donné que le moteur de l'élément électromécanique peut tourner moins souvent, la durée de vie de ce dernier est augmentée et les nuisances sonores sont diminuées.
  • L'invention permet de diminuer le nombre de pas de programmation qui, sur l'élément électromécanique, sont nécessaires pour effectuer un lavage; on peut ainsi augmenter le nombre de cycles différents qui peuvent être commandés par le même programmateur.
  • Dans le mode de réalisation préféré l'élément électromécanique du programmateur est dimensionné pour imposer le programme de plus courte durée et/ou pour réaliser l'enchaînement du nombre minimum d' "états électriques" différents qui sont nécessaires pour exécuter un programme. De cette manière on réalise des fonctions de lavage rapide ou de lavage à charge réduite ou encore de trempage avec un seul moteur et une seule temporisation de l'élément électromécanique. Pour les autres programmes l'augmentation de durée est déterminée par le module électronique qui commande les arrêts du moteur de l'élément électromécanique. Ainsi il n'est pas nécessaire que cet élément électromécanique comporte un second moteur de commande de rotation rapide de came; et il n'est pas nécessaire non plus que cet élément électromécanique présente plusieurs temporisations internes.
  • Pour simplifier la commande il est également préférable que le module électronique commande le sens de rotation du moteur d'entraînement du tambour et que la (ou les) came(s) de l'élément électromécanique n'intervienne(nt) pas pour cette commande
  • La base de temps unique imposée par la rotation d'une came est avantageusement courte, de préférence inférieure à 3 minutes. On choisira en général une valeur de la base de temps unique de l'élément électromécanique d'autant plus faible que l'on fera intervenir plus souvent l'horloge du module électronique et/ou que la programmation sera plus complexe, c'est-à-dire qu'elle permet un plus grand nombre de possibilités de cycles de fonctionnement. Avec une base de temps de l'élément électromécanique courte on peut simplifier au maximum l'élément électromécanique et faire intervenir la base de temps électronique pour pratiquement chaque phase du programme de l'appareil.
  • Pour les programmateurs les plus simples on préfèrera que l'horloge du module électronique intervienne peu souvent, ce qui permet de simplifier les codages.
  • D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
    • la figure 1 est un schéma d'un programmateur selon l'invention,
    • la figure 2 est un schéma d'une partie du programmateur de la figure 1,
    • la figure 3 est une variante de la figure 2,
    • les figures 2a et 3a représentent d'autres variantes des figures respectivement 2 et 3,
    • la figure 4 est un diagramme, et
    • les figures 5, 6 et 7 représentent des organes sur le tableau de commande d'un lave-linge.
  • L'exemple qu'on va décrire en relation avec les figures se rapporte à un programmateur de lave-linge. Un tel appareil électroménager (non montré dans son ensemble ) comporte habituellement un tambour perforé contenant le linge et entraîné en rotation dans un sens et dans un autre grâce à un moteur 10 (figure 1). Le tambour perforé est disposé dans une cuve contenant l'eau et les produits lessiviels.
  • Le fonctionnement du lave-linge est entièrement automatique, sous la commande d'un programmateur. Ce dernier contrôle donc les diverses opérations de l'appareil : ouverture et fermeture d'une électrovanne d'alimentation en eau, introduction des divers produits lessiviels, alimentation de la (ou des) résistance(s) de chauffage de l'eau, commande de fonctionnement du moteur 10 d'entraînement du tambour, fonctionnement de la pompe de vidange et les contrôles de sécurité.
  • Le programmateur selon l'invention comprend un organe électromécanique 11 à moteur électrique synchrone 12 entraînant une came à rotation continue qui elle -même entraîne un bloc de cames 13 (quelquefois appelé "bloc-came" 13) agissant sur des interrupteurs (non représentés) de commande des divers organes du lave-linge : électrovannes, résistance(s) de chauffage de l'eau, pompe de vidange, alimentation du moteur 10. Il comporte aussi un module électronique 14 qui, selon un aspect de l'invention, commande l'alimentation du moteur synchrone 12 de l'organe 11.
  • Pour éviter toute confusion dans ce qui suit le moteur électrique 10 d'entraînement du tambour sera appelé "moteur" et le moteur 12 d'entraînement des cames 13 sera appelé "micromoteur".
  • La progression, ou avance par pas du bloc-came, est commandée par la came à rotation continue. De façon plus précise un tour de la came à rotation continue provoque, dans l'exemple, une rotation de 6° du bloc-came et cette rotation de 6° correspond à un passage de pas et donc à une modification de l'état d'un interrupteur ou d'une situation électrique.
  • Le module électronique 14 comporte un microcontrôleur ou microprocesseur 15 présentant une horloge qui constitue une seconde base de temps du programmateur, la première base de temps étant la rotation de la came à rotation continue entraînée par le micromoteur 12. Bien entendu le microcontrôleur ou microprocesseur 15 peut être remplacé par tout autre dispositif électronique remplissant la même fonction.
  • Le microcontrôleur 15 reçoit, par des fils de codage 16₁, des informations sur certaines positions du bloc-came 13. Ainsi le microcontrôleur peut recevoir en permanence des informations sur l'état d'exécution du programme de lavage, ce qui permet, notamment après coupure puis rétablissement de l'alimentation en énergie électrique de la machine, de faire redémarrer le programme à l'endroit où il s'était arrêté au moment de la coupure. Pour les positions pour lesquelles il n'y a pas d'information fournie par l'élément électromécanique au microcontrôleur, le redémarrage du fonctionnement après coupure de l'alimentation s'effectuera en fonction de la position des cames de l'élément électromécanique.
  • Le microcontrôleur 15 commande par l'une de ses sorties 15₁, et par l'intermédiaire d'un interface 17, le sens de rotation du moteur 10. En effet, comme on le verra plus loin en détails, il faut, lorsque le micro-moteur est arrêté sur commande du micro-controlleur 15, que ce dernier continue à assurer l'alimentation du moteur 10 d'entrainement dans un sens et dans l'autre de la cuve
  • On a aussi représenté sur la figure 1 une entrée 15 2 du microcontrôleur 15 qui est connectée à un organe 18, tel qu'un potentiomètre, de réglage de la température de l'eau de lavage, qui se trouve sur le tableau de commande de la machine et donc réglable par l'utilisateur. En outre une entrée 15₃ du microcontrôleur 15 reçoit un signal fourni par une sonde 19 de mesure de la température de l'eau dans la cuve du lave-linge. Les signaux fournis par le potentiomètre 18 et la sonde 19 permettent au microcontrôleur de commander l'alimentation de la résistance de chauffage de l'eau. Le microprocesseur agit sur l'alimentation du micromoteur 12 entraînant les cames 13 qui ouvrent ou ferment un interrupteur de mise sous tension de la résistance de chauffage de l'eau.
  • Une sortie 15₄ du microcontrôleur 15 est connectée à la gâchette d'un triac 16 (figures 1 et 2) de commande de l'alimentation du micromoteur 12
  • Dans l'exemple de la figure 2 le triac 16 est en parallèle sur le micromoteur 12, cet ensemble en parallèle étant lui-même en série avec une résistance 20 de limitation de courant. Dans ce cas le micromoteur 12 s'arrête quand le triac 16 est conducteur
  • Dans l'exemple de la figure 3 le triac 16₁ est en série avec le micromoteur 12₁. Dans ce cas le micromoteur 12₁ tourne quand le triac 16₁ est conducteur.
  • Dans une variante de la figure 2, représentée sur la figure 2a, on prévoit un interrupteur 100 en parallèle sur la résistance 20, cet interrupteur 100 étant commandé par l'organe électromécanique. Il permet dans certains cas, quand l'horloge est imposée par l'élément électromécanique lui-même, de commander la mise hors tension du micromoteur 12
  • De même, et dans le même but, dans la variante de la figure 3a un interrupteur 101 est en parallèle sur le triac 16₁.
  • L'organe électromécanique 11 est dimensionné pour que, en l'absence d'interruption d'alimentation du micromoteur 12 commandée par le module 14, le programme exécuté soit le programme de plus courte durée qu'exécute la machine. Pour les autres programmes, donc de plus longues durées, le module 14 intervient au moins une fois pour interrompre la rotation du micromoteur 12; Le module 14 allonge donc de cette durée d'arrêt le temps d'exécution du programme. En variante, même le programme le plus court fait intervenir un ou plusieurs arrêts du micromoteur 12; cette variante peut être utilisée pour simplifier au maximum l'organe 11.
  • Pour bien comprendre comment, dans un programme de lavage, la base de temps de l'organe 11 et la base de temps du module 14 peuvent intervenir on décrit ci-après des phases du programme de lavage qui font appel à ces deux bases de temps.
  • De façon générale on peut noter qu'il est préférable que la base de temps électronique du module 14 intervienne pour des phases du programme s'étendant sur une durée relativement importante, par exemple de plusieurs minutes, et au cours desquelles l'organe 11 ne commande pas d'interrupteur. En effet moins l'organe 11 intervient, c'est-à-dire plus le micromoteur 12 est arrêté, plus la réalisation de l'ensemble à cames 13 est simple.
  • La phase de fonctionnement de l'appareil qui est en général la plus longue est celle du chauffage de l'eau de lavage. Le premier exemple qu'on va décrire de rapporte à cette phase.
  • Quand les cames 13 commandent la fermeture de l'interrupteur (non montré) d'alimentation de la résistance de chauffage de l'eau, cette information est transmise par les fils 16₁ au microcontrôleur 15. Ce dernier est programmé pour alors arrêter la rotation du micromoteur 12 ou 12₁, c'est-à-dire pour rendre conducteur le triac 16 (figure 2) ou bloquer le triac 16₁ (figure 3).
  • Le micromoteur 12 ou 12₁ est de nouveau mis en rotation quand la température TB de l'eau dans la cuve du lave-linge telle que détectée par la sonde 19 atteint la valeur TB définie par la formule suivante : T B = T p - Kt₀
    Figure imgb0001
  • Dans cette formule Tp est la température programmée grâce au potentiomètre 18, K est le coefficient d élévation de la température du bain lessiviel en fonction du temps, exprimé en degrés par minute, et t₀ est le temps de base, exprimé en minutes, de l'organe 11 (un tour de la came à rotation continue). Ce temps est par exemple de 1, 5 minute.
  • Partant de la température TB ci-dessus, au bout du temps t₀ une came de l'organe 11 a effectué un tour complet et a donc ouvert de nouveau l'interrupteur en série avec la résistance de chauffage du bain lessiviel et à ce moment la température est exactement la température Tp désirée.
  • Il est à noter qu'au cours de l'opération de chauffage de l'eau, avec le micromoteur 12 à l'arrêt, la machine effectue, sous la commande du module 14, les opérations répétitives que sont les inversions du sens de rotation du moteur 10; par exemple ce moteur tourne pendant 9 secondes dans un sens, s'arrête pendant 6 secondes, puis tourne dans l'autre sens pendant 9 secondes.
  • Lors de ce chauffage il n'y a intervention d'aucune base de temps. La base de temps du module 14 est cependant utilisable pour effectuer des paliers de chauffage avec ou sans brassage du linge.
  • On sait que pour améliorer les performances de détergence, c'est-à-dire de lavage, on a intérêt à effectuer des paliers de température, c'est-à-dire que la température du bain lessiviel est maintenue à une température constante, inférieure à la température qu'on veut atteindre, pendant un temps prédéterminé. Ainsi un palier compris entre 40° et 50°C favorise l'action enzymatique, et un palier à 60° C favorise l'action chimique sur les taches pigmentaires. En général la durée de ces paliers est d'environ 10 à 15 mn afin que la durée totale du programme ne soit pas excessive. Ces paliers (figure 4) s'effectuent habituellement avec brassage, c'est-à-dire que pendant ces opérations le tambour du lave-linge tourne alternativement dans un sens et dans l'autre
  • Des paliers peuvent aussi s'effectuer sans brassage ou à brassage réduit. Il s'agit alors de trempages. Dans ce cas la durée du palier est plus longue. Les trempages sont efficaces pour le lavage des linges particulièrement sales.
  • On décrira d'abord l'utilisation du programmateur selon l'invention pour des paliers de brassage et ensuite pour des trempages.
  • Pour faciliter l'explication on de réfèrera à la figure 4 qui est un diagramme montrant la température T de l'eau en fonction du temps t au cours de la période de chauffage.
  • La phase I, entre les instants 0 et t₁, s'exécute comme décrit précédemment pour un chauffage. Après le passage d'un pas de l'organe 11 - rotation de 360° d'une came du bloc 13 pendant le temps de base t₀- le module 14 détermine le temps du palier II pendant lequel est effectué un brassage. Ce temps est de préférence un nombre entier, Q, de temps de base t₀ de l'organe 11.
  • Le module 14 arrête le micromoteur 12 pendant le temps (t₂ - t₁) du palier diminué du temps de base t₀, soit dans le cas présent (Q - 1)t₀. A la suite de ce temps (Q - 1)t₀ le micromoteur 12 tourne de nouveau et au bout d'une rotation de la came base de temps on passe au pas suivant c'est-à-dire qu'on recommence à chauffer l'eau du bain lessiviel
  • L'arrêt du micromoteur 12 intervient lorsque le microprocesseur reçoit de la sonde 19 l'information selon laquelle la température du bain est Tp1 (la température du premier palier) et que, par les fils 16₁, il reçoit l'information que l'interrupteur de chauffage est ouvert. En variante ce sont uniquement les informations fournies par les fils 16₁ qui déclenchent la commande de l'arrêt du micromoteur 12 par le microprocesseur 15.
  • Les commandes des phases III, IV, etc... du diagramme de la figure 4 s'effectuent de la manière déjà décrite.
  • Si la température objectif Tp, déterminée par le potentiomètre 18, est inférieure à une température de palier programmé, au cours de la dernière phase de chauffage précédant cette température, le microprocesseur commande le démarrage du micromoteur 12 quand la température mesurée TB est inférieure de Kt₀ à Tp, étant le nombre entier de pas (de chauffage) que doit effectuer la came pour atteindre la fin de la phase de chauffage.
  • De façon plus précise si le nombre de paliers est n le nombre de phases de chauffage est donc n + 1. Si l'on atteint le température objectif Tp, définie par la potentiomètre 18, au cours d'une phase m de chauffage - m étant plus petit que n + 1 - il reste, pour atteindre la fin de la phase totale de chauffage, à traverser n + 2 - m phases de chauffage et n + 1 - m phases de brassage. Le temps (minimum) pour traverser chaque phase étant de t₀ (le temps de base de l'organe 11) le module 14 commandera le nouveau démarrage du micromoteur 12 lorsqu'il détectera la température T = Tp - Kt₀ (n + 2 -m).
  • Si pour un palier de température on souhaite non pas un brassage mais un trempage, c'est-à-dire un palier de plus grande durée mais sans brassage, ou avec peu de brassage, on programme le microprocesseur 15 pour qu'il arrête la rotation du micromoteur 12 pendant un temps supérieur. De préférence ce temps est un multiple du temps de base t₀ de l'organe électromécanique 11 et du temps Qt₀ du palier de brassage correspondant. Ainsi le temps d'un palier de trempage est QSt₀, S étant un nombre entier. Dans un exemple : t₀ = 2 mn, Q = 5 et S = 3, c'est-à-dire qu'un palier de brassage dure 10 mn, alors qu'un palier de trempage dure 30 mn.
  • Quand un trempage est sélectionné une information correspondante apparaît sur la sortie 15₁ du microprocesseur de façon à réduire (ou supprimer) le brassage du linge.
  • La commande de la fonction trempage étant effectuée par simple allongement de la durée de commande d'un palier de brassage, cette fonction de trempage ne complique pas l'organe électromécanique 11 puisque, dans ce dernier, c'est le même pas qui est utilisé pour commander le palier.
  • L'organe électromécanique 11 est de préférence dimensionné pour qu'avec le programme le plus court il ne soit pas besoin d'arrêter le micromoteur 12 sauf peut être en phase de chauffage et/ou de brassage après que la température désirée ait été atteinte. Le programme le plus court est habituellement le programme de lavage rapide, quelquefois appelé "flash", ou le programme "demi-charge". Ces fonctions sont généralement activées par un sélecteur ou bouton de commande sur le panneau du lave-linge. Ce sélecteur ou bouton engendre un signal sur une entrée du microprocesseur 15 pour que le micromoteur 12 tourne constamment, sauf pendant le chauffage de l'eau.
  • Une telle fonction de lavage rapide ou de charge réduite nécessite en général moins d'eau en rinçage. A cet effet l'organe 11 étant programmé pour effectuer un certain nombre (par exemple quatre) de rinçages le sélecteur ou bouton de commande activé permet, en agissant sur un interrupteur associé aux cames, d'éviter la vidange entre deux rinçages successifs. En outre l'organe 11 est tel que ces deux rinçages successifs, sans vidange intermédiaire, ont la même durée qu'un rinçage habituel si le moteur 12 ne s'arrête pas. Par contre quand la fonction lavage rapide ou charge réduite est désactivée, le microprocesseur 15 commande l'arrêt du micromoteur 12 de façon que chacun de ces deux rinçages successifs, alors séparés par une vidange, aient la même durée que les autres rinçages.
  • Le programme de plus courte durée ne fait pas intervenir d'arrêt du micromoteur 12 (sauf pour le chauffage et/ou brassage après que la température désirée ait été atteinte) si le temps de base t₀ de l'organe 11 est suffisamment important, par exemple de l'ordre de 1 minute 30 secondes ou 2 minutes. Dans ce cas s'il se produit, alors que le micromoteur tourne, une coupure de l'alimentation de la machine la position des cames permet de déterminer l'état d'exécution du programme et de reprendre ce dernier à l'endroit où il s'était arrêté lorsque l'alimentation se rétablit. Si la coupure se produit alors que le micromoteur était à l'arrêt (le module 14 contrôlant alors les opérations du programmateur), le programme redémarre à l'endroit déterminé par la bloc cames et il reprend à son début la phase commandée par le module 14 et qui avait été partiellement exécutée.
  • Si le temps de base t₀ de l'organe 11 est relativement court, par exemple de l'ordre de 30 secondes, même le programme de plus faible durée impliquera, pour le brassage, des arrêts du micromoteur 12 commandés par l'organe 14. Par exemple pour un programme rapide ou charge réduite le micromoteur 12 est, pour une phase donnée du programme, bloqué pendant un temps (f - 1)t₀, ft₀ (f entier) étant le temps de brassage correspondant au programme rapide, et pour un programme normal de lavage ce micromoteur 12 est arrêté pendant un temps (g - 1)t₀ pour la même phase du programme, gt₀ (g entier) étant supérieur à ft₀.
  • Comme on l'a vu plus haut on prévoit habituellement un brassage du linge après une période de chauffage. Ce temps de brassage (après les éventuels paliers) est en général d'autant plus long que la température atteinte est plus basse. Ainsi pour les programmes à températures de bain les plus élevées (90° C en général) le temps de brassage après chauffage est le plus court. Dans ce cas l'organe 11 est dimensionné pour imposer, après chauffage, une durée de brassage (la plus courte) correspondant au chauffage à la température la plus élevée. Pour des chauffages à températures plus basses le microprocesseur commande l'arrêt du micromoteur 12 pendant un temps d'autant plus long que cette température est plus basse. Les durées d'arrêt du micromoteur 12 se trouvent par exemple en mémoire du module 14, dans une table donnant ces durées d'arrêt en fonction de la température de chauffage.
  • Pour l'utilisateur la sélection de programme s'effectue à l'aide d'organes rotatifs 50 (figure 5) et 52 (figure 6). Le bouton 50 présente un cran 51 positionnable soit sur un repère PL soit sur un repère L de départ de programme. La position PL correspond à un prélavage et la position L à un lavage sans prélavage. Le bouton 52 présente un cran 53 positionnable en face de repères C, D, E, F, etc... correspondant à la température désirée.
  • On voit que contrairement à l'état antérieur de la technique, le départ de programme est le même (PL ou L) quel que soit le type de linge et quelle que soit la température sélectionnée.
  • Dans l'état antérieur de la technique le prélavage est prévu le plus souvent seulement avec un cycle à 90°C. Même s'il est prévu avec un cycle à température inférieure le temps total d'exécution correspond au programme le plus long : durée d'un prélavage et durée du cycle à la température la plus élevée.
  • L'invention permet d'adapter le temps d'exécution du programme à la température programmée, c'est-à-dire que, dans une réalisation, on prévoit que le prélavage puisse être associé avec n'importe quel cycle, c'est-à-dire que la durée totale sera donc la durée du prélavage plus celle du cycle programmé. Si l'utilisateur sélectionne un prélavage le commutateur rotatif 50 est positionné sur ce repère de prélavage. Et le microprocesseur 15 est programmé pour que le cycle suivant le prélavage corresponde à la température affichée par le potentiomètre 18 (associé à l'organe 52).
  • Dans ce qui a été décrit ci-dessus en relation avec la figure 5 l'organe 50 actionné par l'utilisateur tourne au cours de l'exécution du programme de la position de départ (prélavage PL dans l'exemple) jusqu'à la position finale F. Cette rotation s'effectue sur un angle légèrement inférieur à 360°.
  • Dans une variante (figure 7) l'organe rotatif 55 actionné par l'utilisateur tourne d'un angle beaucoup plus réduit entre le début et la fin de l'exécution du programme. Pour un premier programme C₁, par exemple de lavage du coton, l'organe 55 tourne de la position C₁ à la position D₁, cette position D₁ correspondant à la fin du programme. Par contre quand le commutateur est au départ positionné sur la position E₁ il exécute un autre programme par exemple de textile synthétiques, et tourne jusqu'à la position F₁. Une de ces positions peut peut correspondre à un départ retardé. Le nombre de programmes qu'il est possible de sélectionner dans une telle réalisation est d'autant plus important que le nombre d'opérations que doit effectuer l'organe électromécanique à came à rotation continue est faible. En d'autres termes le nombre de possibilités de programmations est d'autant plus important que le nombre de pas de l'organe 11, qui sont nécessaires pour la réalisation d'un programme, est faible. Etant donné qu'avec l'invention on réduit ce nombre de pas de programmation, on augmente donc le nombre de programmes indépendants qu'il est possible de mettre en oeuvre sur l'élément électromécanique.
  • Une telle organisation de la commande est appelée une organisation en "programmes enchaînés". Un tour de l'organe 55 correspond au nombre N total de pas que peut exécuter le bloc-came. Chaque exécution de programme correspond à une rotation d'un angle déterminé de l'organe rotatif 55. Etant donné qu'avec l'invention le nombre de pas de programme du bloc-came qui sont mis en oeuvre est réduit on comprend pourquoi on peut alors prévoir un plus grand nombre de programmes enchaînés qu'avec les réalisations antérieurement connues.

Claims (19)

  1. Appareil électroménager à programmateur comportant, d'une part, un organe électromécanique (11) à micromoteur (12), de préférence synchrone, entraînant une came (13) à rotation continue formant une première base de temps et entraînant un bloc-came agissant sur des interrupteurs ou commutateurs de commande de premier(s) dispositif(s) de l'appareil, et, d'autre part, un module électronique (14) pour la commande de second(s) dispositif(s) (10) de cet appareil, caractérisé en ce que le module (14) comporte une seconde base de temps pour commander l'arrêt du micromoteur (12) de l'organe (11) pendant des temps déterminés qui dépendent des phases du programme lui-même.
  2. Appareil selon la revendication 1, caractérisé en ce que l'organe électromécanique (11)est dimensionné pour commander le programme de la machine de plus courte durée quand le module électronique (14) ne commande pas d'arrêt du micromoteur (12), les programmes plus longs étant exécutés avec des arrêts, commandés par le module (14), du micromoteur (12).
  3. Appareil selon la revendication 1 ou 2, caractérisé en ce que l'organe électromécanique (11) est dimensionné pour l'enchaînement du nombre minimum de situations électriques différentes nécessaires pour exécuter un programme.
  4. Appareil selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le temps élémentaire de la base de temps du module (14) est égal au temps élémentaire minimum (t₀) entre deux opérations commandées par l'organe électromécanique (11).
  5. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour allonger d'un temps déterminé la durée d'une phase de programme intervenant entre deux commutations commandées par un interrupteur de l'organe électromécanique (11), la durée d'arrêt du micromoteur (12), commandée par le module électronique, est égale à ce temps déterminé diminué du temps élémentaire (t₀) de cet organe (11).
  6. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une cuve dans laquelle est chauffé un liquide, avec une sonde (19) de mesure de la température de ce liquide et un organe (18) de réglage de la température de consigne, et des moyens pour que le module (14) interrompe le fonctionnement du micromoteur (12) pendant la durée du chauffage jusqu'à ce qu'ait été atteinte une température égale à la température de consigne (Tp) diminuée de l'élévation de température (Kt₀) correspondant au temps de passage de pas de l'organe électromécanique (11).
  7. Appareil selon la revendication 6, caractérisé en ce que le module électronique (14) est prévu pour commander l'arrêt de la rotation du micromoteur (12) pendant un temps prédéterminé entre deux périodes de chauffage.
  8. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un triac (16) commande la rotation du micromoteur (12).
  9. Appareil selon l'une quelconque des revendications précédentes, cet appareil étant un lave-linge à tambour entraîné par un moteur électrique (10), caractérisé en ce que le module électronique (14) commande le fonctionnement le ce moteur (10) d'entraînement du tambour.
  10. Appareil selon la revendication 1, caractérisé en ce qu'à chaque phase de fonctionnement de cet appareil, le module (14) impose un temps d'arrêt du micromoteur (12) de l'organe électromécanique (11).
  11. Appareil du type lave-linge selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un programme le prélavage associable à plusieurs températures de lavage, le temps total d'exécution du programme variant avec la température du programme.
  12. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le temps élémentaire de l'organe électromécanique est au maximum de 3 minutes.
  13. Appareil du type lave-linge selon l'une quelconque des revendications précédentes, comportant un commutateur rotatif (50) de démarrage de programme associé à l'organe électromécanique (11), caractérisé en ce que le programmateur est agencé pour que la position de départ de programme soit indépendante de la température de chauffage de l'eau.
  14. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le module électronique (14) comporte un microprocesseur ou microcontrôleur (15) de gestion des arrêts du micromoteur (12).
  15. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le micromoteur (12) de l'organe électromécanique (11) est unique.
  16. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de cames de l'organe électromécanique (11) sont agencés pour que le temps élémentaire de cet organe soit unique.
  17. Appareil de type lave-linge selon la revendication 1, caractérisé en ce que le module (14) impose un temps d'arrêt du micromoteur (12) de l'organe électromécanique (11) lors de paliers de températures ou de trempage.
  18. Appareil de type lave-linge selon la revendication 1, caractérisé en ce qu'il comporte un programme à exécution rapide ou charge réduite pour lequel, du cours d'une phase de fonctionnement, le micromoteur de l'organe électromécanique n'est pas arrêté, la même phase de fonctionnement pour un programme différent impliquant un arrêt du micromoteur commandé par le module (14).
  19. Appareil de type lave-linge selon la revendication 1, caractérisé en ce que des types différents de lavage sont commandés par des successions distinctes de pas de l'organe électromécanique.
EP92400646A 1991-03-12 1992-03-12 Appareil électroménager à programmateur comprenant une base de temps électromécanique et une base de temps électronique Withdrawn EP0504052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9102955A FR2674065B1 (fr) 1991-03-12 1991-03-12 Appareil electromenager a programmateur comprenant une base de temps electromecanique et une base de temps electronique.
FR9102955 1991-03-12

Publications (1)

Publication Number Publication Date
EP0504052A1 true EP0504052A1 (fr) 1992-09-16

Family

ID=9410626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400646A Withdrawn EP0504052A1 (fr) 1991-03-12 1992-03-12 Appareil électroménager à programmateur comprenant une base de temps électromécanique et une base de temps électronique

Country Status (2)

Country Link
EP (1) EP0504052A1 (fr)
FR (1) FR2674065B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676787A2 (fr) * 1994-04-07 1995-10-11 EATON CONTROLS SpA Méthode pour la programmation-temporisation d'électroménagers, avantageusement des lave-vaisselles, et le programmateur-temporisateur relaté
EP0687761A1 (fr) * 1994-06-16 1995-12-20 Merloni Elettrodomestici S.p.A. Machine à laver à programmes multiples avec un programmateur électromécanique et un microcontrÔleur digital
EP0952503A2 (fr) * 1998-04-24 1999-10-27 AKO-Werke GmbH &amp; Co. KG Dipositif de programmation hybride, en particulier pour un lave-linge
EP0984094A1 (fr) * 1998-09-03 2000-03-08 Whirlpool Corporation Dispositif de commande pour sèche-linge

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1542931A (fr) * 1966-10-14 1968-10-18 Danfoss As Dispositif de surveillance pour machines à laver
DE1710784B1 (de) * 1960-08-10 1970-07-09 Siemens Elektrogeraete Gmbh Automatisch arbeitende Haushaltwasch- oder -geschirrspuelmaschine mit einem elektrisch angetriebenen Programmsteuergeraet
US3716721A (en) * 1971-07-08 1973-02-13 Westinghouse Electric Corp Control system for washing apparatus
FR2336509A1 (fr) * 1975-12-23 1977-07-22 Miele & Cie Dispositif de commande par programme pour machines a laver le linge et machines a laver la vaisselle
DE2736384A1 (de) * 1977-08-12 1979-02-22 Kieninger & Obergfell Elektrisches programmsteuergeraet
US4425513A (en) * 1982-02-16 1984-01-10 Eation Corporation Method and device for providing dwell in timer controlled appliances
US4449384A (en) * 1982-08-04 1984-05-22 Eaton Corporation Washing appliance control circuitry
DE3303992A1 (de) * 1983-02-05 1984-08-09 Miele & Cie GmbH & Co, 4830 Gütersloh Programmschaltwerk fuer waeschebehandlungs- und geschirrspuelmaschinen
FR2598443A1 (fr) * 1986-05-08 1987-11-13 Candy Elettrodomestici Dispositif de commande pour le deroulement des programmes, en particulier pour machines a laver
EP0253710A1 (fr) * 1986-07-10 1988-01-20 Ciapem Dispositif de commande de lave-linge à microprocesseur, et composant électromécanique
EP0326800A2 (fr) * 1988-02-05 1989-08-09 Bosch-Siemens HausgerÀ¤te GmbH Machine à laver commandée automatiquement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1710784B1 (de) * 1960-08-10 1970-07-09 Siemens Elektrogeraete Gmbh Automatisch arbeitende Haushaltwasch- oder -geschirrspuelmaschine mit einem elektrisch angetriebenen Programmsteuergeraet
FR1542931A (fr) * 1966-10-14 1968-10-18 Danfoss As Dispositif de surveillance pour machines à laver
US3716721A (en) * 1971-07-08 1973-02-13 Westinghouse Electric Corp Control system for washing apparatus
FR2336509A1 (fr) * 1975-12-23 1977-07-22 Miele & Cie Dispositif de commande par programme pour machines a laver le linge et machines a laver la vaisselle
DE2736384A1 (de) * 1977-08-12 1979-02-22 Kieninger & Obergfell Elektrisches programmsteuergeraet
US4425513A (en) * 1982-02-16 1984-01-10 Eation Corporation Method and device for providing dwell in timer controlled appliances
US4449384A (en) * 1982-08-04 1984-05-22 Eaton Corporation Washing appliance control circuitry
DE3303992A1 (de) * 1983-02-05 1984-08-09 Miele & Cie GmbH & Co, 4830 Gütersloh Programmschaltwerk fuer waeschebehandlungs- und geschirrspuelmaschinen
FR2598443A1 (fr) * 1986-05-08 1987-11-13 Candy Elettrodomestici Dispositif de commande pour le deroulement des programmes, en particulier pour machines a laver
EP0253710A1 (fr) * 1986-07-10 1988-01-20 Ciapem Dispositif de commande de lave-linge à microprocesseur, et composant électromécanique
EP0326800A2 (fr) * 1988-02-05 1989-08-09 Bosch-Siemens HausgerÀ¤te GmbH Machine à laver commandée automatiquement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676787A2 (fr) * 1994-04-07 1995-10-11 EATON CONTROLS SpA Méthode pour la programmation-temporisation d'électroménagers, avantageusement des lave-vaisselles, et le programmateur-temporisateur relaté
EP0676787A3 (fr) * 1994-04-07 1996-04-03 Eaton Controls Spa Méthode pour la programmation-temporisation d'électroménagers, avantageusement des lave-vaisselles, et le programmateur-temporisateur relaté.
EP0687761A1 (fr) * 1994-06-16 1995-12-20 Merloni Elettrodomestici S.p.A. Machine à laver à programmes multiples avec un programmateur électromécanique et un microcontrÔleur digital
EP0952503A2 (fr) * 1998-04-24 1999-10-27 AKO-Werke GmbH &amp; Co. KG Dipositif de programmation hybride, en particulier pour un lave-linge
EP0952503A3 (fr) * 1998-04-24 2002-06-26 Diehl AKO Stiftung &amp; Co. KG Dipositif de programmation hybride, en particulier pour un lave-linge
EP0984094A1 (fr) * 1998-09-03 2000-03-08 Whirlpool Corporation Dispositif de commande pour sèche-linge

Also Published As

Publication number Publication date
FR2674065B1 (fr) 1996-09-20
FR2674065A1 (fr) 1992-09-18

Similar Documents

Publication Publication Date Title
FR2548699A1 (fr) Procede de lavage pour une machine a laver a tambour a commande par programme
FR2542990A1 (fr) Dispositif de commande pour appareils, notamment pour appareils menagers
EP0504052A1 (fr) Appareil électroménager à programmateur comprenant une base de temps électromécanique et une base de temps électronique
EP0542599B1 (fr) Lave-linge ou sèche-linge à programmateur comprenant deux bases de temps de types différents
EP0253710B1 (fr) Dispositif de commande de lave-linge à microprocesseur, et composant électromécanique
EP0252816B1 (fr) Programmateur de commande de lave-linge à microprocesseur, et composant électromécanique
FR2588581A1 (fr) Lave-linge ou seche-linge a tambour tournant dans les deux sens
EP0210884B1 (fr) Programmateur pour lave-linge
EP0252817B1 (fr) Dispositif de commande pour lave-linge ou sèche-linge à détection automatique de la charge de linge
FR2802077A1 (fr) Lave-vaisselle avec commande a programme et procede de commande de celui-ci
EP0225813B1 (fr) Dispositif de commande du moteur d&#39;entraînement du tambour d&#39;un lave-linge
EP0206916B1 (fr) Lave-linge présentant des programmes de commande qui diffèrent selon la charge
EP0408431B1 (fr) Procédé de mémorisation et de restitution d&#39;un programme modifiable à exécuter par un processeur
FR2687176A3 (en) Washing machine with programmable control
FR2685542A1 (fr) Perfectionnement de regulation de machine a laver par programmateur.
EP0223649B1 (fr) Lave-linge à thermostat de contrôle de la température de l&#39;eau
FR2609193A1 (fr) Circuit de commande pour lave-vaisselle
EP0779639A1 (fr) Programmateur de lave-linge
EP0754797B1 (fr) Procédé de positionnement à l&#39;arrêt d&#39;une pièce rotative mue par un moteur universel, en particulier du tambour d&#39;une machine à laver à chargement par le dessus, et dispositif de mise en oeuvre
FR2640421A1 (fr) Dispositif pour couper l&#39;alimentation en energie electrique d&#39;une pluralite d&#39;organes, lors de certains deplacements de leurs cames de programmation
FR2585856A1 (fr) Programmation d&#39;appareils electromenagers a commande programmee, tels que machine a laver.
FR2591623A1 (fr) Lave-linge a dispositif de securite empechant l&#39;essorage si la cuve contient encore de l&#39;eau
EP0396467A1 (fr) Programmateur à cames de masquage
EP0386383A1 (fr) Programmateur monobloc, notamment pour appareil électroménager
FR2566547A1 (fr) Programmateur a horloge pour la commande d&#39;un appareil d&#39;usage domestique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT SE

17P Request for examination filed

Effective date: 19930305

17Q First examination report despatched

Effective date: 19940614

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19941026