EP0475555B1 - Appareil de séparation électrique à modalités multiples et méthode - Google Patents

Appareil de séparation électrique à modalités multiples et méthode Download PDF

Info

Publication number
EP0475555B1
EP0475555B1 EP91301056A EP91301056A EP0475555B1 EP 0475555 B1 EP0475555 B1 EP 0475555B1 EP 91301056 A EP91301056 A EP 91301056A EP 91301056 A EP91301056 A EP 91301056A EP 0475555 B1 EP0475555 B1 EP 0475555B1
Authority
EP
European Patent Office
Prior art keywords
separation
cooling
separation chamber
fluid
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91301056A
Other languages
German (de)
English (en)
Other versions
EP0475555A1 (fr
Inventor
Ned Barry Egen
Garland Eugene Twitty
David Winston Sammons
Rizwan Sharnez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioseparations Inc
Original Assignee
Bioseparations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioseparations Inc filed Critical Bioseparations Inc
Publication of EP0475555A1 publication Critical patent/EP0475555A1/fr
Application granted granted Critical
Publication of EP0475555B1 publication Critical patent/EP0475555B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44708Cooling

Definitions

  • the present invention relates to an apparatus for conducting separation of biological materials, organic and inorganic compounds or all metal ions from a mixture. More particularly, the present invention relates to an apparatus and method for batch or continuous-flow electrophoretic separation of ionic molecules by zone electrophoresis, isoelectric focusing, counterflow gradient focusing or by electrodialysis.
  • Electrophoresis is an analytical and preparative tool which can separate components of a mixture on the basis of their tonic charge and mass.
  • a mixture of ionic species is exposed to an applied voltage field, which causes the ions to migrate toward the oppositely charged electrode at a rate which depends on their electrophoretic mobility, which in turn depends on charge, mass and symmetry as well as other parameters.
  • Different modalities of electrophoresis e.g., zone, isoelectric focusing, isotachophoresis, moving boundary can be utilized in various instruments that are classified by the method selected to minimize convective mixing: 1) free fluid methods which use thin film, shear, capillaries, or compartmentation; or 2) supported fluid methods which use density gradient gels or other matrices.
  • the present method is free fluid compartmentation.
  • Zone electrophoresis is the separation carried out in the presence of a homogenous buffer, in which sample components separate according to their mobility. No steady state is achieved, and migration continues with gradual broadening of the sample zones due to diffusion and other effects.
  • Isoelectric focusing is a variant based upon the fact that most biomaterials are amphoteric in nature, i.e., are positively charged in an acidic environment and negatively charged in a basic environment. At a particular pH value, called the isoelectric point (pI), the biomaterials acquire a zero net charge due to the balance of positive and negative charges. When such amphoteric materials are exposed to an applied electrical field, in a medium exhibiting a pH gradient, they will migrate toward the pH region of their pI and become immobilized or focused in a steady state at that pH region.
  • Electrophoretic separation in multi-compartment electrolyzers has been known since 1912, when it was introduced for preparative scale protein fractionation. To the present, the basic apparatus has undergone multiple changes and has been improved in many ways.
  • electrophoretic devices have been designed by Rilbe, with the latest improved version published in 1980.
  • This latest device consists of a rotating cylinder with 46 subcompartments, each 1.5 cm wide and 12.5 cm in diameter, and has a total volume of 7.6 liters.
  • the subcompartments are separated by polyvinylchloride (PVC) membranes, while, at the ends, one of the electrode compartments is separated by cellophane and the other by PVC.
  • PVC polyvinylchloride
  • the cooling of the solution is achieved by a combination of inner and outer cooled surfaces.
  • the cylinder is submerged in 360 liters of refrigerated water and rotated about the separation axis, thereby cooling the cylinder walls.
  • four glass cooling tubes pass through each subcompartment and, when the cylinder is rotated about its longitudinal axis, water is scooped into one side of the cooling tube and forced out the other.
  • PVC exhibits a 5-10 fold greater electroosmotic effect than a woven monofilament nylon screen. Electroosmotic mixing is also increased by the small porosity of the PVC membranes, which trap colloidal and larger protein particles. PVC also binds proteins with considerable affinity. Protein precipitations at a position in the pH gradient, deviating from the respective pI, produce a net charge on the immobilized protein resulting in electroosmotic mixing.
  • the chosen membrane materials i.e., cellophane and PVC, electroosmotic transport across the electrode membrane occurs, which induces mixing.
  • Electroosmotic transport counteracts and degrades the separation process.
  • the large width of each subcompartment also retards the separation process.
  • the low ionic strength electrolytes which are employed in Rilbe's apparatus, cause a voltage drop in the electrode chambers, which decreases the effective field strength in the separation compartments.
  • the ROTOFOR eliminates some of the drawbacks of Rilbe's device by using woven nylon screen, small width subcompartments and ion exchange membranes to separate the electrode compartments.
  • the disadvantage of the ROTOFOR is that, due to the annular cross section and the central inner cooling tube, scale-up to significantly larger capacities is impossible, since an increase of the cylinder diameter would result in an insufficient cooling of the solution close to the outer walls of the cylinder.
  • the ROTOFOR is strictly a batch mode processor and cannot be operated in a continuous flow mode.
  • Multi-compartment electrolyzers which separate proteins by the principles of IEF are also known.
  • US-A-4,363,613 and US-A-4,204,929 disclose such apparatus.
  • this is designed to operate exclusively by IEF and in the batch mode, whereby the solution is recycled between the electrolytic cell and an external heat exchanger to provide external cooling of the sample solution.
  • a method for the continuous-flow electrophoretic separation of proteins, antibodies, nucleic acids etc. in a matrix system is known and is shown in US-A-4,323,439. Matrices of the size-exclusion type, of the ionic type, of the adsorption-type or of a special affinity to the particles to be separated are used.
  • the separation chamber comprises at least one matrix of continuously varying properties or two and more matrices of continuously or intermittently varying properties in the longitudinal direction.
  • the mixture to be separated is introduced into the separation chamber in a carrier liquid which flows through the length of the chamber. An electric field is applied such that the electrophoretic movement occurs in a direction opposite to the carrier liquid flow.
  • an object of the present invention to provide a preparative scale, free-fluid electrical separator, which is matrix-free, which may be operated in both a batch mode and a continuous, flow-through mode and which may be scaled according to the solution quantities which are to be processed. It is another object of the present invention to provide the electrical separator with an internal cooling system to efficiently dissipate Joule heat during the separation processes, which eliminates the need for horizontal rotation or recirculation to an external cooler, and permits application of higher voltage gradients and yields shorter separation times.
  • Another broad aspect of the invention is to provide an apparatus for electrical separation of biological materials, organic and inorganic compounds, and metal ions, by a single apparatus adaptable for use in zone electrophoresis, isoelectric focusing, counter-flow gradient electrophoresis and electrodialysis.
  • a plurality of bodies may be arranged next to each other to form an array of parallel bodies having horizontally aligned separation chambers.
  • Membranes selected according to desired separation process, are provided between the planar bodies to separate the separation chambers, act as containing walls for fluid within the separation chambers and minimize convective mixing of the separated sample zones defined within each separation chamber.
  • An electrode compartment is provided at each end of the body array, containing an anode and a cathode and appropriate anolyte and catholyte, respectively.
  • a multichannel pump introduces the unprocessed sample into the individual separation chambers and pumps processed fluid from each separation chamber to a collection chamber.
  • the electrical separator of the present invention allows for a modular design which may be adjusted to the respective needs of various applications. It may be used for separations based on electrophoretic methods such as, without limitation, zone, counter-flow gradient, IEF, continuous flow electrodialysis, electrodecantation and for water purification based upon any of these methods.
  • Fig. 1 is a diagrammatic view of the separation apparatus according to the present invention.
  • Fig. 2 is a perspective view of a separation cell according to the present invention.
  • Fig. 3 is a cross-sectional view taken along line 3-3 of Fig. 1.
  • Fig. 4 is a cross-sectional view illustrating multiple adjacent separation cells according to the present invention.
  • Fig. 5 diagrammatically illustrates fractionation of human serum albumin and human hemoglobin by IEF using the separation apparatus of the present invention.
  • Fig. 6 diagrammatically illustrates the process of counterflow gradient focusing according to the present invention.
  • Fig. 7 diagrammatically illustrates the process of electrodialysis according to present invention.
  • the electrophoretic separator is comprised of an array of subcompartments 12 with two electrode compartments 30, 32 on either end of the array. All subcompartments 12 for this electrophoretic separation cell are identical.
  • Each subcompartment 12 consists generally of a planar body which has a narrow channel 16 formed within the planar body. Channel 16 acts as the separation chamber for processing the sample.
  • the subcompartments 12 are adjacently arrayed in a co-planar fashion.
  • Membranes 17 are interdisposed between the individual subcompartments 12.
  • Membranes 17 which serve as delimiting inter-subcompartmental boundaries for the narrow channel 16 and effectively separate each adjacent channel 16 into discrete separation chambers.
  • Each subcompartment 12 is provided with a linear array of openings 20 which receive a bolt or other fastening means to clamp together the array of aligned subcompartments 12.
  • Each subcompartment also is provided with a linear array of alignment openings 22, which receive alignment pins to maintain a uniform width of the channel 16 along its longitudinal aspect. The array is bolted or clamped together, whereby the electrode compartments function as end-plates which provide a rigid structural support.
  • an electrical field applied to the electrophoretic separator runs perpendicular to the planar aspect of subcompartments 12 and the membranes 17.
  • Appropriate electrolytes are pumped into their respective electrode compartments. Continuous recycling of the electrolytes removes electrolytic gases.
  • the membranes 17 reduce inter-subcompartmental fluid convection and mixing of the separated sample zones.
  • By providing a parallel array of membranes 17 perpendicular to the separation axis confines fluid convection to the individual subcompartments 12, which is beneficial to the separation process while preventing detrimental fluid convection between subcompartments 12.
  • Each subcompartment 12 is provided with a heat exchanger 14 to dissipate Joule heat generated during the electrophoretic separation.
  • the heat exchanger 14 is disposed in the channel 16 of each subcompartment 12 such that at least a substantial portion of the longitudinal inner walls of channel 16 formed by the planar body 12, are associated with heat exchanger 14.
  • heat exchanger 14 comprises either a quadrilateral or circular cross-sectional tubing having a depth or diameter corresponding to the thickness of the planar body 12.
  • the heat exchanger 14 connects to inlet and outlet ports 18 at the ends of the length of the cavity.
  • Inlet and outlet ports 18 are preferably formed by providing co-axially aligned inlet and outlet ports 18 in adjacent arrayed subcompartments 12, each port 18 having fluid conduit 19 between the port 18 and the heat exchanger 14.
  • Fluid conduit 19 may be an integral with heat exchanger 14 or a discrete component.
  • Sample inlet 11 and collection 13 ports are also provided at each end of channel 16 and are in fluid flow communication therewith. Both inlet port 11 and collection port 13 are connected to a multichannel pump 60 which pumps the sample solution into channels 16 of individual subcompartments 12 and concurrently removes separated solution from the collection ports 13.
  • the volume of the electrophoretic separator according to the present invention is determined by the number of subcompartments 12 and the length of channel 16 in each subcompartment 12.
  • each subcompartment 12 is preferably 0.1 to 0.4 cm in thickness, and may be die cut, extruded, molded or otherwise formed as may be known in the art. Regardless of the length of channel 16 or number of subcompartments 12, the thickness of the each subcompartment 12, and, hence, channel 16, i.e., the distance between two membranes 17, should be about 0.1 to about 0.4 cm. A thickness of excessive width is detrimental to the electrophoretic separation process due to the greater time required for a particle to cross each subcompartment. A thickness which is too small makes sample input and output difficult and may allow adjacent membranes to touch, thereby occluding flow through the channel 16.
  • the length of the planar body 12 and cavity 16 may vary to accommodate different volumes. A greater distance between the sample inlet and exit ports requires unnecessary fabrication costs. A much shorter path between the sample inlet and exit ports, on the other hand, does not provide enough travel distance for an effective separation. Further, an effective dimension of the channel 16 which forms the separation chamber, should be about 50 cm in length, 0.2 cm in width and 0.3 cm in thickness, which yields an effective total volume of 3 ml within channel 16.
  • silicone rubber material Because of its dielectric properties, a silicone rubber material is well suited for sample containment in an electrophoretic separator, however, other electrically insulating materials are also effective. Because of its elastic properties, silicone rubber, together with the membranes 17, acts as a gasket between adjacent subcompartments 12 when the subcompartment array (Fig. 1) is bolted or clamped together.
  • the membranes used in the embodiment of the present invention are preferably woven monofilament nylon screens. Compared to PVC screens, frequently employed in electrophoretic separators of the prior art such as the Rilbe machine, nylon screens lower inter-compartmental electroosmosis by a factor of 5 to 10.
  • the electrode compartments 30, 32 provided at each end of the subcompartment array, provide a cavity for a platinum electrode.
  • the electrode compartments 30, 32 are constructed from a suitable plastic material, preferably acrylic, and serve as a rigid end plate allowing the subcompartment array to be bolted together.
  • they are equipped with inlet and exit ports for the flow-through operation of the electrolytes.
  • the electrolytes may be recirculated within each compartment 30 or 32, may be flowed through each compartment 30, 32 in a single pass or the anolyte may be mixed with the catholyte.
  • the subcompartments 12, and the electrode compartments 30, 32 have a plurality of openings perpendicular to their flat faces. Bolts are inserted into the openings, which form one long bore hole upon the co-axial alignment of the components, which tightened to seal the subcompartments and electrode compartments against leakage. Additionally, a plurality of alignment openings 22 are provided in the planar bodies 12 and adjacent to or in close proximity to the channel 16. The alignment openings 22 serve to maintain uniform longitudinal alignment of channel 16, by engagement upon alignment pins (not shown).
  • Sample inlet 11 and collection 13 ports may be disposed within the silicone rubber material and pass from each end of the channel 16 and extend external to the planar body of the subcompartment 12. Each of the sample inlet 11 and collection 13 ports are connected to the multichannel pump 60.
  • the apparatus of the present invention has the heat exchange means 14 for the recirculation of a coolant either attached to, or made a part of the planar body of each subcompartment 12 such that the heat exchange means 14 forms side walls of channel 16.
  • the heat exchange means 14 according to the preferred embodiment of the invention, consists of cooling tubes having the same cross-sectional diameter or depth as that of the channel 16.
  • Bach subcompartment 12 is equipped with a parallel pair of cooling tubes 14, each of which has inlet and exit ports 18 provided at the ends of the longitudinal axis of the subcompartment 12.
  • the inlet and outlet ports 18 of all subcompartments 12 open into the same feed lines running perpendicular to the planar aspect of each subcompartment 12 through the array.
  • the feed lines on either end of the silicone rubber spacer are formed by openings perpendicular to the planar aspect of the planar body of each subcompartment 12 and are in fluid flow communication upon bolting or clamping of the subcompartment array.
  • the coolant is supplied from a coolant supply 50 and is continuously recirculated by a pump 52.
  • the cooling tubes 14 are thin walled, achieving high thermal transfer rates, and have high dielectric strength to avoid electrical conduction to the coolant.
  • Suitable materials are thin plastic materials, such as tetrafluoroethylene or fluorinated ethylpropylene resins marketed under the trademark TEFLON or polypropylene co-polymers, polyethelyene or silicone.
  • the cooling tubes 14 may have any suitable cross-sectional shape, but are preferably circular or quadrilateral. Cooling tubes 14 have a cross-sectional dimension which corresponds to the thickness of the planar body forming the subcompartment 12, and, therefore, have substantially the same width or depth as that of the channel 16.
  • the cooling tubes 14 may be affixed to the side walls of the channel 16 by gluing, welding, or other suitable method of affixation as may be known in the art, the cooling tubes may be molded directly into the material forming the planar body of the subcompartment 12, or the cooling tubes 14 may be extruded or otherwise formed as an integral part of the planar body of the subcompartment 12.
  • the desirable width of channel 16, as measured by the lateral distance between the two parallel cooling tubes 14 is from about 0.1 cm to about 0.3 cm.
  • An advantage of the apparatus according to the present invention over designs of the prior art is the configuration of a long narrow separation chamber having internal cooling. As long as the ratio of cooling surface area to process volume remains constant or is increased, the device can be scaled to any sample cavity volume desired, simply by increasing the length and the number of subcompartments 12, without loss of resolution.
  • An alternative system design for the IEF mode which increases sample volume processing, features the alignment of two or more subcompartments 12 in series. Instead of constructing an electrophoretic cell having longer subcompartments 12 and, therefore longer channels 16, two or more subcompartments 12 may be employed in series. In this manner, an awkwardly elongated cell design is avoided.
  • a serial arrangement of subcompartments 12 permits application of a higher voltage to the downstream array. As the sample solution is pumped through the separation chamber channel 16 while exposed to a voltage gradient perpendicular to the sample flow and membranes 17, there is a decrease of conductivity in the direction of the sample flow due to the formation of the pH gradient where buffer components become less changed. The loss in conductivity permits application of greater voltages across the cell.
  • zone electrophoresis counter-flow gradient focusing or isoelectric focusing
  • a single subcompartment may be used in conjunction with an anode and cathode, wherein an appropriate anion and cation exchange membrane, is interdisposed between the anode and cathode, respectively, and the subcompartment.
  • the above described electrical separator is a versatile instrument for the separation of proteins, cells and salts. It may operate according to various electrophoretic separation principles, for which different operational modes are required.
  • the electrical separator of the present invention is easily adapted to various modes simply by altering the number of subcompartments, the selection and arrangement of membranes, buffers and anion or cation exchange resins.
  • the present invention is, therefore, a unique versatile apparatus. When the apparatus of the present invention is used for IEF, a pH gradient is created in the array. The pH gradient and, therefore, the resolution, may be easily adjusted by manipulating the buffers inherently required for the isoelectric focusing process.
  • Such adjustment may occur by, for example, judiciously tailoring the gradient either with isoelectric focusing buffers having appropriate pH ranges selected from commercial sources, by prefractionation of commercial pH gradient mixtures in order to produce a more narrow pH gradient than commercially available, or by using mixtures of simple buffers. Most conveniently applicable are ampholyte buffers which are commercially available in the pH range of 3.0 to 10.0 in intervals of 0.01 pH units. By using these buffers a virtually continuous pH gradient may be created in the direction of the electric field in the separation cell.
  • the method is applied such that unprocessed fluid containing a desalted sample is mixed with the appropriate carrier ampholyte buffer and then pumped directly into each subcompartment of the separation cell.
  • the sample and buffer mixture is continuously pumped into the cell using a multichannel pump 60. While it moves through the cell, it is continuously processed.
  • the processed fluid is then pumped from each of the focusing subcompartments 12 into individual collection vessels 40 by the same pump 60.
  • an apparatus with 12 subcompartments will require a 24 channel pump.
  • the apparatus is first primed with the unprocessed sample fluid, whereby the exit ports lead back to the unprocessed fluid container.
  • the coolant is circulated through the cooling tubes allowing sufficient time for the temperature equilibration.
  • the electrical power is applied.
  • the fluid collected at the exit ports is recycled into the unprocessed sample fluid reservoir until an element of sample has had sufficient time to traverse the length of the cell while exposed to the electric field.
  • the fluid flowing from the exit ports is not recycled and is then continuously collected.
  • a ten subcompartment array 10 is provided, with each separation chamber channel 16 having a volume of 3 ml, providing a total sample cavity volume of 30 ml is provided.
  • the multi-channel pump 60 is set to introduce and withdraw at the rate of 0.5 ml/min per channel. It, therefore, will require 6 min for the sample to complete one pass through the separation chamber channel 16 in each subcompartment 12. Thus, 6 min from the initial application of the power the sample withdrawn from the collection port 13 may be fed directly into the appropriate collection vessels 40.
  • Complete separation time depends upon a large number of variables such as the steepness of the pH gradient, the concentration of the sample constituents, the amount of power applied, and the magnitude of the protein mobility.
  • the criterion for the resolution of sample components is whether two proteins having closely spaced isoelectric points may be resolved, or, at which minimum isoelectric point difference, between the two sample components, may they still be resolved.
  • the voltage maximum in IEF is limited by the efficiency of heat removal from the sample solution.
  • the more efficient cooling provided by the present invention permits application of higher applied voltages to the apparatus of the invention compared with the IEF apparatus of the prior art.
  • a comparison of the apparatus of the present invention with the ROTOFOR system of the prior art shows that the apparatus of the present invention is superior in its heat removal properties while permitting use of greater maximum applied voltages.
  • the maximum applied power of the present invention is compared with the ROTOFOR having a ceramic cooling tube, 8.6 cm long and 1 cm in diameter, which effectively removes 15 watts.
  • the apparatus of the present invention permits a higher applied field strength with a concomitant greater heat removal capacity than ROTOFOR device. Both effects result in a greater resolution and throughput.
  • Another advantage of the apparatus of the present invention is that material separated in the flow-through mode may be collected in as little time as is required for the sample to traverse one length of the cell. Where, for example a flow rate of 1 ml/min is employed, the focused material may be collected after only three minutes from the onset of the applied potential. This facilitates rapid analysis of the eluate during the run, which permits adjustments of the operating parameters, if needed, during the run.
  • Fig. 5 presents the results of a separation of a two component mixture of human hemoglobin and human serum albumin by IEF using the electrical separator 10 of the present invention.
  • the process was carried out in an IEF solution containing 1.0 ml of human hemoglobin (80 mg/ml) and 0.5 ml of blue stained human serum albumin (250 mg/ml) diluted to 500 ml with 1% (w/v) pentaethylenehexamine carrier ampholyte.
  • Ion exchange membranes were configured in IEF orientation.
  • Absorbance of the human serum albumin was measured at 602 nm and absorbance of human hemoglobin was measured at 540 nm.
  • Table 2 TABLE 2 Run Applied Potential (V) Maximum Current (mAmp) Applied Power (W) Flow Rate (ml/min) 1 900 200 180 2.0 2 920 210 200 1.0 3 500 85 43 2.0 4 937 266 250 3.8
  • the data illustrates that a complete separation of the components was accomplished utilizing the apparatus 10 of the present invention in the continuous IEF mode under various conditions which influence the resolution and focusing of the separation.
  • the entire sample solution containing the appropriate buffer system is introduced through the inlet ports 11 into the subcompartments 12 of the apparatus 10, and are contained within the separation chamber 16.
  • the pump is turned off to induce the separation process on a non-flowing sample.
  • the fractions are collected at the respective outlet ports of the subcompartments by pumping them into the individual collection vessels.
  • Counter-flow gradient focusing fundamentally operates on the principle of zone electrophoresis whereby components separate due to their electrophoretic mobility through a medium. In a fixed amount of time, species of a high electrophoretic mobility move further in an electrophoretic field than species of a low electrophoretic mobility.
  • a superimposed counter-flow gradient which counteracts the electrophoretic migration along the focusing axis of the separation cell.
  • the counter-flow gradient as distinguished from the uniform counter-flow employed in US-A-4 323 439, evenly slows migration to create a second separation factor, which, in conjunction with the electrophoretic mobility of the particles, results in focusing and better separation.
  • the length of the separation chamber 16 between the input 11 and outlet 13 ports, in the present invention is much greater than the distance between adjacent chambers 16 or subcompartments 12. This permits ample time for particles reach equilibrium between the counter-flow gradient and their electrophoretic mobility before the particle exit from the outlet port 13.
  • Fig. 6 is a schematic representation of the counter-flow gradient focusing mode of the present invention.
  • the sample fluid is introduced only into an end subcompartment 12 on the array.
  • the remaining inlets 11 are plugged or otherwise blocked.
  • a flow of the fluid sample in buffer, having a flow rate F i is introduced into the end subcompartment 12 and pumped into the apparatus 10 on a continuous mode. All collection ports 13 are open.
  • a introductory counter flow consists of 10 units of flow, a ten subcompartment array
  • one unit of flow is withdrawn from collection port 13 of subcompartment A, and nine units of flow must cross the membrane to the adjacent subcompartment B.
  • one additional unit of flow will be withdrawn from its collection port 13, and eight units of flow will cross the boundary to the next subcompartment C.
  • the counterflow opposing the direction of electrophoretic velocity, from subcompartment to subcompartment is thereby reduced by one unit each time and a linear counterflow step gradient is created.
  • the counterflow is accordingly strongest at the final destination of the migrating particles and increases in the direction of migration of the particles.
  • the resolution of the counter-flow gradient focusing separation has also been increased by imposing an additional counterflow on top of the counter-flow gradient.
  • An illustration of this is a case where a population consisting of two different particles with similar electrophoretic mobilities focus together in a subcompartment bracketed by counterflows of 4x in and 3x out with an electric field strength of Z. All particles in this subcompartment have electrophoretic mobilities which give them a velocity in the electric field Z which is greater than 3x but less than 4x. If the electric field Z is increased four times to 4z, the particles focused between counterflows of 4x and 3x now move four times faster and focus between 16x and 12x counterflows.
  • the counterflow opposes the electrophoretic migration
  • the two opposing forces interact such that each of the various species in the mixture will seek the compartment where the two opposing forces, i.e., the electrophoretic mobility of that particular species and the counterflow at that particular point of the gradient, are equivalent and have a net effect of zero velocity for the component species.
  • the component attains its stationary position it is said to be focused. The components will remain in their respective compartments until collected.
  • one or more of the subcompartments may have inlet ports for the introduction of the sample solution.
  • the sample solution may be introduced into any one of the inlet ports of the sample subcompartments with one unit of inlet flow.
  • an additional unit of flow must be withdrawn from this subcompartment in order to compensate for the additional unit of flow.
  • the separation cell is first primed with the buffer fluid as to expel all air, whereby the inlet tubes 11 (one for each sample subcompartment) can be joined together to fill the separation cell with the buffer solution by using a pump.
  • the sample to be separated may then either be introduced into the buffer reservoir or pumped directly into the subcompartment 12 of choice.
  • the cooling system In order to begin separation, the cooling system must be switched on and, after a temperature equilibrium is reached between the coolant and the buffer fluid, the power supply is turned on.
  • the limits of the applied power, the applied voltage and the applied current must be previously determined. Typical limits may be 100-200 V, 100-200 W, and 100-200 mA. These limits depend on many factors, including the buffer conductivity, the magnitude of the counterflow gradient and the cooling rate.
  • Each of the exit tubes is connected to its respective collection vessel.
  • the sample collection may thus be performed in a continuous and automatic manner.
  • Table 3 presents the results of a separation of two colored proteins, human hemoglobin (Hb) human serum albumin (A), introduced in three runs at different subcompartment input positions.
  • Hb human hemoglobin
  • A human serum albumin
  • Fig. 7 is a schematic representation of yet another embodiment of the present invention relating to the application of the apparatus of the present invention for electrodialysis, whereby the principle of electrophoresis and a continuous flow operation are employed.
  • the configuration of a preferred embodiment comprises one subcompartment 12 with two electrode compartments 30, 32 on either side.
  • the compartments are separated by ion exchange membranes 19.
  • the sample to be treated is introduced through the inlet port 11 of the subcompartment 12 and exits through the collection port 13 at the opposite end of the subcompartment 12.
  • the electrodialysis device is operated such that the sample solution is pumped into the subcompartment 12 in such a manner to first expel all the air in the separation chamber channel 16.
  • electrical current is applied at preset voltage, current and power limits.
  • the present invention contemplates a water purification process, in which pathogenic organisms, toxins and/or heavy metals may be separated, concentrated and removed from a water sample.
  • Waste water may contain pathogenic organisms, toxins and heavy metals.
  • the water purification process of the present invention is useful in generating potable water from waste streams, gray water, or industrial or agricultural waste streams containing one or more of pathogenic organisms, toxins, toxic metals, and colloidal soil particles.
  • the water purification process is particularly useful in bioregenerative closed systems required in confined environments such as in spacecraft or submarines where recycling of water is a necessity.
  • Standard buffer systems may be employed as a counterflow buffer solution.
  • an acid and a base pair may be introduced into the anode and cathode electrodes, respectively, whereby no flow of the respective ions across the separation cell occurs since the respective ions are already at their destination. If, for example, NaOH is introduced into the cathode compartment and H2SO4 is introduced at the anode, the Na+ ion remains at the cathode and the Cl ⁇ ion stays at the anode; no electrolyte transport is observed.
  • standard buffers such as tris acetate, pH 7.2, can be used as electrolytes to furnish the buffering ions to the separation chamber to facilitate the removal of pathogens and toxins containing ionizable functional groups.
  • the buffers used in this process are subsequently removed in tandem by continuous flow electrodialysis in the present invention from the water in those subcompartments that do not contain pathogenic organisms or pathogens.
  • the sharp focusing which can be achieved with the counter flow gradient leads to the concentration of undesired materials into very small volumes in certain subcompartments, while maximizing the volume of purified water in other subcompartments.
  • the contaminants may thus be removed from those specific subcompartments, while purified water may be pumped off others in a continuous mode.
  • the effectiveness of the separation process for biological materials may be monitored visually, using bioluminescent assay and/or the polymerase chain reaction employing specific gene probes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrostatic Separation (AREA)
  • Small-Scale Networks (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Sampling And Sample Adjustment (AREA)

Claims (39)

  1. Appareil (10) pour la séparation électrophorétique à modalités multiples d'espèces chargées, dans une solution d'échantillon, comprenant :
       au moins un corps plan (12) définissant une chambre de séparation intérieure longitudinale (16) ;
       au moins une ouverture d'entrée (11) et de sortie (13) d'échantillon en communication par écoulement fluide avec ladite chambre de séparation (16) ;
       plusieurs membranes perméables non sélectives vis-à-vis des ions (17) disposées de façon adjacente à chaque aspect plan dudit corps plan (12), adjacentes à ladite chambre de séparation (16) et orientées de façon généralement parallèle à la direction d'écoulement de la solution d'échantillon dans ladite chambre de séparation (16) ;
       des moyens (30, 32) pour appliquer un potentiel électrique à la solution d'échantillon dans ladite chambre de séparation (16) ;
       une pompe à canaux multiples (60) pour introduire la solution d'échantillon par pompage dans ladite ouverture d'entrée (11) dudit corps plan (12) ;
       caractérisé en ce que l'appareil comprend en outre des moyens de refroidissement thermique (14) formant les parois latérales de la chambre de séparation (16), les moyens de refroidissement étant fournis pour exposer la solution d'échantillon à une aire de surface de refroidissement pour refroidir la solution d'échantillon dans la chambre de séparation (16).
  2. Appareil selon la revendication 1, dans lequel ledit corps plan (12) comprend en outre un élément mince généralement rectiligne ayant l'aspect longitudinal plus grand que l'aspect latéral.
  3. Appareil selon la revendication 2, dans lequel ladite chambre de séparation (16) est orientée centralement le long de l'aspect longitudinal dudit élément rectiligne et passe au travers d'un axe latéral dudit élément rectiligne.
  4. Appareil selon la revendication 3, dans lequel ledit corps plan (12) comprend en outre une matière diélectrique.
  5. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens de refroidissement thermique (14) comprennent en outre plusieurs éléments tubulaires ayant des propriétés de conductance thermique élevées.
  6. Appareil selon la revendication 5, dans lequel lesdits plusieurs éléments tubulaires ont des aires de surface refroidies qui définissent un canal fluide mince tel que la solution d'échantillon soit constamment au voisinage proche desdites aires de surface refroidies.
  7. Appareil selon la revendication 6, dans lequel lesdits éléments tubulaires ont une section transversale quadrilatérale.
  8. Appareil selon la revendication 6, dans lequel lesdits éléments tubulaires ont une section transversale circulaire.
  9. Appareil selon l'une quelconque des revendications précédentes, dans lequel ledit appareil comprend en outre des moyens pour établir un gradient de pH stable dans ledit appareil pour effectuer une focalisation isoélectrique.
  10. Appareil selon la revendication 1, dans lequel plusieurs corps plans (12) sont fournis, chaque corps (12) ayant une ouverture définissant une chambre de séparation longitudinale étroite (16), lesdits plusieurs corps plans (12) étant configurés sous la forme d'un alignement plan parallèle ;
       au moins une ouverture d'entrée de solution (11) et au moins une ouverture de sortie de solution opposée (13) en communication par écoulement fluide avec ladite chambre de séparation (16), ladite au moins une ouverture d'entrée (11) et ladite au moins une ouverture de sortie (13) passant au travers dudit corps plan (12) ;
       plusieurs éléments de refroidissement (14) fournis sur les aspects latéraux de ladite chambre de séparation longitudinale étroite (16), formant les parois latérales de ladite chambre de séparation (16), lesdits éléments de refroidissement (14) ayant des propriétés de conductance thermique élevées et une aire de surface qui contacte la solution dans ladite chambre de séparation (16) ;
       au moins une ouverture d'entrée (18) de l'élément de refroidissement et au moins une ouverture de sortie (18) de l'élément de refroidissement, chacune en communication par écoulement fluide avec lesdits plusieurs éléments de refroidissement (14), où ladite au moins une ouverture d'entrée de l'élément de refroidissement conduit un milieu de refroidissement depuis une source externe dans lesdits plusieurs éléments de refroidissement, et ladite au moins une ouverture de sortie de l'élément de refroidissement conduit le milieu de refroidissement à l'écart de ladite chambre de séparation (16) ;
       plusieurs membranes perméables non sélectives vis-à-vis des ions (17), au moins une desdites plusieurs membranes perméables non sélectives vis-à-vis des ions étant intercalée entre les paires adjacentes de corps plans parallèles (12), définissant ainsi une frontière entre les chambres de séparation adjacentes (16), et orientée d'une façon généralement parallèle à la direction d'écoulement de la solution d'échantillon dans ladite chambre de séparation ;
       des moyens (30, 32) pour appliquer un potentiel électrique à la solution d'échantillon dans ladite chambre de séparation (16) ; et
       une pompe à canaux multiples (60) pour introduire la solution par pompage dans ladite ouverture d'entrée de solution (11) dudit corps plan (12) et retirer la solution par ladite ouverture de sortie de solution (13).
  11. Appareil selon la revendication 10, dans lequel chacun desdits plusieurs corps plans (12) forme en outre un élément résilient mince généralement rectiligne ayant l'aspect longitudinal plus grand que l'aspect latéral.
  12. Appareil selon la revendication 11, dans lequel ladite chambre de séparation (16) est orientée centralement le long de l'aspect longitudinal dudit élément résilient rectiligne et passe au travers d'un axe latéral dudit élément rectiligne.
  13. Appareil selon la revendication 12, dans lequel chacun desdits plusieurs corps plans (12) comprend en outre une matière diélectrique.
  14. Appareil selon l'une des deux revendications 4 et 13, dans lequel ladite matière diélectrique est un caoutchouc de silicone.
  15. Appareil selon la revendication 10, dans lequel lesdits éléments de refroidissement (14) comprennent en outre des éléments tubulaires ayant une section transversale quadrilatérale.
  16. Appareil selon la revendication 13, dans lequel lesdits éléments de refroidissement (14) comprennent en outre des éléments tubulaires ayant une section transversale circulaire.
  17. Appareil selon l'une des deux revendications 6 et 13, dans lequel lesdits éléments tubulaires (14) comprennent en outre une matière plastique.
  18. Appareil selon la revendication 17, dans lequel ladite matière plastique est choisie dans le groupe constitué du tétrafluoroéthylène, des résines d'éthylpropylène fluorées, des copolymères de polypropylène, du polyéthylène et de la silicone.
  19. Appareil selon l'une quelconque des revendications précédentes, dans lequel ladite ou chacune desdites membranes perméables non sélectives vis-à-vis des ions (17) comprend en outre un tamis monofilament tissé.
  20. Appareil selon la revendication 10, dans lequel lesdites ouvertures d'entrée de fluide de refroidissement (18) dans chacun desdits plusieurs corps plans (12) sont alignées coaxialement, formant ainsi un canal d'entrée du fluide de refroidissement passant au travers dudit alignement de corps plans parallèles (12), et lesdites ouvertures de sortie du fluide de refroidissement dans chacun desdits plusieurs corps plans (12) sont alignées coaxialement, formant ainsi un canal de sortie du fluide de refroidissement passant au travers dudit alignement de corps plans parallèles (12).
  21. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens (30, 32) pour appliquer un potentiel électrique comprennent en outre une source de puissance de courant continu couplée à au moins une anode et au moins une cathode.
  22. Appareil selon la revendication 21, dans lequel ladite au moins une anode et ladite au moins une cathode comprennent en outre chacune un compartiment de plaque finale adapté pour recevoir ladite anode ou ladite cathode, et contiennent un anolyte ou un catholyte respectif à l'intérieur.
  23. Appareil selon la revendication 21, dans lequel ladite au moins une anode comprend en outre au moins une membrane échangeuse d'anions (19) associée de façon opérante avec elle, et ladite au moins une cathode comprend en outre au moins une membrane échangeuse de cations (19) associée de façon opérante avec elle.
  24. Appareil selon la revendication 21, dans lequel ladite au moins une anode comprend en outre au moins une membrane parmi une membrane échangeuse d'anions, une membrane échangeuse de cations et une membrane de dialyse, associée de façon opérante avec elle, et ladite au moins une cathode comprend en outre au moins une membrane parmi une membrane échangeuse de cations, une membrane échangeuse d'anions et une membrane de dialyse, associée de façon opérante avec elle.
  25. Appareil selon la revendication 21, dans lequel ledit appareil comprend en outre des moyens de recirculation (52) pour faire recirculer chacun dudit anolyte et dudit catholyte.
  26. Procédé pour séparer des constituants chargés, dans un mélange fluide, comprenant les étapes de :
       fourniture d'un appareil de séparation comprenant plusieurs chambres de séparation longitudinales parallèles adjacentes ayant des membranes perméables non sélectives vis-à-vis des ions intercalées entre elles, chacune desdites plusieurs chambres de séparation longitudinales ayant en outre des moyens de refroidissement formant les parois latérales de la chambre de séparation et fournissant un refroidissement local du mélange fluide dans ladite chambre de séparation ;
       recirculation d'un milieu de refroidissement au travers desdits moyens de refroidissement pour établir un équilibre thermique dans chacune desdites chambres de séparation ;
       introduction du mélange fluide dans au moins une chambre de séparation longitudinale ;
       application d'un potentiel électrique au travers desdites plusieurs chambres de séparation pour conférer de la vitesse électrophorétique aux constituants dans le mélange fluide ; et
       recirculation continue dudit milieu de refroidissement au travers desdits moyens de refroidissement pour dissiper l'effet Joule du mélange fluide durant l'application dudit potentiel électrique.
  27. Procédé selon la revendication 26, comprenant en outre les étapes d'établissement d'un gradient de pH au travers desdites plusieurs chambres de séparation longitudinales adjacentes, et de séparation des constituants d'un mélange de deux constituants ou plusieurs par les principes de la focalisation isoélectrique, de sorte que chaque constituant migre sous l'influence du champ électrique à son pH correspondant à son point isoélectrique.
  28. Procédé selon la revendication 26, dans lequel lesdites étapes d'application d'un potentiel électrique comprennent en outre l'établissement d'un gradient de tension stable le long de l'axe longitudinal de chacune desdites plusieurs chambres de séparation.
  29. Procédé selon la revendication 26, dans lequel ladite étape d'introduction du mélange de constituants comprend en outre l'écoulement continu du mélange de constituants dans ladite au moins une chambre longitudinale.
  30. Procédé selon la revendication 29, comprenant en outre les étapes de retrait continu du fluide séparé de ladite au moins une chambre longitudinale pour établir un écoulement continu dans celle-ci.
  31. Procédé selon la revendication 26, comprenant les étapes de :
       introduction du mélange de constituants dans un fluide support dans une première chambre de séparation longitudinale en faisant couler le liquide dans une première direction ayant un premier débit ;
       application d'un potentiel électrique au travers desdites plusieurs chambres de séparation pour conférer de la vitesse électrophorétique à au moins certaines des espèces chargées, dans l'appareil de séparation, dans une seconde direction opposée à ladite première direction ; et
       retrait simultané d'un fluide séparé de chacune des plusieurs chambres de séparation à un second débit.
  32. Procédé selon la revendication 31, comprenant en outre l'étape d'introduction du mélange d'espèces chargées, par pompage dans ladite première chambre de séparation longitudinale, et de pompage dudit fluide séparé de chacune des plusieurs chambres de séparation pour établir un flux continu au travers de chacune desdites plusieurs chambres de séparation.
  33. Procédé selon la revendication 31, comprenant en outre l'étape de contrôle desdits écoulements de fluide séparé retiré de chacune des plusieurs chambres de séparation.
  34. Procédé selon la revendication 26, comprenant les étapes de :
       introduction d'eau non purifiée dans une première chambre de séparation longitudinale en faisant couler l'eau non purifiée dans une première direction ayant un premier débit ;
       application d'un potentiel électrique au travers desdites plusieurs chambres de séparation pour conférer de la vitesse électrophorétique à au moins certains constituants chargés, dans l'appareil de séparation, dans une seconde direction opposée à ladite première direction ; et
       retrait simultané du fluide séparé de chacune desdites plusieurs chambres de séparation à un second débit.
  35. Procédé selon la revendication 34, comprenant en outre l'étape d'introduction de l'eau non purifiée par pompage dans ladite première chambre de séparation longitudinale et de pompage dudit fluide séparé de chacune desdites plusieurs chambres de séparation pour établir un écoulement continu au travers de chacune desdites plusieurs chambres de séparation.
  36. Procédé selon la revendication 34, comprenant en outre l'étape de contrôle de chacun desdits écoulements de fluide séparé retiré de chacune des plusieurs chambres de séparation.
  37. Procédé selon l'une des deux revendications 31 et 34, dans lequel ledit fluide séparé est retiré audit second débit de chacune desdites plusieurs chambres de séparation, établissant ainsi un gradient d'écoulement entre les paires adjacentes de chambres de séparation.
  38. Procédé selon l'une des deux revendications 31 et 34, dans lequel ledit second débit comprend en outre un débit égal audit premier débit divisé par le nombre desdites plusieurs chambres de séparation.
  39. Procédé selon l'une quelconque des revendications 26 à 38, dans lequel au moins un constituant est au moins une substance parmi une protéine, un composé organique, un composé inorganique, un métal lourd, un agent pathogène et une particule de sol colloïdale.
EP91301056A 1990-09-11 1991-02-11 Appareil de séparation électrique à modalités multiples et méthode Expired - Lifetime EP0475555B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US580959 1990-09-11
US07/580,959 US5173164A (en) 1990-09-11 1990-09-11 Multi-modality electrical separator apparatus and method

Publications (2)

Publication Number Publication Date
EP0475555A1 EP0475555A1 (fr) 1992-03-18
EP0475555B1 true EP0475555B1 (fr) 1995-05-10

Family

ID=24323313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91301056A Expired - Lifetime EP0475555B1 (fr) 1990-09-11 1991-02-11 Appareil de séparation électrique à modalités multiples et méthode

Country Status (5)

Country Link
US (1) US5173164A (fr)
EP (1) EP0475555B1 (fr)
JP (1) JP3115338B2 (fr)
AT (1) ATE122262T1 (fr)
DE (1) DE69109589T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044994A1 (de) * 2005-09-21 2007-04-05 Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. Vorrichtung zur Trennung eines Analytgemisches und zur Detektion der Analytsubstanzen mittels elektrophoretischer Trennung

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336387A (en) * 1990-09-11 1994-08-09 Bioseparations, Inc. Electrical separator apparatus and method of counterflow gradient focusing
US5398756A (en) * 1992-12-14 1995-03-21 Monsanto Company In-situ remediation of contaminated soils
US5437774A (en) * 1993-12-30 1995-08-01 Zymogenetics, Inc. High molecular weight electrodialysis
US5662813A (en) * 1994-10-21 1997-09-02 Bioseparations, Inc. Method for separation of nucleated fetal erythrocytes from maternal blood samples
US5503723A (en) * 1995-02-08 1996-04-02 Eastman Kodak Company Isolation of ultra small particles
AU710548B2 (en) * 1995-03-03 1999-09-23 Dionex Corporation Apparatus/method for electrochemically modifying chromatographic material
US5540826A (en) * 1995-03-15 1996-07-30 Protein Technologies, Inc. Multi-channel separation device
DE19544127C1 (de) * 1995-11-27 1997-03-20 Gimsa Jan Dr Verfahren und Vorrichtung zur Erzeugung von Resonanzerscheinungen in Partikelsuspensionen und ihre Verwendung
US5858194A (en) * 1996-07-18 1999-01-12 Beckman Instruments, Inc. Capillary, interface and holder
US6113767A (en) * 1998-04-24 2000-09-05 Apogee Designs, Ltd. Electrophoresis sequencing apparatus
AUPP521298A0 (en) * 1998-08-12 1998-09-03 Life Therapeutics Limited Purification of fibrinogen
AUPP790698A0 (en) 1998-12-23 1999-01-28 Life Therapeutics Limited Separation of microorganisms
AUPP790898A0 (en) 1998-12-23 1999-01-28 Life Therapeutics Limited Renal dialysis
US20050224355A1 (en) * 1999-12-23 2005-10-13 Brendon Conlan Removal of biological contaminants
US7077942B1 (en) * 1999-12-23 2006-07-18 Gradipore Limited Removal of biological contaminants
AUPQ691400A0 (en) 2000-04-14 2000-05-11 Life Therapeutics Limited Separation of micromolecules
AUPQ697300A0 (en) 2000-04-18 2000-05-11 Life Therapeutics Limited Separation apparatus
WO2001078877A1 (fr) 2000-04-18 2001-10-25 Gradipore Limited Separation par electrophorese et traitement d'echantillons
US6923896B2 (en) * 2000-09-22 2005-08-02 The Texas A&M University System Electrophoresis apparatus and method
CN1235667C (zh) * 2000-10-06 2006-01-11 格拉迪普有限公司 多口分离装置及方法
DE10063097B4 (de) * 2000-12-18 2007-04-19 Becton, Dickinson And Co. Elektrophoresevorrichtung
AUPR222300A0 (en) * 2000-12-21 2001-01-25 Life Therapeutics Limited Electrophoresis device and method
JP2003194775A (ja) * 2001-12-28 2003-07-09 Japan Science & Technology Corp タンパク質の電気泳動法
US6793791B2 (en) * 2003-02-26 2004-09-21 Milan Bier Variable-volume disposable isoelectric focusing cell and method of isoelectric focusing
US7288176B2 (en) * 2003-04-23 2007-10-30 Dionex Corporation Method and apparatus for generating high purity eluant
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
CA2532414C (fr) 2003-07-12 2017-03-14 Accelr8 Technology Corporation Biodetection sensible et rapide
US7341841B2 (en) * 2003-07-12 2008-03-11 Accelr8 Technology Corporation Rapid microbial detection and antimicrobial susceptibility testing
CA2543800A1 (fr) * 2003-10-24 2005-05-06 The Texas A&M University System Appareil d'electrophorese
WO2005089910A1 (fr) * 2004-03-17 2005-09-29 Ciphergen Biosystems, Inc. Filtre a plusieurs compartiments et procede de filtrage au moyen de ce filtre
WO2006127056A2 (fr) * 2005-05-25 2006-11-30 Bio-Rad Laboratories, Inc. Dispositif fluidique
CA2661268C (fr) * 2006-08-29 2016-09-13 Becton, Dickinson & Company Procede et dispositif d'electrophorese libre sans vecteur
WO2011150424A1 (fr) * 2010-05-28 2011-12-01 Mehdi Moini Electrophorèse capillaire ultrarapide (ufce) tenant dans la main/portable à pointe poreuse réglable, couplée à la spectrométrie de masse
EP2683831B1 (fr) 2011-03-07 2015-09-23 Accelerate Diagnostics, Inc. Systèmes de purification rapide de cellules
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
US9182372B2 (en) * 2011-11-22 2015-11-10 Stephen G. Haralampu Stopped-flow, micro-fluidic device and method for the charge-based separation of complex analyte mixtures
EP2682168A1 (fr) 2012-07-02 2014-01-08 Millipore Corporation Dispositif de tirage et métier à filer
JP6207148B2 (ja) * 2012-11-15 2017-10-04 岸本 忠史 電気泳動装置、電気泳動法および電気泳動法を用いた濃縮・分離・分析方法
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
CA2893793A1 (fr) * 2013-05-29 2014-12-04 Innord Inc. Systeme et procede de separation et de purification d'elements/composes de lanthanides/metaux precieux dissous
US9289520B2 (en) 2014-02-27 2016-03-22 Kimberly-Clark Worldwide, Inc. Method and system to clean microorganisms without chemicals
KR101611708B1 (ko) 2014-07-07 2016-04-11 고려대학교 산학협력단 연속 등전점 전기영동 디바이스
JP6425958B2 (ja) * 2014-10-03 2018-11-21 国立大学法人大阪大学 電気泳動装置、電気泳動法および電気泳動法を用いた濃縮・分離・分析方法
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
EP3278115A2 (fr) 2015-03-30 2018-02-07 Accelerate Diagnostics, Inc. Instrument et système pour l'identification rapide de micro-organismes et test de la sensibilité à un agent antimicrobien

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989613A (en) * 1973-05-16 1976-11-02 The Dow Chemical Company Continuous balanced flow fixed boundary electrophoresis
DE2746089A1 (de) * 1977-10-13 1979-04-19 Hahn Meitner Kernforsch Vorrichtung zum trennen von in loesung vorliegenden ionen
US4204929A (en) * 1978-04-18 1980-05-27 University Patents, Inc. Isoelectric focusing method
US4349429A (en) * 1981-04-16 1982-09-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrophoresis device
DD245585A1 (de) * 1985-09-03 1987-05-13 Univ Halle Wittenberg Verfahren und apparatur zur elektrokinetischen ultrafiltration
US4673483A (en) * 1986-03-20 1987-06-16 Ionics Incorporated Isoelectric focusing apparatus
AT388747B (de) * 1988-01-13 1989-08-25 Birkner Friedrich Verfahren zum stabilisieren von protein- und gerbstoffhaltigen getraenken sowie vorrichtung zur durchfuehrung dieses verfahrens
US4963236A (en) * 1989-03-08 1990-10-16 Ampholife Technologies Apparatus and methods for isoelectric focusing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044994A1 (de) * 2005-09-21 2007-04-05 Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. Vorrichtung zur Trennung eines Analytgemisches und zur Detektion der Analytsubstanzen mittels elektrophoretischer Trennung

Also Published As

Publication number Publication date
EP0475555A1 (fr) 1992-03-18
JP3115338B2 (ja) 2000-12-04
US5173164A (en) 1992-12-22
DE69109589T2 (de) 1995-09-07
ATE122262T1 (de) 1995-05-15
DE69109589D1 (de) 1995-06-14
JPH04233450A (ja) 1992-08-21

Similar Documents

Publication Publication Date Title
EP0475555B1 (fr) Appareil de séparation électrique à modalités multiples et méthode
US5336387A (en) Electrical separator apparatus and method of counterflow gradient focusing
US5080770A (en) Apparatus and method for separating particles
EP0018375B1 (fr) Methode et appareil de reglage isoelectrique continu
US4897169A (en) Process and apparatus for recycling isoelectric focusing and isotachophoresis
US4362612A (en) Isoelectric focusing apparatus
US5160594A (en) Apparatus and methods for isoelectric focusing of amphoteric substances incorporating ion selective membranes in electrode chambers
US6919006B2 (en) Apparatus for macromolecule purification
US5122246A (en) Free flow electrophoresis method
EP1341596B1 (fr) Appareil multi-voies de séparation par électrophorése et procédé correspondant
US8721861B2 (en) Method for electrophoresis involving parallel and simultaneous separation
US4588492A (en) Rotating apparatus for isoelectric focusing
US5540826A (en) Multi-channel separation device
EP0067549B1 (fr) Appareils et techniques de focalisation isoélectrique
US6923896B2 (en) Electrophoresis apparatus and method
US4834862A (en) Ampholyte separation method and apparatus
CA2405038A1 (fr) Appareil de separation pour petits volumes
CA2025247C (fr) Methode et appareil de separation par electrophorese
EP0256552A2 (fr) Procédé et appareil de focalisation isoélectrique par recyclage et isotachophorésis
WO1991010129A1 (fr) Systeme de purification de proteines base sur la focalisation iso-electrique et l'isotachophorese
AU6068999A (en) Cassette for macromolecule purification
AU2001291491B2 (en) Electrophoresis apparatus and method
Bier Effective Principles for Scaleup of Electrophoresis
AU2001291491A1 (en) Electrophoresis apparatus and method
CA2421450A1 (fr) Appareil et procede d'electrophorese

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920917

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BIOSEPARATIONS, INC.

17Q First examination report despatched

Effective date: 19931115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950510

Ref country code: DK

Effective date: 19950510

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950510

REF Corresponds to:

Ref document number: 122262

Country of ref document: AT

Date of ref document: 19950515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69109589

Country of ref document: DE

Date of ref document: 19950614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950810

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980225

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980417

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: BIOSEPARATIONS INC.

Effective date: 19990228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030808

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030826

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030829

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST