EP0480479B2 - Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine - Google Patents

Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine Download PDF

Info

Publication number
EP0480479B2
EP0480479B2 EP91121100A EP91121100A EP0480479B2 EP 0480479 B2 EP0480479 B2 EP 0480479B2 EP 91121100 A EP91121100 A EP 91121100A EP 91121100 A EP91121100 A EP 91121100A EP 0480479 B2 EP0480479 B2 EP 0480479B2
Authority
EP
European Patent Office
Prior art keywords
acid
lubricant
monovalent fatty
chain monovalent
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91121100A
Other languages
German (de)
French (fr)
Other versions
EP0480479B1 (en
EP0480479A3 (en
EP0480479A2 (en
Inventor
Takashi c/o Kyodo Oil Technical Research Kaimai
Hisashi c/o Kyodo Oil Technical Research Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27323564&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0480479(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Publication of EP0480479A2 publication Critical patent/EP0480479A2/en
Publication of EP0480479A3 publication Critical patent/EP0480479A3/en
Publication of EP0480479B1 publication Critical patent/EP0480479B1/en
Application granted granted Critical
Publication of EP0480479B2 publication Critical patent/EP0480479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/40Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • C10M105/44Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/52Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/2875Partial esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • C10M2207/2885Partial esters containing free carboxyl groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • C10M2207/2895Partial esters containing free hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/301Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • C10M2207/3025Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • C10M2207/345Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/0206Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • C10M2211/0225Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • C10M2211/0245Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses

Definitions

  • This invention relates to the use of lubricants for compressors using a hydrofluorocarbon refrigerant containing no chlorine such as hydrofluorocarbons (HFC), preferably HFC-134a, (1,1,1,2-tetrafluoroethane).
  • HFC hydrofluorocarbons
  • compounds containing fluorine and chlorine as a constituent element such as R-11 (trichloromonofluoromethane), R-12 (dichlorodifluoromethane) as a chlorofluorocarbon (CFC), R-22 (monochlorodifluoromethane) as a hydrochlorofluorocarbon (HCFC) have been used as a refrigerant for freezers, air conditioners and refrigerators, for instance.
  • JP-A-56131548 discloses neopentylpolyolesters useful as freon-resisting oil for lubrication.
  • JP-A-59164393 discloses a refrigerate machine oil which comprises, as base oil, a complex ester synthetized from polyhydric alcohol, 16-18C unsaturated fatty acid and 4-10C dicarboxylic acid.
  • the complex ester has high lubrication and chemical stability and balanced compatibility with freon.
  • freons disclosed in the above references are polyhalogenated hydrocarbons containing fluorine and chlorine.
  • new refrigerants containing no chlorine such as HFC-134a are proposed as a possible replacement for R-12, causing no breakage of ozone layer.
  • Japanese Patent laid open No. 61-281199 describes a mixture of polyglycol represented by a general formula of R 1 [O-(R 2 O) m -R 3 ] n , an alkylbenzene and the like
  • Japanese Patent laid open No. 57-63395 describes an oil obtained by mixing a polyether such as high molecular weight polyoxypropylene monobutyl ether with an epoxycycloalkyl compound
  • Japanese Patent laid open No. 59-117590 describes a high viscosity mixed oil of a polyether compound and a paraffinic or naphthanic mineral oil.
  • the conventional synthetic lubricants as mentioned above cannot be a refrigeration lubricant using HFC-134a as a refrigerant from a viewpoint of compatibility, for instance.
  • polyoxyalkylene glycol (hereinafter abbreviated as PAG) having hydroxyl groups (-OH) at both terminals is reported as a refrigeration lubricant using HFC-134a. Further, it is described that PAG is dissolved in HFC-134a within a wide temperature range as compared with general PAG containing hydroxyl group and alkyl group at its terminals, whereby the recycle of the lubricant into a compressor is improved in the refrigeration system and the seizuring in the actuation of the compressor at high temperature is prevented. Moreover, the temperature range compatible with HFC-134a is described to be between -40°C and +50°C.
  • HFC-134a is a replacing refrigerant of R-12 and is mainly expected for use in a car air conditioner or refrigerator, for instance.
  • the refrigerator it is required to have a good compatibility between lubricant and refrigerant, and further the lubricant itself is necessary to have an electric insulating property because the motor is substantially existent in the refrigeration system.
  • the conventional compounds examined as a lubricant for HFC-134a refrigerant inclusive of PAG disclosed in US Patent No. 4,755,316 are remarkably poor in the electric insulating property as compared with the conventional refrigeration mineral oil and high in the hygroscopicity.
  • esters At the present, a part of commercially available esters is used in systems using refrigerants such as R-12 and R-22, but is incompatible with HFC-134a as a new refrigerant or is very narrow in the compatible range therewith.
  • the inventors have aimed at the fact that the ester has a high electric insulating property, a low hygroscopicity, a good lubricity and a high stability as compared with PAG and made various studies with respect to the molecule design of the ester showing a wide range of compatibility with HFC-134a, and found that only esters having a considerably restricted structure can be used in the HFC-134a refrigeration system, and as a result, the invention has been accomplished.
  • the present invention refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, with the proviso that said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  • the present invention refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total fatty acid with the proviso that said lubricant is not used in a liquid composition comprising a major amount (more than
  • the present application also refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine comprising as a main component (an) ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from pentaerythritol and dipentaerythritol, with (b) at least one branched-chain monovalent fatty acid having a carbon number of 4 to 18, with the proviso that
  • Pentaerythritol, dipentaerythritol and tripentaerythritol are represented by the following formula (I): (in which n is is 1, 2 or 3).
  • the hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane (HFC-134a).
  • the polymerization degree may be determined in accordance with the viscosity required in the resulting synthesized ester.
  • the monovalent fatty acid mention may be made of propionic acid, butanoic acid, isobutanoic acid, pentanoic acid, isopentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethyl hexanoic acid, nonanoic acid, 3,5,5-trimethyl hexanoic acid, decanoic acid and undecanoic acid.
  • propionic acid butanoic acid, isobutanoic acid, pentanoic acid, isopentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethyl hexanoic acid, nonanoic acid, 3,5,5-trimethyl hexanoic acid, decanoic acid and undecanoic acid.
  • At least one of branched-chain monovalent fatty acids having a carbon number of 4-18 or a mixture of at least one of straight-chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, is properly mixed and esterified with pentaerythritol or its condensate to obtain an ester satisfying desirable physical properties required for various refrigerators.
  • a mixture of straight chain fatty acid having a carbon number of 3-11, preferably 5-10 and a branched-chain fatty acid having a carbon number of 4-14, preferably 7-9 as the monovalent fatty acid can be used.
  • the amount of the branched-chain fatty acid used is not less than 50 mol% per the total monovalent fatty acid used.
  • At least one polybasic acid having a carbon number of 4-10 may be esterified with at least one of pentaerythritol, dipentaerythritol and tripentaerythritol in an amount of not more than 80 mol% per total fatty acid.
  • the following polybasic acids are used: succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid and trimellitic acid.
  • the ester compounds used in the present invention can be obtained by the esterification reaction through dehydration reaction between the specified polyvalent alcohol and the specified fatty acid as mentioned above, or the general esterification reaction through an acid anhydride, an acid chloride or the like as a derivative of the fatty acid.
  • the acid value is preferable to be not more than 3 mg KOH/g and the hydroxyl value is preferable to be not more than 50 mg KOH/g.
  • the esters used in the invention exhibit a good compatibility with the refrigerant HFC-134a and the like over a wide range of from low temperature to high temperature as a lubricant for use in a refrigerator using HFC-134a as a refrigerant, whereby the lubricity and thermal stability of the refrigeration lubricant can be considerably improved. Furthermore, they are high in the electric insulating property and small in the hygroscopicity as compared with PAG conventionally examined as a refrigeration lubricant for HFC-134a.
  • the used refrigeration lubricants comprising the ester used in the invention as a main component the problems on the compatibility with HFC-134a and the hygroscopicity, which have never been solved in the conventional technique, can be solved and the electric insulating property, which comes into problem when HFC-134a is used in a compressor for a refrigerator, can be further enhanced.
  • additives usually used in the lubricant such as antioxidant, anti-wear agent, and epoxy compound, for instance may properly be added to the refrigeration lubricant used in the invention.
  • Seizuring load (Falex load-carrying capacity) was measured according to ASTM D-3233-73 under a controlled atmosphere of HFC-134a blown.
  • test lubricant Into a beaker of 100 ml there were charged 60 g of the test lubricant, which was left to stand at a temperature of 25°C and a humidity of 70% for 3 hours and then the water concentration was measured.
  • esters used in the invention are compared with the commercially available esters (C-1 - C-2) used for comparison shown in Tables 2 and 3, the two-phase separation temperature is extremely different and the conventional esters are insoluble in HFC-134a. In this point, the molecule designed esters used in the invention have a great merit.
  • esters used in the invention are fairly excellent in the performances as a lubricant as compared with those used for comparison.
  • the HFC-134a has been mentioned as a possible replacement for R-12 and is used for car air conditioner and refrigerator, for instance.
  • the compressor is driven in summer season, so that the compatibility between oil and refrigerant at high temperature becomes important.
  • the refrigerant having a larger specific gravity remains in the lower portion of the compressor, resulting in the occurrence of compressor seizuring.
  • the motor is included in the compressor, so that leakage of electricity comes into problem.
  • the esters used in the invention have a dielectric constant higher by 100,000 times or more than that of the conventional PAG and are excellent in the electric insulating property, so that they can be said to be a refrigeration lubricant for the refrigerator.
  • lubricants having a dynamic viscosity of 10-50 mm 2 /s (cSt) at 40°C are used as a lubricant for the refrigerator requiring a two-phase separation temperature of not higher than -40°C, so that the ester A-2 is particularly suitable therefor.
  • lubricants having a dynamic viscosity of 80-150 mm 2 /s (cSt) at 40°C are used as a lubricant for the car air conditioner requiring a two-phase separation temperature of not higher than -20°C, so that the esters A-1, A-3, A-4, and A-6 are particularly suitable therefor.
  • HFC-134a causing substantially no breakage of ozone layer is closed up instead of R-12 widely used as a refrigerant in order to cope with the breakage of ozone layer through chlorofluorocarbon and hydrochlorofluorocarbon being a greatest problem in world-wide scale, but is poor in the compatibility with the conventional refrigeration lubricant, which is a bar for the development of replacement system.
  • the refrigeration lubricants used in the invention have a sufficient compatibility with HFC-134a as a refrigerant and a high electric insulating property and also are excellent in the total performances, so that they have the effect that the conventional systems can be used as they are even when HFC-134a is used instead of the conventional R-12 and R-22 as a refrigerant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • This invention relates to the use of lubricants for compressors using a hydrofluorocarbon refrigerant containing no chlorine such as hydrofluorocarbons (HFC), preferably HFC-134a, (1,1,1,2-tetrafluoroethane).
  • Heretofore, compounds containing fluorine and chlorine as a constituent element such as R-11 (trichloromonofluoromethane), R-12 (dichlorodifluoromethane) as a chlorofluorocarbon (CFC), R-22 (monochlorodifluoromethane) as a hydrochlorofluorocarbon (HCFC) have been used as a refrigerant for freezers, air conditioners and refrigerators, for instance.
  • JP-A-56131548 discloses neopentylpolyolesters useful as freon-resisting oil for lubrication.
  • JP-A-59164393 discloses a refrigerate machine oil which comprises, as base oil, a complex ester synthetized from polyhydric alcohol, 16-18C unsaturated fatty acid and 4-10C dicarboxylic acid. The complex ester has high lubrication and chemical stability and balanced compatibility with freon.
  • The freons disclosed in the above references are polyhalogenated hydrocarbons containing fluorine and chlorine. In connection with recent problem on breakage of ozone layer, new refrigerants containing no chlorine such as HFC-134a are proposed as a possible replacement for R-12, causing no breakage of ozone layer.
  • As a refrigeration lubricant, there are known many mineral-series and synthetic oils. However, it has been confirmed that these oils are very poor in the compatibility with HFC-134a and cannot be applied thereto. Therefore, it is important to take a countermeasure on this problem at the present. Furthermore, the lubricity, electric insulating property, energy saving property, anti-wear performance, sealability, thermal stability, prevention of sludge formation, for instance are mentioned as performances required in the refrigeration lubricant, so that they are required to be considered in the development of the above countermeasure.
  • Incidentally, there have hitherto been known polyether series synthetic lubricants as a synthetic oil, which are reported in Journal of the Oil Chemistry, vol. 29, No. 9, pp 336-343 (1980) and Journal of the Petroleum Technology, vol. 8, No. 6, pp 562-566 (1985). Furthermore, Japanese Patent laid open No. 61-281199 describes a mixture of polyglycol represented by a general formula of R1[O-(R2O)m-R3]n, an alkylbenzene and the like, and Japanese Patent laid open No. 57-63395 describes an oil obtained by mixing a polyether such as high molecular weight polyoxypropylene monobutyl ether with an epoxycycloalkyl compound, and Japanese Patent laid open No. 59-117590 describes a high viscosity mixed oil of a polyether compound and a paraffinic or naphthanic mineral oil.
  • However, the conventional synthetic lubricants as mentioned above cannot be a refrigeration lubricant using HFC-134a as a refrigerant from a viewpoint of compatibility, for instance.
  • In US Patent No. 4,755,316, polyoxyalkylene glycol (hereinafter abbreviated as PAG) having hydroxyl groups (-OH) at both terminals is reported as a refrigeration lubricant using HFC-134a. Further, it is described that PAG is dissolved in HFC-134a within a wide temperature range as compared with general PAG containing hydroxyl group and alkyl group at its terminals, whereby the recycle of the lubricant into a compressor is improved in the refrigeration system and the seizuring in the actuation of the compressor at high temperature is prevented. Moreover, the temperature range compatible with HFC-134a is described to be between -40°C and +50°C.
  • On the contrary, HFC-134a is a replacing refrigerant of R-12 and is mainly expected for use in a car air conditioner or refrigerator, for instance. In case of the refrigerator, it is required to have a good compatibility between lubricant and refrigerant, and further the lubricant itself is necessary to have an electric insulating property because the motor is substantially existent in the refrigeration system. However, the conventional compounds examined as a lubricant for HFC-134a refrigerant inclusive of PAG disclosed in US Patent No. 4,755,316 are remarkably poor in the electric insulating property as compared with the conventional refrigeration mineral oil and high in the hygroscopicity.
  • It is an object of the invention to provide a refrigeration lubricant, which has excellent compatibility with a new refrigerant such as HFC-134a within a wide temperature range, a high electric insulating property and a low hygroscopicity, for compressors using a hydrofluorocarbon refrigerant containing no chlorine.
  • At the present, a part of commercially available esters is used in systems using refrigerants such as R-12 and R-22, but is incompatible with HFC-134a as a new refrigerant or is very narrow in the compatible range therewith. In this connection, the inventors have aimed at the fact that the ester has a high electric insulating property, a low hygroscopicity, a good lubricity and a high stability as compared with PAG and made various studies with respect to the molecule design of the ester showing a wide range of compatibility with HFC-134a, and found that only esters having a considerably restricted structure can be used in the HFC-134a refrigeration system, and as a result, the invention has been accomplished.
  • The present invention refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, with the proviso that said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  • Furthermore, the present invention refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total fatty acid with the proviso that said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  • The present application also refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine comprising as a main component (an) ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from pentaerythritol and dipentaerythritol, with (b) at least one branched-chain monovalent fatty acid having a carbon number of 4 to 18,
    with the proviso that
  • i) said lubricant does not contain a polyether polyol in an amount of 5 to 95 weight percent according to the general formula Z-[(CH2CH(R1)-O-)n-(CH2-CH(CH3)-O-)m-R2]p wherein
  • Z is the residue of a compound having 1 to 8 active hydrogens,
  • R1 is hydrogen, ethyl or mixtures thereof n is 0 or a positive number,
  • m is a positive number,
  • n+m is a number having a value which will give a polyether polyol with a number average molecular weight range from about 400 to about 5000,
  • R2 is hydrogen or an alkyl group of 1 to 6 carbon atoms,
  • p is an integer having a value equal to the number of active hydrogens of Z,
  • and
  • ii) said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  • Pentaerythritol, dipentaerythritol and tripentaerythritol are represented by the following formula (I):
    Figure 00020001
    (in which n is is 1, 2 or 3).
  • In a preferred embodiment of the invention, the hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane (HFC-134a).
  • In the condensate of pentaerythritol, the polymerization degree may be determined in accordance with the viscosity required in the resulting synthesized ester.
  • As the monovalent fatty acid, mention may be made of propionic acid, butanoic acid, isobutanoic acid, pentanoic acid, isopentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethyl hexanoic acid, nonanoic acid, 3,5,5-trimethyl hexanoic acid, decanoic acid and undecanoic acid.
  • At least one of branched-chain monovalent fatty acids having a carbon number of 4-18 or a mixture of at least one of straight-chain monovalent fatty acids having a carbon number of 3-11 and at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, is properly mixed and esterified with pentaerythritol or its condensate to obtain an ester satisfying desirable physical properties required for various refrigerators.
  • In order to obtain a sufficiently satisfactory compatibility with the refrigerant HFC-134a and the like, a mixture of straight chain fatty acid having a carbon number of 3-11, preferably 5-10 and a branched-chain fatty acid having a carbon number of 4-14, preferably 7-9 as the monovalent fatty acid can be used.
  • In this case, the amount of the branched-chain fatty acid used is not less than 50 mol% per the total monovalent fatty acid used.
  • On the other hand, in order to give a proper viscosity to the resulting ester, at least one polybasic acid having a carbon number of 4-10 may be esterified with at least one of pentaerythritol, dipentaerythritol and tripentaerythritol in an amount of not more than 80 mol% per total fatty acid. In this case the following polybasic acids are used: succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid and trimellitic acid.
  • The ester compounds used in the present invention can be obtained by the esterification reaction through dehydration reaction between the specified polyvalent alcohol and the specified fatty acid as mentioned above, or the general esterification reaction through an acid anhydride, an acid chloride or the like as a derivative of the fatty acid.
  • In the esters used in the present invention, the acid value is preferable to be not more than 3 mg KOH/g and the hydroxyl value is preferable to be not more than 50 mg KOH/g.
  • The esters used in the invention exhibit a good compatibility with the refrigerant HFC-134a and the like over a wide range of from low temperature to high temperature as a lubricant for use in a refrigerator using HFC-134a as a refrigerant, whereby the lubricity and thermal stability of the refrigeration lubricant can be considerably improved. Furthermore, they are high in the electric insulating property and small in the hygroscopicity as compared with PAG conventionally examined as a refrigeration lubricant for HFC-134a. Therefore, by the used refrigeration lubricants comprising the ester used in the invention as a main component the problems on the compatibility with HFC-134a and the hygroscopicity, which have never been solved in the conventional technique, can be solved and the electric insulating property, which comes into problem when HFC-134a is used in a compressor for a refrigerator, can be further enhanced.
  • Moreover, additives usually used in the lubricant such as antioxidant, anti-wear agent, and epoxy compound, for instance may properly be added to the refrigeration lubricant used in the invention.
  • Examples 1-6
  • The performances as a refrigeration lubricant using HFC-134a as a refrigerant were evaluated with respect to six esters A-1 - A-6 shown in the following Table 1 (all of which esters were not commercially available but were prepared according to the invention). For the comparison, the same evaluation as mentioned above was made with respect to commercially available PAG (B-1 - B-3, made by Asahi Denka Co., Ltd.) and esters (C-1 - C-2, made by Nippon Oil and Fats Co., Ltd.) as a refrigeration lubricant shown in the following Table 2.
  • The lubricity, compatibility, thermal stability, electric insulating property and hygroscopicity as performances of the refrigeration lubricant for the compressor shown in Tables 1 and 2 were evaluated under the following conditions.
  • Lubricity
  • Seizuring load (Falex load-carrying capacity) was measured according to ASTM D-3233-73 under a controlled atmosphere of HFC-134a blown.
  • Compatibility
  • After 0.6 g of the test lubricant and 2.4 g of the refrigerant (HFC-134a) were sealed in a glass tube, the cooling at 1°C/min and the heating were carried out, during which a temperature causing two-phase separation was measured.
  • Thermal stability
  • After 1 g of the test lubricant, 1 g of the refrigerant (HFC-134a or R-12) and a catalyst (wire of iron, copper or aluminum) were sealed in a glass tube, the mixture was heated to 175°C, and a color of the lubricant after 10 days was judged by ASTM color system according to ANSI/ASHRAE 97-1983.
  • Electric insulating property
  • It was evaluated by a dielectric constant at 80°C according to JIS C-2101.
  • Hygroscopicity
  • Into a beaker of 100 mℓ there were charged 60 g of the test lubricant, which was left to stand at a temperature of 25°C and a humidity of 70% for 3 hours and then the water concentration was measured.
  • The evaluation results are shown in the following Table 3.
    Figure 00050001
    Type Trade name Color (ASTM) Dynamic viscosity at 40°C (cSt) mm2/J
    B-1 PAG 1 Adekapol M-30 L 0.5 32.8
    B-2 PAG 1 Adekapol M-110 L 0.5 105.2
    B-3 PAG 1 Adekapol MH-50 L 0.5 54.6
    C-1 ester dioctyl sebacate L 0.5 11.4
    C-2 ester Unistar MB-816 L 0.5 8.1
    Figure 00070001
    Figure 00080001
  • As seen from Table 3, when the esters used in the invention are compared with the conventional PGA (B-1 - B-3) used for comparison shown in Tables 2 and 3, the electric insulating property represented by the dielectric constant is 100,000 times or more and the two-phase separation at a high temperature is not caused. Furthermore, the seizuring load is excellent and the hygroscopicity is low. The thermal stability is equal in case of the HFC-134a system, but is considerably excellent in case of the R-12 system. This is very advantageous in practical use because the mixing of HFC-134a and R-12 is not avoided at a stage of replacing the refrigerant from R-12 to HFC-134a.
  • On the other hand, when the esters used in the invention are compared with the commercially available esters (C-1 - C-2) used for comparison shown in Tables 2 and 3, the two-phase separation temperature is extremely different and the conventional esters are insoluble in HFC-134a. In this point, the molecule designed esters used in the invention have a great merit.
  • As seen from the above, the esters used in the invention are fairly excellent in the performances as a lubricant as compared with those used for comparison.
  • The HFC-134a has been mentioned as a possible replacement for R-12 and is used for car air conditioner and refrigerator, for instance. Particularly, in case of the car air conditioner, the compressor is driven in summer season, so that the compatibility between oil and refrigerant at high temperature becomes important. When the two-phase separation between oil and refrigerant is caused in the compressor during the driving, the refrigerant having a larger specific gravity remains in the lower portion of the compressor, resulting in the occurrence of compressor seizuring.
  • In case of the refrigerator, the motor is included in the compressor, so that leakage of electricity comes into problem. In this connection, the esters used in the invention have a dielectric constant higher by 100,000 times or more than that of the conventional PAG and are excellent in the electric insulating property, so that they can be said to be a refrigeration lubricant for the refrigerator.
  • Concretely, lubricants having a dynamic viscosity of 10-50 mm2/s (cSt) at 40°C are used as a lubricant for the refrigerator requiring a two-phase separation temperature of not higher than -40°C, so that the ester A-2 is particularly suitable therefor. On the other hand, lubricants having a dynamic viscosity of 80-150 mm2/s (cSt) at 40°C are used as a lubricant for the car air conditioner requiring a two-phase separation temperature of not higher than -20°C, so that the esters A-1, A-3, A-4, and A-6 are particularly suitable therefor.
  • Recently, HFC-134a causing substantially no breakage of ozone layer is closed up instead of R-12 widely used as a refrigerant in order to cope with the breakage of ozone layer through chlorofluorocarbon and hydrochlorofluorocarbon being a greatest problem in world-wide scale, but is poor in the compatibility with the conventional refrigeration lubricant, which is a bar for the development of replacement system. However, the refrigeration lubricants used in the invention have a sufficient compatibility with HFC-134a as a refrigerant and a high electric insulating property and also are excellent in the total performances, so that they have the effect that the conventional systems can be used as they are even when HFC-134a is used instead of the conventional R-12 and R-22 as a refrigerant.

Claims (16)

  1. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 with at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, with the proviso that
       said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  2. Use of a lubricant according to claim 1, wherein said straight chain monovalent fatty acid is selected from the group consisting of propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid and undecanoic acid, and said branched-chain monovalent fatty acid is selected from the group consisting of isobutanoic acid, isopentanoic acid, isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid.
  3. Use of a lubricant according to claim 1, wherein said branched-chain monovalent fatty acid is one having a carbon number of 7-9.
  4. Use of a lubricant according to anyone of claims 1 to 3, wherein said ester has a total acid value of not more than 3 mgKOH/g and a hydroxyl value of not more than 50 mgKOH/g.
  5. Use of a lubricant according to any one of claims 1 to 4, wherein said hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane.
  6. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from the group consisting of pentaerythritol, dipentaerythritol and tripentaerythritol with (b) a mixture of at least one of straight chain monovalent fatty acids having a carbon number of 3-11 with at least one of branched-chain monovalent fatty acids having a carbon number of 4-14, wherein the amount of the branched-chain monovalent fatty acid is not less than 50 mol% per total monovalent fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total fatty acid, with the proviso that
       said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  7. Use of a lubricant according to claim 6, wherein said straight chain monovalent fatty acid is selected from the group consisting of propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid and undecanoic acid, and said branched-chain monovalent fatty acid is selected from the group consisting of isobutanoic acid, isopentanoic acid, isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid.
  8. Use of a lubricant according to claim 6, wherein said polybasic acid is selected from the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  9. Use of a lubricant according to any one of claims 6 to 8, wherein said ester has a total acid value of not more than 3 mgKOH/g and a hydroxyl value of not more than 50 mgKOH/g.
  10. Use of a lubricant according to any one of claims 6 to 9, wherein said hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane.
  11. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, said lubricant comprising as a main component (an) ester(s) obtainable by reacting (a) at least one polyvalent alcohol selected from pentaerythritol and dipentaerythritol, with (b) at least one branched-chain monovalent fatty acid having a carbon number of 4 to 18, with the proviso that
    i) said lubricant does not contain a polyether polyol in an amount of 5 to 95 weight percent according to the general formula Z-[(CH2CH(R1)-O-)n-(CH2-CH(CH3)-O-)m-R2]p wherein
       Z is the residue of a compound having 1 to 8 active hydrogens,
       R1 is hydrogen, ethyl or mixtures thereof
       n is 0 or a positive number,
       m is a positive number,
       n+m is a number having a value which will give a polyether polyol with a number average molecular weight range from about 400 to about 5000,
       R2 is hydrogen or an alkyl group of 1 to 6 carbon atoms,
       p is an integer having a value equal to the number of active hydrogens of Z,
    and
    ii) said lubricant is not used in a liquid composition comprising a major amount (more than 50% by weight) of a fluorine containing hydrocarbon refrigerant and a minor amount of (less than 50% by weight) of said lubricant.
  12. Use of a lubricant according to claim 11, wherein said polyvalent alcohol is pentaerythritol.
  13. Use of a lubricant according to claim 11 or 12, wherein said branched-chain monovalent fatty acid is selected from the group consisting of isobutanoic acid, isopentanoic acid, isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,5-trimethylhexanoic acid.
  14. Use of a lubricant according to claim 11 or 12, wherein said branched-chain monovalent fatty acid is one having a carbon number of 7-9.
  15. Use of a lubricant according to claim 14, wherein said branched-chain monovalent fatty acid is selected from the group consisting of isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,5-trimethylhexanoic acid.
  16. Use of a lubricant according to any one of claims 11 to 15, wherein said hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane.
EP91121100A 1989-07-05 1989-10-17 Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine Expired - Lifetime EP0480479B2 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP17200189 1989-07-05
JP172001/89 1989-07-05
JP172000/89 1989-07-05
JP17200189 1989-07-05
JP17200289 1989-07-05
JP17200089 1989-07-05
JP17200089 1989-07-05
JP17200289 1989-07-05
JP172002/89 1989-07-05
EP89119265A EP0406479B2 (en) 1989-07-05 1989-10-17 Refrigeration lubricants

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP89119265.0 Division 1989-10-17
EP89119265A Division-Into EP0406479B2 (en) 1989-07-05 1989-10-17 Refrigeration lubricants
EP89119265A Division EP0406479B2 (en) 1989-07-05 1989-10-17 Refrigeration lubricants

Publications (4)

Publication Number Publication Date
EP0480479A2 EP0480479A2 (en) 1992-04-15
EP0480479A3 EP0480479A3 (en) 1992-06-17
EP0480479B1 EP0480479B1 (en) 1997-03-26
EP0480479B2 true EP0480479B2 (en) 2004-09-01

Family

ID=27323564

Family Applications (4)

Application Number Title Priority Date Filing Date
EP89119265A Expired - Lifetime EP0406479B2 (en) 1989-07-05 1989-10-17 Refrigeration lubricants
EP91121100A Expired - Lifetime EP0480479B2 (en) 1989-07-05 1989-10-17 Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine
EP92121965A Expired - Lifetime EP0536814B1 (en) 1989-07-05 1989-10-17 use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine.
EP91121101A Expired - Lifetime EP0479338B1 (en) 1989-07-05 1989-10-17 Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89119265A Expired - Lifetime EP0406479B2 (en) 1989-07-05 1989-10-17 Refrigeration lubricants

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP92121965A Expired - Lifetime EP0536814B1 (en) 1989-07-05 1989-10-17 use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine.
EP91121101A Expired - Lifetime EP0479338B1 (en) 1989-07-05 1989-10-17 Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine.

Country Status (5)

Country Link
EP (4) EP0406479B2 (en)
KR (3) KR950005694B1 (en)
DE (4) DE68914448T3 (en)
ES (4) ES2099120T5 (en)
SG (2) SG49157A1 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582621B1 (en) * 1989-12-28 2003-06-24 Nippon Mitsubishi Oil Corporation Refrigerator oils for use with chlorine-free fluorocarbon refrigerants
US6998065B1 (en) 1989-12-28 2006-02-14 Nippon Mitsubishi Oil Corporation Fluid compositions containing refrigerator oils and chlorine-free fluorocarbon refrigerants
US7052626B1 (en) 1989-12-28 2006-05-30 Nippon Mitsubishi Oil Corporation Fluid compositions containing refrigeration oils and chlorine-free fluorocarbon refrigerants
EP0638630B1 (en) * 1990-01-31 1998-06-17 Exxon Chemical Patents Inc. Esters as lubricants for a haloalkane refrigerant
DE4006828A1 (en) * 1990-03-05 1991-09-12 Hoechst Ag Use of ester lubricating oils
DE4006827A1 (en) * 1990-03-05 1991-09-12 Hoechst Ag USE OF ESTER OILS AS LUBRICANTS FOR REFRIGERANT COMPRESSORS
JPH03275799A (en) * 1990-03-23 1991-12-06 Asahi Denka Kogyo Kk Refrigerating machine oil composition
AU640019B2 (en) * 1990-05-22 1993-08-12 Unichema Chemie Bv Lubricants
US5021179A (en) * 1990-07-12 1991-06-04 Henkel Corporation Lubrication for refrigerant heat transfer fluids
GB2247466B (en) * 1990-07-23 1994-11-16 Castrol Ltd Retrofilling mechanical vapour recompression heat transfer devices
JP2573111B2 (en) * 1990-09-12 1997-01-22 花王 株式会社 Composition for working fluid of refrigerator
JP2967574B2 (en) * 1990-11-16 1999-10-25 株式会社日立製作所 Refrigeration equipment
JPH04225095A (en) * 1990-12-27 1992-08-14 Matsushita Refrig Co Ltd Refrigeration unit for refrigerator
DE69220392T2 (en) * 1991-01-17 1998-01-29 Cpi Eng Services Inc Lubricating composition for fluorinated coolants
ES2103840T3 (en) * 1991-02-19 1997-10-01 Dea Mineraloel Ag LUBRICATING AGENT FOR REFRIGERATING MACHINES.
KR920016586A (en) * 1991-02-26 1992-09-25 도키와 후미카즈 Freezer Working Fluid Composition
GB9110837D0 (en) * 1991-05-20 1991-07-10 Shell Int Research Fluid composition for compression refrigeration
DE69231433T2 (en) * 1991-06-07 2001-05-23 Hatco Corp Made from synthetic base lubricating oils with a high content of branched-chain acid mixtures
DE69221553T2 (en) * 1991-07-01 1997-12-11 Kao Corp Working fluid composition for use in refrigeration systems
JP3142321B2 (en) * 1991-09-03 2001-03-07 日石三菱株式会社 Refrigeration oil composition
DE69232218T2 (en) 1991-10-11 2002-06-27 Ici Plc working fluids
JPH05132684A (en) * 1991-11-13 1993-05-28 I C I Japan Kk Base oil for lubricating oil and lubricating oil composition for apparatus using refrigerant hfc-134a
ZA928934B (en) * 1991-12-06 1994-05-19 Exxon Chemical Patents Inc Refrigeration working fluid compositions
US5240629A (en) * 1992-01-10 1993-08-31 Ethyl Corporation Refrigerant compositions
BR9300993A (en) * 1992-04-28 1993-11-16 Lubrizol Corp LIQUID COMPOSITION AND METHOD FOR LUBRICATING A REFRIGERATION SYSTEM
JPH07507345A (en) * 1992-06-03 1995-08-10 ヘンケル・コーポレイション Polyol ester lubricant for refrigeration compressors operating at high temperatures
ATE194641T1 (en) * 1992-06-03 2000-07-15 Henkel Corp POLYOLESTER AS A LUBRICANT FOR HIGH TEMPERATURE REFRIGERANT COMPRESSORS
EP0643762B1 (en) * 1992-06-03 2000-02-23 Henkel Corporation Polyol ester lubricants for hermetically sealed refrigerating compressors
JPH08505159A (en) * 1992-06-03 1996-06-04 ヘンケル・コーポレイション Compressor lubricant that can withstand the overuse of polyol esters
KR100249556B1 (en) * 1992-06-03 2000-03-15 웨인 씨. 제쉬크 Blended polyol ester lubricants for refrigerant heat transfer fluids
EP0648252B1 (en) * 1992-06-03 2000-07-12 Henkel Corporation Polyol ester lubricants for refrigerating compressors operating at high temperatures
DE69231364T2 (en) * 1992-06-03 2001-04-05 Henkel Corp LUBRICANTS BASED ON POLYOLESTER FOR REFRIGERANT TRANSFER
KR100254624B1 (en) * 1992-06-03 2000-05-01 웨인 씨. 제쉬크 Polyol ester lubricants for hermetically sealed refrigerating compressors
US5976399A (en) * 1992-06-03 1999-11-02 Henkel Corporation Blended polyol ester lubricants for refrigerant heat transfer fluids
WO1993024587A1 (en) * 1992-06-03 1993-12-09 Henkel Corporation Blended polyol ester lubricants for refrigerant heat transfer fluids
US6183662B1 (en) * 1992-06-03 2001-02-06 Henkel Corporation Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures
JP2613526B2 (en) * 1992-07-04 1997-05-28 花王株式会社 Composition for working fluid of refrigerator
JP3003015B2 (en) * 1992-08-11 2000-01-24 花王株式会社 Composition for working fluid of refrigerator
US5830833A (en) * 1992-08-18 1998-11-03 Rwe-Dea Aktiengesellschaft Fur Mineraloel Und Chemie And Texaco Deutschland Gmbh Synthetic ester lubricants for refrigerator systems
GB9221217D0 (en) * 1992-10-09 1992-11-25 Ici Plc Working fluid composition
US5355695A (en) * 1992-11-30 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
ZA938322B (en) * 1992-12-17 1994-06-07 Exxon Chemical Patents Inc Refrigeration working fluid compositions containing trifluoroethane
IL108066A0 (en) * 1993-01-07 1994-04-12 Exxon Chemical Patents Inc Refrigeration working fluid compositions containing difluoroethane or pentafluoroethane
US5853609A (en) * 1993-03-10 1998-12-29 Henkel Corporation Polyol ester lubricants for hermetically sealed refrigerating compressors
TW354153U (en) * 1993-04-27 1999-03-01 Mitsubishi Electric Corp Refrigerant circulating system
US5531080A (en) * 1993-04-27 1996-07-02 Mitsubishi Denki Kabushiki Kaisha Refrigerant circulating system
CA2129380A1 (en) * 1993-08-11 1995-02-12 Kenichi Sanechika Lubricant oil composition comprising a fluorine-containing aromatic compound and an alkyl- or alkyl derivative-substituted aromatic compound, and a refrigerant composition containing the same
EP0787173B1 (en) * 1993-11-09 2002-12-18 Cognis Corporation Process for lubricating a vehicle air-conditioner
JPH07293468A (en) * 1994-04-28 1995-11-07 Toshiba Corp Closed type compressor
DE69531614T2 (en) * 1994-05-23 2004-06-17 Cognis Corp. INCREASING THE SPECIFIC ELECTRICAL RESISTANCE OF ESTER LUBRICANTS
DK0802962T3 (en) * 1994-12-08 2002-06-17 Exxonmobil Chem Patents Inc Use of a biodegradable branched synthetic ester base material in a two-stroke engine oil to reduce smoke production in air-cooled two-stroke engines
US5665686A (en) * 1995-03-14 1997-09-09 Exxon Chemical Patents Inc. Polyol ester compositions with unconverted hydroxyl groups
US5946921A (en) * 1995-08-22 1999-09-07 General Electric Company Method for repairing HFC refrigerant system
DE898605T1 (en) * 1996-04-16 1999-07-22 Unichema Chemie Bv HYDRAULIC LIQUIDS
US5728658A (en) * 1996-05-21 1998-03-17 Exxon Chemical Patents Inc Biodegradable synthetic ester base stocks formed from branched oxo acids
GB9615086D0 (en) * 1996-07-18 1996-09-04 Exxon Chemical Patents Inc Carboxylic acid esters,and compositions comprising them
US5698502A (en) * 1996-09-11 1997-12-16 Exxon Chemical Patents Inc Polyol ester compositions with unconverted hydroxyl groups for use as lubricant base stocks
ID20305A (en) * 1996-09-12 1998-11-26 Japan Energy Corp REFRIGERATOR OIL, WORKING FLUID FOR REFRIGERATORS, AND METHODS FOR LUBRATING REFRIGERATION SYSTEMS
JP4564111B2 (en) 1998-09-02 2010-10-20 Jx日鉱日石エネルギー株式会社 Refrigeration oil
US6278006B1 (en) 1999-01-19 2001-08-21 Cargill, Incorporated Transesterified oils
US20020055442A1 (en) * 2000-04-26 2002-05-09 Schnur Nicholas E. Method of reducing wear of metal surfaces and maintaining a hydrolytically stable environment in refrigeration equipment during the operation of such equipment
CN101248164A (en) * 2005-07-27 2008-08-20 卢布里佐尔公司 High viscosity synthetic ester lubricant base stock blends
US8419968B2 (en) * 2008-11-13 2013-04-16 Chemtura Corporation Lubricants for refrigeration systems
CN102292420A (en) * 2009-01-26 2011-12-21 科聚亚公司 Production of polyol ester lubricants for refrigeration systems
US8889607B2 (en) 2010-03-31 2014-11-18 Nippon Steel & Sumikin Chemical Co., Ltd. Lubricating oil composition
JP6159373B2 (en) * 2015-10-07 2017-07-05 出光興産株式会社 Refrigerator oil, composition for refrigerator, refrigerator and method for selecting refrigerator oil
DE102020102162A1 (en) 2020-01-29 2021-07-29 Oq Chemicals Gmbh TCD ester for low temperature lubricant applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378176A1 (en) 1989-01-10 1990-07-18 The Dow Chemical Company Lubricants for refrigeration compressors
WO1990012489A1 (en) 1989-04-14 1990-11-01 James River Paper Company, Inc. Deodorization of amine contaminated quaternary ammonium salt conductive resins

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878112A (en) * 1974-05-23 1975-04-15 Westinghouse Electric Corp Lubricant-refrigerant system for centrifugal refrigeration compressors
US4113642A (en) * 1976-11-11 1978-09-12 Henkel Kommanditgesellschaft Auf Aktien High viscosity neutral polyester lubricants
US4234497A (en) * 1979-04-30 1980-11-18 Standard Lubricants, Inc. Iso-palmitate polyol ester lubricants
JPS55145638A (en) * 1979-05-02 1980-11-13 Nippon Oil & Fats Co Ltd Complex ester and lubricating oil composed thereof
JPS55157537A (en) * 1979-05-24 1980-12-08 Nippon Oil & Fats Co Ltd Neopentylpolyol ester and lubricant containing the same
JPS56131548A (en) * 1980-03-18 1981-10-15 Nippon Oil & Fats Co Ltd Neopentylpolyol ester, and flon-resistant oil containing said ester as base oil
US4401436A (en) * 1981-12-21 1983-08-30 Atlantic Richfield Company Process for cooling particulate coal
JPS59164393A (en) * 1983-03-10 1984-09-17 Nippon Oil & Fats Co Ltd Ester-based refrigerator oil
JPS62290795A (en) * 1986-06-11 1987-12-17 Nippon Steel Corp Cold rolling oil for steel plate
US4826633A (en) * 1986-10-16 1989-05-02 Hatco Chemical Corporation Synthetic lubricant base stock of monopentaerythritol and trimethylolpropane esters
DE3643935C2 (en) * 1986-12-22 1995-07-06 Henkel Kgaa Synthetic polyol esters
US4755316A (en) * 1987-10-23 1988-07-05 Allied-Signal Inc. Refrigeration lubricants
AU638710B2 (en) * 1989-04-25 1993-07-08 Lubrizol Corporation, The Liquid compositions containing carboxylic esters
US5021179A (en) * 1990-07-12 1991-06-04 Henkel Corporation Lubrication for refrigerant heat transfer fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378176A1 (en) 1989-01-10 1990-07-18 The Dow Chemical Company Lubricants for refrigeration compressors
WO1990012489A1 (en) 1989-04-14 1990-11-01 James River Paper Company, Inc. Deodorization of amine contaminated quaternary ammonium salt conductive resins

Also Published As

Publication number Publication date
ES2051340T3 (en) 1994-06-16
EP0536814B1 (en) 1996-01-24
KR0131017B1 (en) 1998-04-14
SG49157A1 (en) 1998-05-18
KR910003077A (en) 1991-02-26
EP0479338A2 (en) 1992-04-08
EP0480479B1 (en) 1997-03-26
DE68927916T3 (en) 2005-03-10
KR970078831A (en) 1997-12-12
EP0406479A1 (en) 1991-01-09
SG49165A1 (en) 1998-05-18
EP0480479A3 (en) 1992-06-17
DE68925537D1 (en) 1996-03-07
KR970078832A (en) 1997-12-12
EP0406479B1 (en) 1994-04-06
DE68914448T3 (en) 2003-03-06
KR950005694B1 (en) 1995-05-29
DE68927916T2 (en) 1997-08-21
EP0480479A2 (en) 1992-04-15
ES2104650T3 (en) 1997-10-16
DE68914448T2 (en) 1994-08-25
DE68927916D1 (en) 1997-04-30
KR0131016B1 (en) 1998-04-14
DE68925537T2 (en) 1996-07-04
EP0406479B2 (en) 2002-09-04
DE68928281T2 (en) 1998-01-15
EP0479338A3 (en) 1992-05-27
ES2051340T5 (en) 2003-03-16
ES2082341T3 (en) 1996-03-16
DE68928281D1 (en) 1997-10-02
ES2099120T5 (en) 2005-03-16
EP0479338B1 (en) 1997-08-27
ES2099120T3 (en) 1997-05-16
DE68914448D1 (en) 1994-05-11
EP0536814A1 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
EP0480479B2 (en) Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine
JP2849155B2 (en) Lubricant
EP0498152B1 (en) Lubricant composition for fluorinated refrigerants
JP2850983B2 (en) Lubricant
JP3012907B2 (en) Refrigeration oil for non-chlorinated chlorofluorocarbon refrigerant
EP0458584A1 (en) Lubricants
JP3909744B2 (en) Refrigerating machine oil for hydrocarbon refrigerant
KR19990067513A (en) Refrigeration oil, refrigeration fluids, and lubrication of refrigeration systems
JPH06100881A (en) Refrigerator oil composition
JP2000508691A (en) Refrigeration oil containing ester of hindered alcohol
JP2683170B2 (en) Refrigerating machine oil
AU680317B2 (en) Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures
EP0913457A2 (en) Low viscosity energy efficient polyol-ester containing refrigerant
EP0704521B1 (en) Method for removing unwanted lubricating oil from a refrigeration system
JPH0532985A (en) Refrigerating machine oil composition
EP0635562B1 (en) Lubricating oil for compression - type refrigerators
JP2624543B2 (en) Lubricating oil composition for refrigerator
JP2843310B2 (en) Lubricant
JPH10298572A (en) Compression type freezer and refrigerator oil used therefor
JPH04270795A (en) Refrigerator oil
JPH0688086A (en) Lubricating oil composition
JPH11315293A (en) Refrigerator oil for non-chlorine-based cfc refrigerant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 406479

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19921214

17Q First examination report despatched

Effective date: 19930331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JAPAN ENERGY CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JAPAN ENERGY CORPORATION

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 406479

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: 0508;46RMFST. DR. CAVATTONI ING. A. RAIM

REF Corresponds to:

Ref document number: 68927916

Country of ref document: DE

Date of ref document: 19970430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2099120

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC

Effective date: 19971220

Opponent name: RWE- DEA AKTIENGESELLSCHAFT FUER MINERALOEL UND CH

Effective date: 19971217

26 Opposition filed

Opponent name: RWE- DEA AKTIENGESELLSCHAFT FUER MINERALOEL UND CH

Effective date: 19971217

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC

Effective date: 19971220

Opponent name: NIPPON OIL CO. LTD.

Effective date: 19971223

Opponent name: THE LUBRIZOL CORPORATION

Effective date: 19971229

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19971223

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC * 971217 RWE- DEA

Effective date: 19971220

R26 Opposition filed (corrected)

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC * 971217 RWE- DEA

Effective date: 19971220

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC * 19971217 RWE- D

Effective date: 19971220

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC * 19971217 RWE- D

Effective date: 19971220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMPERIAL CHEMICAL INDUSTRIES PLC

Effective date: 19971220

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19971223

Opponent name: NIPPON OIL CO. LTD.

Effective date: 19971223

Opponent name: RWE- DEA AKTIENGESELLSCHAFT FUERMINERALOEL UND CHE

Effective date: 19971217

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20040901

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20041022

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081027

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081001

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081009

Year of fee payment: 20

Ref country code: SE

Payment date: 20081021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081023

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081007

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091016

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091016