EP0494469B1 - Method of assembling a hollow charge - Google Patents

Method of assembling a hollow charge Download PDF

Info

Publication number
EP0494469B1
EP0494469B1 EP91203234A EP91203234A EP0494469B1 EP 0494469 B1 EP0494469 B1 EP 0494469B1 EP 91203234 A EP91203234 A EP 91203234A EP 91203234 A EP91203234 A EP 91203234A EP 0494469 B1 EP0494469 B1 EP 0494469B1
Authority
EP
European Patent Office
Prior art keywords
explosive charge
precision explosive
charge
precision
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91203234A
Other languages
German (de)
French (fr)
Other versions
EP0494469A1 (en
Inventor
Rudolf Kaeser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SM Schweizerische Munitionsunternehmung AG
Original Assignee
Schweizerische Eidgenossenschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Eidgenossenschaft filed Critical Schweizerische Eidgenossenschaft
Publication of EP0494469A1 publication Critical patent/EP0494469A1/en
Application granted granted Critical
Publication of EP0494469B1 publication Critical patent/EP0494469B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B1/00Explosive charges characterised by form or shape but not dependent on shape of container
    • F42B1/02Shaped or hollow charges
    • F42B1/036Manufacturing processes therefor

Definitions

  • the invention relates to a method for assembling a shaped charge containing a precision explosive charge, a metallic shell and an insert, wherein at least the precision explosive charge is cooled and introduced into the metallic shell using the thermal expansion of the parts mentioned, and application of the method and shaped charge produced thereafter.
  • the above-mentioned inlays also called liners, serve to form beams in shaped charges.
  • DE -C-3 434 847 It is an assembly process, i.e. to assemble a shaped charge known (DE -C-3 434 847), in which the lining and the explosive charge are resiliently pressed together.
  • DE -C 34 34 847 the explosive charge is reduced to the lowest operating temperature. cooled down to at least minus 40 ° C and the explosives, insert and other constituents, which are in the supercooled state, are simultaneously inserted into the heated or normal temperature casing and a ring is flanged. When the whole is subsequently heated to normal temperature, the charge is forcibly clamped in the shell.
  • the explosive charge is pressed in on one side when the ammunition is processed under pressure.
  • the projectile casing must have a wall which is strong enough to be able to withstand the forces which occur during the pressing.
  • shell casings that are relatively thick-walled and often tend to form fragments can be used. Under no circumstances can projectiles for missiles and missile projectiles be produced using the above method, since the wall of such projectiles in particular is to be made as thin as possible for reasons of weight.
  • a light metal alloy or steel is usually used for the metallic shell, copper is suitable for the lining, and the explosive charge is made from the HMX (octogen) or RDX (hexogen) designated plastic or wax-bound explosives.
  • the invention has for its object to provide a method that ensures a crack and gap-free assembly of a precision explosive charge with an outer thin-walled metallic shell and an inner shaped charge lining.
  • the precision explosive charge can only be fully effective if it is enclosed on both sides by the casing and the lining without any space, this requirement should be met at a temperature range of -35 ° C to + 63 ° C. Since the temperature behavior of the materials mentioned is different, there is a risk of gaps or gaps that must be avoided.
  • the thermal expansion coefficient of the explosive in the whole or at least in the upper part of the required temperature range exceeds the thermal expansion coefficient of the lining and the casing.
  • the thermal expansion coefficient of the explosive is the same in the whole or at least in the upper part of the required temperature range as the thermal expansion coefficient of the lining and the casing.
  • the precision explosive charge should be inserted into the casing without tension in order to improve the quality of the projectile.
  • the shape of the liner be adapted to the process.
  • the method has the great advantage that even in the event of temperature fluctuations in the temperature range intended for use, there are no cracks due to tensile stresses in the precision explosive charge, thereby avoiding gaps or voids between the shell, explosive charge and lining.
  • the invention is also based on the object of specifying a method which ensures an air gap-free fit between the explosive charge and the projectile casing at operating temperatures of the ammunition from -35 ° C to + 63 ° C, and in particular also when the projectile casing is designed so light that it may not be pressed or re-pressed for reasons of strength.
  • the object of the invention is to provide a particularly light ammunition body which can be produced using this new method.
  • the pressed, dimensionally and dimensionally accurate explosive charge is cooled to a temperature of -50 ° C to -100 ° C and the metallic shell is heated to a temperature of + 50 ° C to + 80 ° C, then the jacketed precision explosive charge is warmed up to an intermediate temperature of -15 ° C to -35 ° C, at which the thermal expansion coefficients of the explosive and the metallic shell are the same and the lining is cooled to a temperature of -50 ° C to -100 ° C .
  • the invention has the enormous advantage that light projectiles can now be produced in very large batches without air pockets. Even the greater dangers in the laboratory, such as premature detonations, can hardly be feared.
  • a further advantage is obtained if the explosive charge is covered with a protective cover, so that no frost forms on the load during cooling. This also avoids the problems that would otherwise lead to undesirable water inclusions in the laboratory.
  • the protective cover advantageously consists of a plastic film that does not become brittle at low temperatures.
  • the explosive charge is sufficiently strong that it can be machined; Claim 9.
  • ammunition bodies with a casing made of light metal or of glass fiber or carbon fiber reinforced plastics can be produced particularly well.
  • Such bullets usually have a very thin wall, practically with a thickness of 1.0 mm to 2.0 mm, and thanks to the method described, they do not pose any problems in their laboratory work.
  • nitropenta, hexogen (RDX) with or without trinitrotoluene, or octogen (HMX) with a desensitizing additive such as wax or methyl methacrylate have proven particularly useful as explosives for the precision explosive charge of a shaped charge projectile.
  • the method can, according to claim 12, be used for the production of thin-walled ammunition bodies for anti-aircraft defense and for missile projectiles.
  • the powdered explosive 1 is filled into an elastic mold 2, Fig. 1a.
  • the whole is then placed in an autoclave 4, FIG. 1b and isostatically pressed to the precision explosive charge 3 at a pressure of, for example, 300 MPa, cf. Fig. 1c.
  • the details of the isostatic pressing process can be found in CH-PS 673 704.
  • the compressed explosive charge 3 can be machined if necessary, so that an end shape with very narrow tolerances is obtained, FIG. 1d.
  • the precision explosive charge 3 is placed in a freezer 6 and cooled to -50 ° C to -100 ° C, preferably -90 ° C, cf. Fig. 1e.
  • the temperature should not be lower than -100 ° C. Any cracks in the explosive charge 3 reduce the final ballistic performance of the ammunition produced, which must be usable in a temperature range from -35 ° C to + 63 ° C.
  • the explosive charge 3 is loosely covered with a protective cover 5 and the seam of the protective cover 5 is sealed. Plastic films which have not proven to become brittle, particularly at low temperatures, have proven to be a protective cover 5.
  • the residence time in the freezer 6 should be at least 2 hours and is dependent on the charge size.
  • a continuous cooling machine can also be used as the freezer 6, the precision explosive charge 3 being slowly moved on a conveyor belt through the tunnel of the machine, i.e. for at least 2 hours.
  • the metallic shell 7 is heated in a furnace 8 to a temperature of + 50 ° C to + 80 ° C, preferably + 60 ° C, Fig. 1f.
  • the protective casing 5 is then removed from the explosive charge 3 and the cold precision explosive charge 3 and the warm projectile casing 7 are immediately labored without tension, i.e. assembled without using any additional components and without external pressure, cf. Fig. 1g.
  • the structure consisting of the explosive charge 3 and the casing 7 is brought to an intermediate temperature, thereby creating an air gap-free press fit between the explosive charge 3 and the metallic projectile casing 7, which remains easily maintained in the prescribed working temperature range from -35 ° C to + 63 ° C.
  • This intermediate temperature depends on the explosive and the shell material used and is usually between -35 ° C and -15 ° C.
  • This intermediate temperature is -31 ° C when the octogen, which has been desensitized with methyl methacrylate, is used as the explosive and the Perunal as the shell material.
  • the lining 9 cooled to -50 ° C. to -100 ° C., preferably -80 ° C., is inserted into the explosive charge 3, 1h and 1i. This last operation is carried out under slight pressure, so that an air gap-free fit is created between the explosive charge and the shell and the lining, which is retained at higher temperatures.
  • the method described above for the production of ammunition bodies is particularly suitable for the manufacture of projectiles for anti-aircraft defense and of missile projectiles, since particularly explosive explosive charges such as nitropenta, hexogen with or without tinitrotoluene or octogen are used in these.
  • the wall of the metallic shell 7 is between 1.0 and 2.0 mm, preferably about 1.5 mm.
  • FIGS. 2 and 3 differ from one another by the additional elements present in FIG. 3, a transfer charge and a barrier, as will be explained in more detail below.
  • the shaped charge bullet 10 produced according to the invention has a housing or a metallic shell 11 in which an explosive device or a precision explosive charge 12 is located.
  • This precision explosive charge 12 is provided with an insert 13 on the inside.
  • the housing or the metallic shell 11 has at one end an internal thread 14 into which a threaded ring 15 is screwed.
  • the precision explosive charge 12, the insert 13, the threaded ring 15, the shaped charge bullet 10 produced according to the invention also has a transfer charge 16 and a barrier 17.
  • the precision explosive charge 12, the barrier 17 and the transfer charge 16 form a single body which is inserted as a whole into the shell 11.
  • the elements mentioned, in particular the precision explosive charge 12, the metallic shell 11 and the insert or lining 13 are assembled in such a way that no cracks occur in the explosive charge 12 and that on the one hand between the precision explosive charge 12 and the metallic shell 11 and on the other hand between the precision explosive charge 12 and the insert 13 no gaps or gaps arise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Secondary Cells (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Details Of Aerials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

A shaped-charge round has a precision explosive charge (12) which is surrounded on one hand externally by a metallic sleeve (11) and, on the other hand, is clad internally with an insert (13). During assembly, there is a risk that gaps, cavities or cracks between the three parts (11, 12, 13) may occur as a result of thermal expansion. This is avoided in that the precision explosive charge (12) is first cooled, the sleeve (11) is heated and the precision explosive charge (12) is inserted into the sleeve (11), in that the surrounded precision explosive charge (12) is subsequently heated, the insert (13) is cooled and the insert is pressed into the precision explosive charge (12). The parts (11, 12, 13) assembled in this way, are brought to room temperature. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Zusammenbau eines Hohlladungsgeschosses enthaltend eine Präzisionssprengladung, eine metallische Hülle und eine Einlage, wobei zumindest die Präzisionssprengladung abgekühlt und in die metallische Hülle unter Ausnutzung der Wärmedehnung der genannten Teile eingebracht wird sowie Anwendung des Verfahrens und danach hergestelltes Hohlladungsgeschoss.The invention relates to a method for assembling a shaped charge containing a precision explosive charge, a metallic shell and an insert, wherein at least the precision explosive charge is cooled and introduced into the metallic shell using the thermal expansion of the parts mentioned, and application of the method and shaped charge produced thereafter.

Die vorerwähnten Einlagen, auch Auskleidungen oder "Liner" genannt, dienen der Strahlbildung in Hohlladungen.The above-mentioned inlays, also called liners, serve to form beams in shaped charges.

Es ist ein Verfahren zur Montage, d.h. zum Zusammenbau einer Hohlladung bekannt (DE -C- 3 434 847), bei der die Auskleidung und die Sprengladung federnd aneinander gedrückt sind. Bei der Montage gemäss dieser DE -C- 34 34 847 wird die Sprengladung auf die niedrigste Betriebstemperatur d.i. mindestens minus 40 °C abgekühlt und die im unterkühlten Zustand befindlichen Sprengstoff, Einlage und andere Bestandteile gleichzeitig in die erwärmte oder auf Normaltemperatur befindliche Hülle eingeschoben und eine Ringbördelung vorgenommen. Beim anschliessenden erwärmen des Ganzen auf Normaltemperatur wird die Ladung zwangsweise in der Hülle gespannt.It is an assembly process, i.e. to assemble a shaped charge known (DE -C-3 434 847), in which the lining and the explosive charge are resiliently pressed together. When assembling according to this DE -C 34 34 847, the explosive charge is reduced to the lowest operating temperature. cooled down to at least minus 40 ° C and the explosives, insert and other constituents, which are in the supercooled state, are simultaneously inserted into the heated or normal temperature casing and a ring is flanged. When the whole is subsequently heated to normal temperature, the charge is forcibly clamped in the shell.

Durch dieses Verfahren lassen sich zwar Spalten zwischen Hülle und Sprengladung vermeiden, es sind aber keine Massnahmen vorgesehen, um auch Spalten zwischen Sprengladung und Auskleidung zuverlässig zu vermeiden, insbesondere wenn diese nicht genau kegelförmig ausgebildet ist.Although this method avoids gaps between the shell and the explosive charge, no measures are provided to reliably avoid gaps between the explosive charge and the lining, especially if the latter is not exactly conical.

Es ist ferner bekannt, einen Körper eines Sprengstoffgemisches aus Hexogen und TNT unter Druckeinwirkung in eine Pressform zu pressen, abzukühlen und dann die Auskleidung auf 85°C bis 95°C zu erwärmen und während des Abkühlens in die Höhlung des Körpers einzupressen (DE -A- 3 236 706). Es werden somit Lufteinschlüsse zwischen dem Körper und der Einlage verhindert, jedoch kann wegen der Detonationsgefahr bei der Laborierung nicht die ganze Auskleidung erwärmt werden. Luftspalte zwischen der Auskleidung und dem Körper sind daher kaum zu vermeiden.It is also known to pressurize a body of an explosive mixture of hexogen and TNT into a Press the mold, cool it and then heat the lining to 85 ° C to 95 ° C and press it into the cavity of the body while cooling (DE-A-3 236 706). There are air pockets between the body and the insert prevented, however, the entire lining cannot be heated due to the risk of detonation in the laboratory. Air gaps between the lining and the body can therefore hardly be avoided.

Es ist ein anderes Verfahren zur Herstellung von Hohlladungsgeschossen bekannt, wobei die Sprengladung vorgepresst wird und auf -30°C abgekühlt wird, (FR -A- 2 563 517). Die Sprengladung wird unter hohem Druck bei Umgebungstemperatur in die Geschosshülle, zusammen mit ihrer Auskleidung, eingepresst. Anschliessend wird ein Befestigungsring in dieser eingeschraubt, welche die Auskleidung kraftschlüssig fixiert. Nach dem Temperaturausgleich herrschen im Innern des Geschosses hohe mechanische Spannungen, welche auf die einzelnen Komponenten wirken.Another method for producing shaped charge projectiles is known, the explosive charge being pre-pressed and cooled to -30 ° C. (FR -A-2 563 517). The explosive charge, together with its lining, is pressed into the shell under high pressure at ambient temperature. A fastening ring is then screwed into it, which fixes the lining with a force fit. After the temperature equalization, there are high mechanical tensions inside the floor, which act on the individual components.

Bei den bekannten Verfahren wird die Sprengladung bei der Laborierung der Munition unter Druck einseitig eingepresst. Obwohl dabei die Risiken bei der Herstellung der Geschosse erheblich geringer sind als bei den Verfahren FR -A- 2 563 517, muss die Geschosshülle eine genügend starke Wandung aufweisen, um den beim Pressen auftretenden Kräften widerstehen zu können. Es lassen sich daher erfahrungsgemäss nur Geschossmäntel verwenden, die relativ dickwandig sind und oft zur Splitterbildung neigen. Auf keinen Fall können nach dem obigen Verfahren Geschosse für Flugkörper und Raketengeschosse hergestellt werden, da gerade die Wandung solcher Geschosse aus Gewichtsgründen konstruktiv möglichst dünn zu gestalten ist.In the known methods, the explosive charge is pressed in on one side when the ammunition is processed under pressure. Although the risks involved in the manufacture of the projectiles are considerably lower than in the FR-A-2 563 517 process, the projectile casing must have a wall which is strong enough to be able to withstand the forces which occur during the pressing. Experience has shown that only shell casings that are relatively thick-walled and often tend to form fragments can be used. Under no circumstances can projectiles for missiles and missile projectiles be produced using the above method, since the wall of such projectiles in particular is to be made as thin as possible for reasons of weight.

Die üblichen Werkstoffe dieser drei Komponenten - Präzisionssprengladung, metallische Hülle und Auskleidung - weisen meistens verschiedene Werte bezüglich Elastizitätsmodul, Poissonzahl und Wärmedehnungszahl auf. Für die metallische Hülle wird üblicherweise eine Leichtmetallegierung oder Stahl verwendet, für die Auskleidung eignet sich Kupfer, und die Sprengladung wird aus dem HMX (Oktogen) oder RDX (Hexogen) bezeichneten kunststoff- oder wachsgebundenen Sprengstoff hergestellt.The usual materials of these three components - precision explosive charge, metallic shell and lining - mostly have different values with regard to modulus of elasticity, Poisson's ratio and thermal expansion coefficient. A light metal alloy or steel is usually used for the metallic shell, copper is suitable for the lining, and the explosive charge is made from the HMX (octogen) or RDX (hexogen) designated plastic or wax-bound explosives.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, das ein riss- und spaltfreies Zusammenbauen einer Präzisionssprengladung mit einer äusseren dünnwandigen metallischen Hülle und einer inneren Hohlladungsauskleidung gewährleistet.The invention has for its object to provide a method that ensures a crack and gap-free assembly of a precision explosive charge with an outer thin-walled metallic shell and an inner shaped charge lining.

Die Präzisionssprengladung kann ihre volle Wirkung nur entfalten, wenn sie sowohl von der Hülle als auch von der Auskleidung allseitig ohne Zwischenraum umschlossen ist, wobei diese Forderung bei einem Temperaturbereich von -35°C bis +63°C erfüllt sein sollte. Da das Temperaturverhalten der erwähnten Werkstoffe unterschiedlich ist, besteht die Gefahr, dass Zwischenräume oder Spalten entstehen, die unbedingt zu vermeiden sind.The precision explosive charge can only be fully effective if it is enclosed on both sides by the casing and the lining without any space, this requirement should be met at a temperature range of -35 ° C to + 63 ° C. Since the temperature behavior of the materials mentioned is different, there is a risk of gaps or gaps that must be avoided.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass das Verfahren die Merkmale im Kennzeichen des Anspruchs 1 aufweist.This object is achieved in that the method has the features in the characterizing part of claim 1.

Bei diesem Verfahren ist es, gemäss Anspruch 3, vorteilhaft, dass die Wärmedehnungszahl des Sprengstoffes im ganzen oder zumindest im oberen Teil des geforderten Temperaturbereiches die Wärmedehnungszahl der Auskleidung und der Hülle übersteigt.In this method, it is advantageous, according to claim 3, that the thermal expansion coefficient of the explosive in the whole or at least in the upper part of the required temperature range exceeds the thermal expansion coefficient of the lining and the casing.

Bei diesem Verfahren ist es, gemäss Anspruch 4, vorteilhaft, dass die Wärmedehnungszahl des Sprengstoffes im ganzen oder zumindest im oberen Teil des geforderten Temperaturbereiches gleich ist, wie die Wärmedehnungszahl der Auskleidung und der Hülle.In this method, it is advantageous, according to claim 4, that the thermal expansion coefficient of the explosive is the same in the whole or at least in the upper part of the required temperature range as the thermal expansion coefficient of the lining and the casing.

Die Präzisionssprengladung, gemäss Anspruch 5, sollte spannungsfrei in die Hülle eingeführt werden, um die Qualität des Geschosses zu verbessern.The precision explosive charge, according to claim 5, should be inserted into the casing without tension in order to improve the quality of the projectile.

Ferner ist es wünschenswert, dass die Form der Auskleidung dem Verfahren angepasst ist.It is also desirable that the shape of the liner be adapted to the process.

Das Verfahren hat den grossen Vorteil, dass auch bei Temperaturschwankungen im für den Einsatz vorgesehenen Temperaturbereich keine Risse durch Zugspannungen in der Präzisionssprengladung entstehen und dadurch Spalten oder Hohlräume zwischen Hülle, Sprengladung und Auskleidung vermieden werden.The method has the great advantage that even in the event of temperature fluctuations in the temperature range intended for use, there are no cracks due to tensile stresses in the precision explosive charge, thereby avoiding gaps or voids between the shell, explosive charge and lining.

Der Erfindung liegt ferner die Aufgabe zugrunde, ein Verfahren anzugeben, das bei Einsatztemperaturen der Munition von -35°C bis +63°C einen luftspaltlosen Sitz zwischen Sprengladung und Geschosshülle gewährleistet, und insbesondere auch dann, wenn die Geschosshülle so leicht gestaltet ist, dass sie aus Festigkeitsgründen nicht gepresst oder nachgepresst werden darf. Gleichzeitig hat die Erfindung die Aufgabe, einen besonders leichten Munitionskörper anzugeben, der nach diesem neuen Verfahren hergestellt werden kann.The invention is also based on the object of specifying a method which ensures an air gap-free fit between the explosive charge and the projectile casing at operating temperatures of the ammunition from -35 ° C to + 63 ° C, and in particular also when the projectile casing is designed so light that it may not be pressed or re-pressed for reasons of strength. At the same time, the object of the invention is to provide a particularly light ammunition body which can be produced using this new method.

Vorzugsweise wird, gemäss Anspruch 2, die gepresste, form- und massgenaue Präzisionssprengladung auf eine Temperatur von -50°C bis -100°C abgekühlt und die metallische Hülle wird auf eine Temperatur von +50°C bis +80°C erwärmt, anschliessend wird die ummantelte Präzisionssprengladung bis auf eine Zwischentemperatur von -15°C bis -35°C aufgewärmt, bei welcher die Wärmedehnungszahlen des Sprengstoffes und der metallischen Hülle gleich sind und die Auskleidung auf eine Temperatur von -50°C bis -100°C abgekühlt wird.Preferably, according to claim 2, the pressed, dimensionally and dimensionally accurate explosive charge is cooled to a temperature of -50 ° C to -100 ° C and the metallic shell is heated to a temperature of + 50 ° C to + 80 ° C, then the jacketed precision explosive charge is warmed up to an intermediate temperature of -15 ° C to -35 ° C, at which the thermal expansion coefficients of the explosive and the metallic shell are the same and the lining is cooled to a temperature of -50 ° C to -100 ° C .

Die Erfindung hat den enormen Vorteil, dass nunmehr leichte Geschosse ohne Lufteinschlüsse in sehr grossen Chargen hergestellt werden können. Auch die grösseren Gefahren bei der Laborierung, wie vorzeitige Detonationen, sind kaum mehr zu befürchten.The invention has the enormous advantage that light projectiles can now be produced in very large batches without air pockets. Even the greater dangers in the laboratory, such as premature detonations, can hardly be feared.

Besonders vorteilhaft ist es im Zusammenhang mit dem erfindungsgemässen Verfahren, wenn die Präzisionssprengladung gemäss Anspruch 6 isostatisch gemäss CH-PS 673 704 gepresst wird, da dies einen sehr homogenen, texturfreien, form- und massgenauen Sprengladungskörper ergibt.It is particularly advantageous in connection with the method according to the invention if the precision explosive charge according to claim 6 is pressed isostatically according to CH-PS 673 704, since this results in a very homogeneous, texture-free, shape and dimensionally accurate explosive charge body.

Um eine genügend homogene Temperaturverteilung in der Sprengladung zu erreichen, soll sie nach Anspruch 7 samt ihrer Schutzhülle während 2 Stunden abgekühlt werden.In order to achieve a sufficiently homogeneous temperature distribution in the explosive charge, it should be cooled together with its protective cover for 2 hours.

Ein weiterer Vorteil ergibt sich, wenn die Sprengladung, gemäss Anspruch 8, mit einer Schutzhülle umhüllt ist, so dass sich kein Reif auf der Ladung während des Abkühlens bildet. Dadurch lassen sich auch die Probleme vermeiden, die sonst bei der Laborierung zu unerwünschten Wassereinschlüssen führen. Die Schutzhülle besteht dabei mit Vorteil aus einer bei tiefen Temperaturen nicht versprödenden Kunststoffolie.A further advantage is obtained if the explosive charge is covered with a protective cover, so that no frost forms on the load during cooling. This also avoids the problems that would otherwise lead to undesirable water inclusions in the laboratory. The protective cover advantageously consists of a plastic film that does not become brittle at low temperatures.

Durch Pressen, insbesondere isostatisches Pressen, erhält die Sprengladung eine genügend grosse Festigkeit, so dass sie spanabhebend bearbeitet werden kann; Anspruch 9.By pressing, in particular isostatic pressing, the explosive charge is sufficiently strong that it can be machined; Claim 9.

Bei einem Hohlladungsgeschoss, gemäss Anspruch 10, lassen sich besonders gut Munitionskörper mit einer Hülle aus Leichtmetall oder aus glasfaser- oder kohlenstoffaserverstärkten Kunststoffen herstellen.In the case of a shaped charge, according to claim 10, ammunition bodies with a casing made of light metal or of glass fiber or carbon fiber reinforced plastics can be produced particularly well.

Solche Geschosse besitzen meistens eine sehr dünne Wandung, praktisch mit einer Dicke von 1,0 mm bis 2,0 mm, und dank dem beschriebenen Verfahren bieten sie keine Probleme bei ihrer Laborierung.Such bullets usually have a very thin wall, practically with a thickness of 1.0 mm to 2.0 mm, and thanks to the method described, they do not pose any problems in their laboratory work.

Als Sprengstoffe für die Präzisionssprengladung eines Hohlladungsgeschosses haben sich gemäss Anspruch 11 besonders Nitropenta, Hexogen (RDX) mit oder ohne Trinitrotoluol, oder Oktogen (HMX), mit einem phlegmatisierenden Zusatz wie Wachs oder Methylmetacrylat, bewährt.According to claim 11, nitropenta, hexogen (RDX) with or without trinitrotoluene, or octogen (HMX) with a desensitizing additive such as wax or methyl methacrylate have proven particularly useful as explosives for the precision explosive charge of a shaped charge projectile.

Das Verfahren kann, gemäss Anspruch 12, zur Herstellung von dünnwandigen Munitionskörpern für die Fliegerabwehr und für Raketengeschosse verwendet werden.The method can, according to claim 12, be used for the production of thin-walled ammunition bodies for anti-aircraft defense and for missile projectiles.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung. Dort wird die Erfindung anhand verschiedener in den beigefügten Zeichnungen dargestellter Beispiele näher erläutert.Further advantages result from the description below. There, the invention is explained in more detail with reference to various examples shown in the accompanying drawings.

Es zeigen:

Fig. 1 a-i
die einzelnen, grundsätzlichen Verfahrensschritte zur Herstellung eines Munitionskörpers,
Fig. 2
einen Längsschnitt durch ein erstes Ausführungsbeispiel des erfindungsgemäss hergestelltes Hohlladungsgeschoss (einstückiger Sprengkörper) und
Fig. 3
einen Längsschnitt durch ein zweites Ausführungsbeispiel (zusammengesetzter Sprengkörper).
Show it:
Fig. 1 ai
the individual, basic process steps for producing an ammunition body,
Fig. 2
a longitudinal section through a first embodiment of the shaped charge projectile produced according to the invention (one-piece explosive device) and
Fig. 3
a longitudinal section through a second embodiment (assembled explosive device).

Der pulverförmige Sprengstoff 1 wird in eine elastische Pressform 2 eingefüllt, Fig. 1a. Dann wird das Ganze in einen Autoklav 4 gestellt, Fig. 1b und bei einem Druck von beispielsweise 300 MPa isostatisch zur Präzisionssprengladung 3 gepresst, vgl. Fig. 1c. Die Einzelheiten des isostatischen Pressverfahrens sind aus der CH-PS 673 704 entnehmbar. Die gepresste Sprengladung 3 kann nötigenfalls spanabhebend bearbeitet werden, so dass eine Endform mit sehr engen Toleranzen erhalten wird, Fig. 1d.The powdered explosive 1 is filled into an elastic mold 2, Fig. 1a. The whole is then placed in an autoclave 4, FIG. 1b and isostatically pressed to the precision explosive charge 3 at a pressure of, for example, 300 MPa, cf. Fig. 1c. The details of the isostatic pressing process can be found in CH-PS 673 704. The compressed explosive charge 3 can be machined if necessary, so that an end shape with very narrow tolerances is obtained, FIG. 1d.

Die Präzisionsprengladung 3 wird in eine Kühltruhe 6 gelegt und auf -50°C bis -100°C, vorzugsweise -90°C, abgekühlt, vgl. Fig. 1e. Um zu verhindern, dass die Sprengladung 3 spröde wird und/oder Risse aufweist, soll die Temperatur nicht tiefer als -100°C liegen. Allfällige Risse in der Sprengladung 3 vermindern die endballistische Leistung der hergestellten Munitionskörper, die in einem Temperaturbereich von -35°C bis +63°C einsetzbar sein müssen. Zum Abkühlen wird die Sprengladung 3 mit einer Schutzhülle 5 lose umhüllt und die Naht der Schutzhülle 5 versiegelt. Als Schutzhülle 5 haben sich besonders bei tiefen Temperaturen nicht versprödende Kunststoffolien bewährt.The precision explosive charge 3 is placed in a freezer 6 and cooled to -50 ° C to -100 ° C, preferably -90 ° C, cf. Fig. 1e. In order to prevent the explosive charge 3 from becoming brittle and / or showing cracks, the temperature should not be lower than -100 ° C. Any cracks in the explosive charge 3 reduce the final ballistic performance of the ammunition produced, which must be usable in a temperature range from -35 ° C to + 63 ° C. To cool down, the explosive charge 3 is loosely covered with a protective cover 5 and the seam of the protective cover 5 is sealed. Plastic films which have not proven to become brittle, particularly at low temperatures, have proven to be a protective cover 5.

Die Verweilzeit in der Kühltruhe 6 soll erfindungsgemäss mindestens 2 Stunden betragen und ist von der Ladungsgrösse abhängig. Als Kühltruhe 6 kann jedoch auch eine Durchlaufkältemaschine verwendet werden, wobei die Präzisionssprengladung 3 langsam auf einem Förderband durch den Tunnel der Maschine bewegt wird, d.h. während mindestens 2 Stunden. Gleichzeitig wird die metallische Hülle 7 in einem Ofen 8 auf eine Temperatur von +50°C bis +80°C, vorzugsweise +60°C, erwärmt, Fig. 1f.According to the invention, the residence time in the freezer 6 should be at least 2 hours and is dependent on the charge size. However, a continuous cooling machine can also be used as the freezer 6, the precision explosive charge 3 being slowly moved on a conveyor belt through the tunnel of the machine, i.e. for at least 2 hours. At the same time, the metallic shell 7 is heated in a furnace 8 to a temperature of + 50 ° C to + 80 ° C, preferably + 60 ° C, Fig. 1f.

Sodann wird die Schutzhülle 5 von der Sprengladung 3 entfernt und sofort die kalte Präzisionssprengladung 3 und die warme Geschosshülle 7 spannungsfrei laboriert, d.h. zusammengesetzt ohne Verwendung irgendwelcher zusätzlicher Komponenten und ohne Druckeinwirkung von aussen, vgl. Fig. 1g. Das aus der Sprengladung 3 und der Hülle 7 bestehende Gebilde wird auf eine Zwischentemperatur gebracht, dabei entsteht ein Luftspaltloser Presssitz zwischen Sprengladung 3 und metallischer Geschosshülle 7, der im vorgeschriebenen Arbeitstemperaturbereich von -35°C bis +63°C problemlos beibehalten bleibt. Diese Zwischentemperatur ist abhängig vom verwendeten Sprengstoff und vom Hüllenwerkstoff und liegt in der Regel zwischen -35°C und -15°C. Bei Verwendung des mit Methylmethacrylat phlegmatisierten Oktogen als Sprengstoff und des Perunals als Hüllenwerkstoff beträgt diese Zwischentemperatur -31°C.The protective casing 5 is then removed from the explosive charge 3 and the cold precision explosive charge 3 and the warm projectile casing 7 are immediately labored without tension, i.e. assembled without using any additional components and without external pressure, cf. Fig. 1g. The structure consisting of the explosive charge 3 and the casing 7 is brought to an intermediate temperature, thereby creating an air gap-free press fit between the explosive charge 3 and the metallic projectile casing 7, which remains easily maintained in the prescribed working temperature range from -35 ° C to + 63 ° C. This intermediate temperature depends on the explosive and the shell material used and is usually between -35 ° C and -15 ° C. This intermediate temperature is -31 ° C when the octogen, which has been desensitized with methyl methacrylate, is used as the explosive and the Perunal as the shell material.

Dann wird die auf -50°C bis -100°C, vorzugsweise -80°C, abgekühlte Auskleidung 9 in die Sprengladung 3 eingesetzt, Fig. 1h und 1i. Diese letzte Operation erfolgt unter leichtem Druck, so dass ein luftspaltloser Sitz zwischen dem Gebilde Sprengladung und Hülle und der Auskleidung entsteht, der bei höheren Temperaturen beibehalten bleibt.Then the lining 9, cooled to -50 ° C. to -100 ° C., preferably -80 ° C., is inserted into the explosive charge 3, 1h and 1i. This last operation is carried out under slight pressure, so that an air gap-free fit is created between the explosive charge and the shell and the lining, which is retained at higher temperatures.

Das vorbeschriebene Verfahren zur Herstellung von Munitionskörpern ist besonders geeignet für die Fertigung von Geschossen für die Fliegerabwehr und von Raketengeschossen, da bei diesen besonders brisante Präzisionssprengladungen, wie Nitropenta, Hexogen mit oder ohne Tinitrotoluol, oder Oktogen, verwendet werden.The method described above for the production of ammunition bodies is particularly suitable for the manufacture of projectiles for anti-aircraft defense and of missile projectiles, since particularly explosive explosive charges such as nitropenta, hexogen with or without tinitrotoluene or octogen are used in these.

Bei solchen Geschossen werden vorallem Leichtmetallblech, wie Aluminium, oder auch glasfaser- oder kohlenstoffaserverstärkte Kunststoffe verwendet. Die Wandung der metallischen Hülle 7 beträgt dabei zwischen 1,0 und 2,0 mm, vorzugsweise etwa 1,5 mm.In such projectiles, primarily light metal sheet, such as aluminum, or glass fiber or carbon fiber reinforced plastics are used. The wall of the metallic shell 7 is between 1.0 and 2.0 mm, preferably about 1.5 mm.

Die beiden praktisch realisierten Ausführungsbeispiele, Fig. 2 und 3, unterscheiden sich voneinander durch die in Fig. 3 vorhandenen zusätzlichen Elemente, eine Übertragungsladung und eine Barriere, wie weiter unten noch ausführlich erläutert wird.The two practical exemplary embodiments, FIGS. 2 and 3, differ from one another by the additional elements present in FIG. 3, a transfer charge and a barrier, as will be explained in more detail below.

Gemäss Fig. 2 weist das erfindungsgemäss hergestellte Hohlladungsgeschoss 10 ein Gehäuse oder eine metallische Hülle 11 auf, in der sich ein Sprengkörper oder eine Präzisionssprengladung 12 befindet. Diese Präzisionssprengladung 12 ist innen mit einer Einlage 13 versehen. Das Gehäuse oder die metallische Hülle 11 weist an ihrem einen Ende ein Innengewinde 14 auf, in das ein Gewindering 15 eingeschraubt ist.According to FIG. 2, the shaped charge bullet 10 produced according to the invention has a housing or a metallic shell 11 in which an explosive device or a precision explosive charge 12 is located. This precision explosive charge 12 is provided with an insert 13 on the inside. The housing or the metallic shell 11 has at one end an internal thread 14 into which a threaded ring 15 is screwed.

Gemäss Fig. 3 weist das erfindungsgemäss hergestellte Hohlladungsgeschoss 10 zusätzlich zu den erwähnten Elementen, insbesondere der Hülle 11, der Präzisionssprengladung 12, der Einlage 13, dem Gewindering 15, noch eine Übertragungsladung 16 und eine Barriere 17 auf. Vorzugsweise bilden die Präzisionssprengladung 12, die Barriere 17 und die Übertragunsladung 16 einen einzigen Körper, der als ganzes in die Hülle 11 eingesetzt wird.According to FIG. 3, in addition to the elements mentioned, in particular the shell 11, the precision explosive charge 12, the insert 13, the threaded ring 15, the shaped charge bullet 10 produced according to the invention also has a transfer charge 16 and a barrier 17. Preferably form the precision explosive charge 12, the barrier 17 and the transfer charge 16 form a single body which is inserted as a whole into the shell 11.

Das erfindungsgemässe Verfahren besteht nun darin:

  • a) die Präzisionssprengladung 12 abzukühlen
  • b) die Hülle 11 zu erwärmen
  • c) die abgekühlte Präzisionssprengladung 12 in die erwärmte Hülle 11 einzuführen
  • d) die von der Hülle 11 ummantelte Präzisionssprengladung 12 auf Zwischentemperatur zu erwärmen
  • e) die Einlage 13 abzukühlen
  • f) die abgekühlte Einlage 13 in die Präzisionssprengladung 12 hineinzupassen
  • g) das entstandene Gebilde mittels Gewindering anzupressen
  • h) die derart zusammengeführten Teile auf irgendeine Umgebungstemperatur innerhalb des Einsatzbereiches zu bringen.
The method according to the invention now consists in:
  • a) to cool the precision explosive charge 12
  • b) to heat the casing 11
  • c) insert the cooled precision explosive charge 12 into the heated casing 11
  • d) to heat the explosive charge 12 encased by the envelope 11 to an intermediate temperature
  • e) cool the insert 13
  • f) to fit the cooled insert 13 into the precision explosive charge 12
  • g) to press the resulting structure using a threaded ring
  • h) to bring the parts brought together in this way to any ambient temperature within the area of use.

Die genannten Elemente, insbesondere die Präzisionssprengladung 12, die metallische Hülle 11 und die Einlage oder Auskleidung 13 werden derart zusammengebaut, dass keine Risse in der Sprengladung 12 entstehen und dass einerseits zwischen der Präzisionssprengladung 12 und der metallischen Hülle 11 und andererseits zwischen der Präzisionssprengladung 12 und der Einlage 13 keine Zwischenräume oder Spalten entstehen.The elements mentioned, in particular the precision explosive charge 12, the metallic shell 11 and the insert or lining 13 are assembled in such a way that no cracks occur in the explosive charge 12 and that on the one hand between the precision explosive charge 12 and the metallic shell 11 and on the other hand between the precision explosive charge 12 and the insert 13 no gaps or gaps arise.

BerechnungsbeispielCalculation example

  • 1. Rechenansatz
    Die zusammengebauten metallischen Teile der Hohlladung weisen Abmessungen und Toleranzen auf, die für eine Temperatur von 20°C (Raumtemperatur) gültig sind.
    Die Bindungen zwischen dem Sprengkörper und den metallischen Teilen erlauben nur die Übertragung von Druckspannungen, nicht von Zug- und/oder Schubspannungen.
    Bei der Trennfläche zwischen Einlage 13 und Gewindering 15 wird eine feste Bindung angenommen.
    Bei der Trennfläche zwischen Einlage 13 und metallischer Hülle 11 wird in der axialen Richtung Bindungsfreiheit und radial Zugspannungsfreiheit angenommen.
    1. Calculation approach
    The assembled metallic parts of the shaped charge have dimensions and tolerances that are valid for a temperature of 20 ° C (room temperature).
    The bonds between the explosive device and the metallic parts only allow the transfer of compressive stresses, not tensile and / or shear stresses.
    A firm bond is assumed for the separating surface between insert 13 and threaded ring 15.
    With the separating surface between the insert 13 and the metallic shell 11, freedom from binding and radial freedom from tension are assumed in the axial direction.
  • 2. Simulation der thermoelastischen Vorgänge 2. Simulation of thermoelastic processes
  • 2.1 Bestimmung der erforderlichen Sprengstoffmenge
    Das im Rechenansatz definierte Modell wird auf die Temperatur abgekühlt, bei welcher die Wärmedehnungszahlen des Sprengstoffes und der metallischen Hülle gleich sind (bei ca. -30°C).
    Die dabei entstandenen Zwischenräume zwischen Sprengkörper 3 und metallischer Hülle 7, bzw. Auskleidung 9 werden mit Sprengstoff derart aufgefüllt, dass bei der Zwischentemperatur von ca. -30°C eine druckfreie Berührung vorliegt.
    Das bei ca. -30°C korrigierte Modell wird auf die minimale Einsatztemperatur (-35°C) weiter abgekühlt. Allfällige entstandene Zwischenräume werden ebenfalls mit Sprengstoff aufgefüllt.
    Die so definierte Hohlladung wird auf 20°C (Raumtemperatur) aufgewärmt.
    2.1 Determining the required amount of explosives
    The model defined in the calculation approach is cooled to the temperature at which the thermal expansion numbers of the explosive and the metallic shell are the same (at approx. -30 ° C).
    The resulting gaps between the explosive device 3 and the metallic shell 7 or lining 9 are filled with explosives in such a way that there is pressure-free contact at the intermediate temperature of approximately -30 ° C.
    The model corrected at approx. -30 ° C is further cooled down to the minimum operating temperature (-35 ° C). Any gaps that arise are also filled with explosives.
    The shaped charge thus defined is warmed up to 20 ° C (room temperature).
  • 2.2 Bestimmung des mechanisch zu bearbeitenden Umrisses der Sprengladung
    Der praktische Umriss der Sprengladung 3 wird aus der obigen Simulation ermittelt, indem die metallischen Teile der Hohlladung wie Hülle 7 und Auskleidung 9 entfernt werden.
    Dabei sollen die Fertigungstoleranzen bei 20°C sowohl der Sprengladung als auch der metallischen Teile berücksichtigt werden, was zu einem geringen Übermass des mechanisch zu bearbeitenden Sprengkörpers führt.
    2.2 Determination of the mechanically machined outline of the explosive charge
    The practical outline of the explosive charge 3 is determined from the above simulation by removing the metallic parts of the shaped charge, such as the shell 7 and the lining 9.
    The manufacturing tolerances at 20 ° C of both the explosive charge and the metallic parts should be taken into account, which leads to a small excess of the explosive to be machined.
  • 2.3 Bestimmung der Druckspannungen im Sprengkörper und in der metallischen Hülle
    Die Spannungsverteilung, insbesondere die Verteilung der Drücke auf Sprengkörper und Hülle, werden bei der maximalen Einsatztemperatur (+63°C) ermittelt. Dabei werden die Massabweichungen gleich Null gesetzt und die entstandenen Spannungen, bzw. Drücke nach VON MISES errechnet.
    Dabei ist zu bemerken, dass sich die gepresste Sprengladung nicht plastisch verformt, wenn die Spannungen bzw. die Drücke im Sprengstoff den Pressdruck nicht übersteigen.
    2.3 Determination of the compressive stress in the explosive device and in the metallic shell
    The stress distribution, in particular the distribution of the pressures on the explosive device and shell, are determined at the maximum operating temperature (+ 63 ° C). The dimensional deviations are set to zero and the resulting stresses or pressures are calculated according to VON MISES.
    It should be noted that the compressed explosive charge does not deform plastically if the stresses or pressures in the explosive do not exceed the pressure.
  • 3. Numerisches Beispiel
    Die numerische Berechnung einer Hohlladung von Kaliber 120 mm wurde mit dem Finite-Elemente-Programm ABAQUS (Handelsprogramm durch die Firma HIBIT, KARLSSON & SORENSON, Inc., Providence, Rhode Island, USA vertrieben) durchgeführt.
    Dabei wurden folgende thermoelastische Kennwerte verwendet
    • für den Sprengstoff, Oktogen mit Methylmethacrylat phlegmatisiert:
      Der Elektrizitätsmodul Es = 1'200 N/mm², im relevanten Temperaturbereich konstant.
      Die POISSON-Zahl = 0,1
      Die Wärmedehnungszahl αs, Funktion der Temperatur, durch ein Polynom dritten Grades dargestellt

      α s = (4,08 + 0,0625Θ + 0,00028Θ² - 0,00000104Θ³)x10⁻⁵ 1/ o K
      Figure imgb0001
      Figure imgb0002

    • für eine Leichtmetallhülle aus der ASTM 7'075-Legierung:
      Der Elastizitätsmodul Eh = 70'000 N/mm², im relevanten Temperaturbereich konstant.
      Die POISSON-Zahl = 0,3
      Die Wärmedehnungszahl αh = 2,36x10⁻⁵ 1/oK, im relevanten Temperaturbereich konstant.
    • Für die Auskleidung aus reinem Elektrolytkupfer:
      Der Elastizitätsmodul ECu = 125'000 N/mm², im relevanten Temperaturbereich konstant.
      Die POISSON-Zahl = 0,3
      Die Wärmedehnungszahl αCu = 1,9x10⁻⁵ 1/oK, im relevanten Temperaturbereich konstant.
      Die Berechnung ergab eine maximale Massabweichung von 0,12 mm bei der Auskleidungsbasis. Hier betragen die Dicke der Sprengladung 2 mm (radial gemessen) und diejenige der metallischen Hülle 1 mm.
      Die höchste auftretende, dreidimensionale Druckspannung in der Sprengladung liegt aber bei der Auskleidungsspitze und beträgt

      2,43 N/mm²
      Figure imgb0003


      nach VON MISES berechnet. Dieser Wert liegt unterhalb des Druckes, bei welchen die Sprengladung verdichtet wurde (ca. 200 N/mm²). Die maximale Beanspruchung der Hülle entsteht beim Temperaturmaximum von 63°C, eine entsprechende dreidimensionale Spannung beträgt

      110 N/mm²
      Figure imgb0004


      und liegt noch im elastischen Bereich der Aluminiumlegierung.
    3. Numerical example
    The numerical calculation of a shaped charge of caliber 120 mm was carried out with the finite element program ABAQUS (trading program by the company HIBIT, KARLSSON & SORENSON, Inc., Providence, Rhode Island, USA).
    The following thermoelastic parameters were used
    • for the explosives, octogen phlegmatized with methyl methacrylate:
      The electricity module E s = 1,200 N / mm², constant in the relevant temperature range.
      The POISSON number = 0.1
      The coefficient of thermal expansion α s , function of temperature, is represented by a third degree polynomial

      α s = (4.08 + 0.0625Θ + 0.00028Θ² - 0.00000104Θ³) x10⁻⁵ 1 / O K
      Figure imgb0001
      Figure imgb0002

    • for a light metal cover made of ASTM 7'075 alloy:
      The elastic modulus E h = 70,000 N / mm², constant in the relevant temperature range.
      The POISSON number = 0.3
      The coefficient of thermal expansion α h = 2.36x10⁻⁵ 1 / o K, constant in the relevant temperature range.
    • For the lining made of pure electrolytic copper:
      The modulus of elasticity E Cu = 125,000 N / mm², constant in the relevant temperature range.
      The POISSON number = 0.3
      The coefficient of thermal expansion α Cu = 1.9x10⁻⁵ 1 / o K, constant in the relevant temperature range.
      The calculation resulted in a maximum dimensional deviation of 0.12 mm for the lining base. Here the thickness of the explosive charge is 2 mm (measured radially) and that of the metallic shell is 1 mm.
      However, the highest three-dimensional compressive stress that occurs in the explosive charge lies at the lining tip and is

      2.43 N / mm²
      Figure imgb0003


      calculated by VON MISES. This value is below the pressure at which the explosive charge was compressed (approx. 200 N / mm²). The maximum stress on the shell occurs at a maximum temperature of 63 ° C, a corresponding three-dimensional stress is

      110 N / mm²
      Figure imgb0004


      and is still in the elastic range of the aluminum alloy.

Anhand dieses Berechnungsbeispiels wird gezeigt, dass die beiden eingangs gestellten Aufgaben, nämlich:

  • a) ein riss- und spaltfreies Zusammenbauen einer Präzisionssprengladung mit einer äusseren, dünnwandigen Hülle und einer inneren Hohlladungsauskleidung und
  • b) bei Einsatztemperaturen der Munition von -35°C bis +63°C einen luftspaltlosen Sitz zwischen Sprengladung und Geschosshülle
zu gewährleisten, absolut exakt gelöst werden können. Somit zeigt das Berechnungsbeispiel, dass sowohl bei sehr tiefen als auch bei sehr hohen Temperaturen keine Risse oder Spalten im erfindungsgemäss hergestellten Hohlladungsgeschoss auftreten werden und somit auch die geforderte Qualität des Geschosses gewährleistet ist.This calculation example shows that the two tasks set out at the beginning, namely:
  • a) a crack and gap-free assembly of a precision explosive charge with an outer, thin-walled shell and an inner shaped charge lining and
  • b) at ammunition operating temperatures from -35 ° C to + 63 ° C an air gap-free seat between the explosive charge and the shell
to ensure can be solved absolutely precisely. The calculation example thus shows that there are no cracks or gaps at very low or very high temperatures will occur in the shaped charge storey produced in accordance with the invention and thus the required quality of the storey is guaranteed.

Claims (12)

  1. Method for the fissure-free assembly of a hollow charge projectile, taking account of the various coefficients of thermal expansion of the precision explosive charge (12), metallic casing (11) and insert (13) through the introduction of the precision explosive charge (12) and insert (13), which are in the supercooled state, into a casing (11) which has been heated or is at normal temperature, characterised in
    - that first the pressed precision explosive charge (12), which is of a precise shape and mass, is cooled, the metallic casing (11) is heated and the precision explosive charge (12) is introduced into the metallic casing (11) in a stress-free manner,
    - that the sheathed precision explosive charge (12) is then heated, the insert (13) is cooled and the insert (13) is pressed axially and fixed into the sheathed precision explosive charge (12) in a friction-tight manner,
    - that the thus assembled parts (11, 12, 13) are then brought to any ambient temperature.
  2. Method according to claim 1, characterised in that the pressed precision explosive charge (12), which is of a precise shape and mass, is cooled to a temperature of -50 °C to -100 °C, and that the metallic casing (11) is heated to a temperature of +50 °C to +80 °C, that the sheathed precision explosive charge is then heated to -35 °C to -15 °C and the insert is cooled to a temperature of -50 °C to -100 °C.
  3. Method according to claim 1, characterised in that the coefficient of thermal expansion of the explosive (12) in all or at least in the upper portion of the required temperature range exceeds the coefficient of thermal expansion of the insert (13) and of the casing (11).
  4. Method according to claim 1, characterised in that the coefficient of thermal expansion of the explosive (12) in all or at least in the upper portion of the required temperature range is the same as the coefficient of thermal expansion of the lining (13) and of the casing (11).
  5. Method according to claim 1, characterised in that the precision explosive charge (12) is introduced into the casing (11) in a stress-free manner.
  6. Method of introducing a precision explosive charge into a metallic casing according to claim 5, characterised in that the precision explosive charge (12) is pressed and/or isostatically pressed.
  7. Method of introducing a precision explosive charge into a metallic casing according to claim 5 or 6, characterised in that the precision explosive charge (12) is cooled for at least 2 hours.
  8. Method of introducing a precision explosive charge into a metallic casing according to claim 7, characterised in that the precision explosive charge (12, 3) is enclosed by a protective casing (5) during the cooling.
  9. Method according to one of the preceding claims, characterised in that the shapes and dimensions of the precision explosive charge (12) are obtained, at least partly, by machining.
  10. Hollow charge projectile produced using the method according to claim 1, characterised in that the casing (7, 11) of the thin-walled ammunition body consists of a light metal, such as an aluminium or magnesium alloy, or of a plastic reinforced with glass fibre or carbon fibre.
  11. Hollow charge projectile produced using the method according to claim 1, characterised in that the precision explosive charge (3, 12) of the thin-walled ammunition body consists of nitropenta, hexogen with or without trinitrotoluene, or octogen with a phlegmatising additive, such as wax or plastic, such as methylmetacrylate.
  12. Use of the method according to one of claims 1 to 9 for producing thin-walled ammunition bodies for anti-aircraft defence and for rocket projectiles.
EP91203234A 1991-01-11 1991-12-11 Method of assembling a hollow charge Expired - Lifetime EP0494469B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH62/91 1991-01-11
CH62/91A CH684126A5 (en) 1991-01-11 1991-01-11 Method of assembling a shaped charge projectile, use of the process and then made hollow charge projectile.

Publications (2)

Publication Number Publication Date
EP0494469A1 EP0494469A1 (en) 1992-07-15
EP0494469B1 true EP0494469B1 (en) 1995-03-08

Family

ID=4178449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91203234A Expired - Lifetime EP0494469B1 (en) 1991-01-11 1991-12-11 Method of assembling a hollow charge

Country Status (11)

Country Link
US (1) US5251530A (en)
EP (1) EP0494469B1 (en)
AT (1) ATE119661T1 (en)
CH (1) CH684126A5 (en)
DE (1) DE59104883D1 (en)
DK (1) DK0494469T3 (en)
ES (1) ES2071907T3 (en)
GR (1) GR3015352T3 (en)
HK (1) HK157795A (en)
IL (1) IL100322A (en)
MY (1) MY107660A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO172865C (en) * 1991-08-01 1993-09-15 Raufoss As MULTIPLE EFFECT PROJECT AND PROCEDURE IN ITS MANUFACTURING
US5523048A (en) * 1994-07-29 1996-06-04 Alliant Techsystems Inc. Method for producing high density refractory metal warhead liners from single phase materials
AU1059999A (en) * 1998-05-20 1999-01-25 United States Of America, The Shaped charge liners, methods of making the same, and the related munitions nd minefield clearing
US6546837B1 (en) * 2001-11-02 2003-04-15 Perkinelmer, Inc. Dual load charge manufacturing method and press therefore
US20030183113A1 (en) * 2002-03-12 2003-10-02 Barlow Darren R. Shaped-charge liner with precursor liner
DE102007056786A1 (en) * 2007-11-23 2009-05-28 Rheinmetall Waffe Munition Gmbh bullet
DE102007056785A1 (en) * 2007-11-23 2009-05-28 Rheinmetall Waffe Munition Gmbh bullet
US8166882B2 (en) * 2009-06-23 2012-05-01 Schlumberger Technology Corporation Shaped charge liner with varying thickness
FR2980473B1 (en) * 2011-09-22 2013-10-11 Pyroalliance PROCESS FOR OBTAINING A LINEAR DETONATING CUTTING LOAD CHARGE, CHARGE OBTAINED BY SAID METHOD
US9546856B1 (en) * 2014-09-22 2017-01-17 The United States Of America As Represented By The Secretary Of The Army Press load process for warhead
WO2019083819A1 (en) 2017-10-26 2019-05-02 Spectra Technologies Llc Explosive ordnance cold assembly process
US11209255B1 (en) 2019-09-10 2021-12-28 The United States Of America As Represented By The Secretary Of The Army Press load process for warheads

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961554A (en) * 1974-04-08 1976-06-08 The United States Of America As Represented By The Secretary Of The Navy Method for making incendiary lines for ordnance
DE2813179C3 (en) * 1978-03-25 1980-09-18 Dynamit Nobel Ag, 5210 Troisdorf Process for the manufacture of pressed explosive charges
DE3236706A1 (en) * 1982-10-04 1984-04-05 Rheinmetall GmbH, 4000 Düsseldorf Process for lining a body surrounding a cavity and consisting of explosive mixtures with an insert
DE3415389A1 (en) * 1984-04-25 1985-11-07 Diehl GmbH & Co, 8500 Nürnberg METHOD FOR PUTTING A LOAD INTO A FLOOR CASE
DE3434847C1 (en) * 1984-09-22 1985-11-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Method for installing a shaped charge
CH676502A5 (en) * 1988-08-03 1991-01-31 Eidgenoess Munitionsfab Thun Forming precisely formed explosive body in metal casing - by room temp. shrinkage of warmed metal onto explosive expanding from deeply chilled initial state
DE3843886C1 (en) * 1988-12-24 1990-05-31 Dynamit Nobel Ag, 5210 Troisdorf, De Process for producing main charges and booster charges of hollow charges

Also Published As

Publication number Publication date
ES2071907T3 (en) 1995-07-01
MY107660A (en) 1996-05-30
EP0494469A1 (en) 1992-07-15
HK157795A (en) 1995-10-13
CH684126A5 (en) 1994-07-15
IL100322A (en) 1995-08-31
GR3015352T3 (en) 1995-06-30
ATE119661T1 (en) 1995-03-15
DK0494469T3 (en) 1995-05-22
US5251530A (en) 1993-10-12
IL100322A0 (en) 1992-09-06
DE59104883D1 (en) 1995-04-13

Similar Documents

Publication Publication Date Title
EP0494469B1 (en) Method of assembling a hollow charge
AT503771B1 (en) METAL ALLOY, FROM THIS SHAPED CAVITY INSERT AND METHOD FOR THE PRODUCTION THEREOF
EP1338860A2 (en) Method for manufacturing a big calibre high explosive projectile and projectile manufactured by this method
CH618260A5 (en)
EP0429753A1 (en) Procedure and device for the manufacturing of large calibre ammunition
CH637206A5 (en) BULLET FOR HANDGUNS.
CH662400A5 (en) METHOD FOR CONNECTING TWO PIPES JUMPING AT A BUTTING POINT AND ASSEMBLY KIT FOR CARRYING OUT THE METHOD.
DE3927400C2 (en)
DE2557676A1 (en) Projectile contg. fragments of depleted uranium alloy - giving high penetrating power esp. armour piercing and incendiary action
DE2539684C1 (en) Splinter shell for projectiles, warheads, ammunition and the like.
EP0108741B1 (en) Method for the production of a fragmentation device
DE2852334A1 (en) METHOD FOR THE PRODUCTION OF PRESSED, IN PARTICULAR LARGE-CALIBRATED COMBUSTION CHARGES
DE2065091A1 (en) alloy
DE4223143A1 (en) Increasing stability of hollow charge-contg. munition - by adhesive bonding of explosive charge to sheath and lining
EP0881459B1 (en) Training projectile
DE3540021A1 (en) Multi-element shaped-charge lining
DE3822375C2 (en)
CH676502A5 (en) Forming precisely formed explosive body in metal casing - by room temp. shrinkage of warmed metal onto explosive expanding from deeply chilled initial state
DE700255C (en) manufacture of this case
DE2504756A1 (en) METHOD AND DEVICE FOR COMPRESSING FINE-PARTICULAR SOLID EXPLOSIVE MATERIALS IN A GARNET COAT OR IN A PULLOVER CASE
DE2520882C1 (en) Single or multi-base powder bodies for propellant charges and processes for their manufacture
DE2322728A1 (en) SPLITTER CASE FOR BULLETS, BATTLE HEADS, THROWING AMMUNITION, etc.
AT383979B (en) METHOD FOR PRODUCING PENETRATORS FOR LOW-CALIBRATION BALANCING BULLETS AND SLEEVE FOR USE IN CARRYING OUT THIS METHOD
DE102022205242B4 (en) Bullet for a hard core handgun cartridge and method for producing same
WO2000026605A1 (en) Production of a low-polluting jacketed bullet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920822

17Q First examination report despatched

Effective date: 19931125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 119661

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59104883

Country of ref document: DE

Date of ref document: 19950413

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950317

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015352

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071907

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: SCHWEIZERISCHE EIDGENOSSENSCHAFT, EIDG. MUNITIONSFABRIK THUN DER TRANSFER- SCHWEIZERISCHE EIDGENOSSENSCHAFT , SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG DER GRUPPE

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: SCHWEIZERISCHE EIDGENOSSENSCHAFT , SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG DER GRUPPE TRANSFER- SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20051129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20051220

Year of fee payment: 15

Ref country code: LU

Payment date: 20051220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051221

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061211

BERE Be: lapsed

Owner name: *RUAG MUNITION

Effective date: 20061231

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG

Ref country code: CH

Ref legal event code: PUE

Owner name: SAAB BOFORS DYNAMICS SWITZERLAND LTD.

Free format text: SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG AG#ALLMENDSTRASSE 74#3602 THUN (CH) -TRANSFER TO- SAAB BOFORS DYNAMICS SWITZERLAND LTD.#ALLMENDSTRASSE 86#3602 THUN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101029

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101018

Year of fee payment: 20

Ref country code: SE

Payment date: 20101214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101223

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59104883

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59104883

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111210

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111212