EP0472057B1 - Arrangement and process to obtain a cathodic protection - Google Patents
Arrangement and process to obtain a cathodic protection Download PDFInfo
- Publication number
- EP0472057B1 EP0472057B1 EP91113329A EP91113329A EP0472057B1 EP 0472057 B1 EP0472057 B1 EP 0472057B1 EP 91113329 A EP91113329 A EP 91113329A EP 91113329 A EP91113329 A EP 91113329A EP 0472057 B1 EP0472057 B1 EP 0472057B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- potential
- substrate
- electrolysis
- limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
Definitions
- the invention relates to an arrangement and a method for achieving cathodic corrosion protection for a surface of a substrate containing metallic aluminum that can be washed around by an electrolyte (heat transfer medium, cooling medium).
- Electrochemical corrosion protection methods are extremely difficult to handle if the substrate to be protected is made of aluminum or an aluminum-based alloy.
- aluminum is a relatively base metal, and corrosion protection with “sacrificial anodes” is more difficult.
- the described "cathodic corrosion protection" using an external voltage source cannot be used without further ado.
- aluminum in an oxygen-containing environment is soon covered with a relatively dense oxide layer, which is physically very stable, but due to the amphoteric nature of the aluminum oxide it is attacked not only by acids but also by alkalis.
- the aluminum oxide layer is only stable in an electrolyte whose pH is between about 4.5 and about 8.5; too strongly acidic or too strongly basic electrolytes attack metal.
- both electrodes change their electro-chemical potential against the electrolyte;
- the voltage between the electrodes is therefore not a measure of the conditions at the electrode, but rather is a measure of the total change at both electrodes and is therefore not to be used to reliably assess the conditions at a single electrode, be it cathode or anode.
- the invention is based on the object of the method of cathodic corrosion protection for a surface facing an electrolyte of a metallic, especially an aluminum-containing Specify substrates, the electro-chemical conditions on the surface to be protected can be precisely monitored and controlled to avoid excessively alkaline boundary layers.
- An essential element of the invention is to provide, in addition to the protective electrode given by the substrate to be protected and the counter electrode, a further electrode, namely a reference electrode with constant electrochemical potential with respect to the electrolyte. Electrolysis is operated between the protective electrode and the counter electrode via the potentiostat, the voltage source. Between the protective electrode and the A control voltage is measured for the reference electrode; this control voltage corresponds to the difference between the electrochemical potentials of the reference electrode and the protective electrode, and it faithfully reproduces the electrochemical conditions at the protective electrode, since the electrochemical potential of the reference electrode is not changed by the electrolysis and the electrochemical potential of the Counter electrode contributes nothing to the control voltage. Therefore, the provision of the reference electrode first enables the measurement of the electrochemical potential of the substrate to be protected.
- control voltage characterizing the electrochemical conditions on the substrate to be protected is used to control the electrolysis; both the electrolysis can be switched on and off, and the electrolysis itself can also be influenced, for example by regulating the electrolysis voltage.
- those counter electrodes are particularly suitable which have a surface layer which can be rinsed by the electrolyte, which cannot be attacked by the electrolyte and which is not dissolved by the electrolysis;
- Precious metals especially platinum, platinum-coated or titanium, gold, silver, nickel, or other metals or electron conductors which are difficult or impossible to corrode, and also carbon, are particularly suitable.
- Commercial reference electrodes can be used as reference electrodes. As a rule, these are not coated. However, reference electrodes made of titanium, which are coated with oxides of the platinum metals, can also be used.
- One possible way of regulating the electrolysis in the context of the invention is to regulate the electrolysis voltage in such a way that the control voltage measured during the electrolysis is equal to a first limit voltage that can be predetermined by the control device.
- the electrochemical potential of the substrate to be protected is established according to the electrolysis voltage; Accordingly, it is advisable to choose the electrolysis voltage so that the electrochemical Potential of the substrate to be protected does not become too negative, so that the formation of excessively alkaline boundary layers is reliably excluded.
- potentiostat with an operational amplifier with an inverting input, a non-inverting input, an output and a ground connection, the substrate with the ground connection, the reference electrode with the inverting input and the counter electrode is connected to the output, and further the first limit voltage is connected between the ground connection and the non-inverting input.
- the operational amplifier generally regulates the electrolysis voltage so that the control voltage becomes practically equal to the first limit voltage.
- the operational amplifier does not have to be the only active element of the potentiostat, it can of course still be used with the gem. expert knowledge required additional elements, such as voltage followers or power amplifiers.
- a further control method which can advantageously be used within the scope of the invention is characterized, without prejudice to other developments of the invention, by a control device which can be given a limit voltage, the electrolysis voltage which is initially switched off being switched on when the control voltage becomes equal to the second limit voltage.
- the selection of this value is - like the rest of the selection of the value of the first limit voltage - to be chosen according to the material of the substrate.
- Such a type of arrangement then works with a pulsating electrolysis; If the electrochemical potential of the substrate to be protected is shifted too strongly towards positive values, the electrolysis is switched on, whereupon the electrochemical potential becomes more negative again. After a The electrolysis is then switched off for a certain period of time, and the control device again monitors the control voltage and switches the electrolysis on again, if necessary.
- the control device is designed in such a way that an electrolysis time can be predetermined for it and the electrolysis is carried out for a time interval equal to the electrolysis time.
- the changes in the surface to be protected which are caused by the electrolysis can thus be precisely characterized, and the alkalinity of the boundary layer on the surface remains limited.
- the regulation of the electrolysis voltage makes sense during the electrolysis in such a way that the control voltage is equal to a predetermined first limit voltage, or that the electro-chemical potential present at the cathode during electrolysis remains limited to a corresponding limit value in the negative direction.
- This limit value, and thus the first limit voltage must be selected according to the substrate and the electrolyte.
- the limitation makes it possible to reliably prevent the formation of excessively alkaline boundary layers and thus the risk of alkaline corrosion.
- a control period and a critical voltage which lies between the first limit voltage and the second limit voltage, are additionally specified for monitoring the control voltage when the electrolysis is switched off, and the electrolysis is switched on again immediately after the control period has elapsed since it was switched off if the control voltage becomes equal to the critical voltage during the control period.
- the modification implements a PD controller for switching the potentiostat.
- a galvanic element (2) is indicated in the middle.
- the aluminum substrate (3) to be protected against corrosion which consists of an AlMgSi 1 alloy and the surface of which is bathed by the electrolyte of the galvanic element, is arranged in this element.
- the aluminum substrate can be a solid semi-finished or finished part, such as. B. profiles, plates, sheets, foils, containers, tanks, etc., or an aluminum coating, z. B. by roll or drawing plating, fire or spray aluminum and alitation, on other materials such as. B. be steel.
- an electrolysis is carried out between this aluminum substrate and a counter electrode (4) arranged at a distance from it.
- the aluminum substrate is switched as a cathode, the counter electrode (4) being the anode.
- the surface to be protected of the aluminum substrate with the aluminum having a strongly negative character is still exposed to the corrosive electrolyte, but because electrons are added to the aluminum substrate as the cathode during electrolysis, the potential of its metal surface is shifted in the cathodic direction and the corrosion rate that occurs is reduced so much that there is practically no aluminum removal.
- FIG. 2 shows the polarization potential that occurs on the surface of the aluminum substrate in the “protective potential range” (passive range), that is to say neither pitting corrosion, nor — due to the formation of alkaline liquid boundary layers — surface corrosion.
- the necessary electrolysis voltage is switched on between these probes, which voltage can also be regulated and also switched off via an operational amplifier (6).
- the aluminum substrate is kept at a constant cathodic potential within the protective potential range by the electrolysis.
- a "control voltage" is measured between a reference electrode (7) which is surrounded by the electrolyte and has a constant electrochemical potential, and the aluminum substrate (3), which is a direct measure of the redox potential on the surface of the Aluminum substrates in the electrolyte.
- the control device is constructed from the operational amplifier (6) and a window discriminator (8) and a timer (9) for switching the potentiostat (5) on and off.
- the potentiostat is switched on and off by the voltage states available at the outputs of the window discriminator.
- the timer (9) is connected.
- the timer (multivibrator) supplies an output signal which, as such, puts an "astable multivibrator" into operation. This can be used to set the desired polarization period (t p ) and the switch-off period (t a ) for the electrolysis.
- the control device switches the electrolysis on again after a certain switch-off period if the control voltage is equal to a predetermined limit voltage U ' s at the anodic limit of the protective potential range.
- a constant cathodic potential is applied to the Aluminum substrate applied so that the redox potential is in turn at the lower cathodic limit of the protective potential range.
- the lowered "cathodic potential” is generated by potential-controlled cathodic voltage pulses which polarize the surface of the aluminum substrate in areas in which the "passive behavior" of aluminum is given as long as possible according to the protective potential area.
- This lower negative limit voltage U ' s (first limit voltage) can be predetermined for the operational amplifier (6), the electrolysis voltage being adjustable during the electrolysis in such a way that the control voltage between the comparison electrode (7) and aluminum substrate (3) is equal to this first limit voltage U' s will.
- the potential-controlled cathodic voltage pulses are always only specified for a relatively small time interval, the same applies to the electrolysis time and polarization time t p on the surface of the aluminum substrate.
- the potential drop is interrupted by negative cathodic voltage pulses and also the electrolysis itself.
- the required protective current requirement is also considerably lower. Since the lower and upper potential limits (U ' S , U S ) of the protective potential range are only exceeded after a surface-specific induction time, it makes more sense compared to continuous cathodic corrosion protection to protect the aluminum substrate "only when required", ie when the upper potential limits ( 2. Limit voltage U S ) can be achieved by polarizing a cathodic voltage drop.
- This protection method based on the potential-controlled pulse method is cheaper in terms of energy consumption than permanent polarization. It is suitable e.g. For use with aluminum materials in the maritime sector or also for drinking water tanks and tanks.
- the regulation of the electrolysis voltage and the cathodic voltage drop also takes place as a function of the steepness of the course of the redox potential of the aluminum substrate after the electrolysis has been switched off.
- the critical voltage is not exceeded by the increasing control voltage during the switch-off time t a , the voltage is not reduced until the control voltage has risen to the second limit value U S.
- a potential indicator is used to determine the slope. In this respect, this is used to model a PD controller and is not shown in the drawings.
- the counterelectrode (4) consists of platinum or another metal that cannot be corroded, or is not corrodible, or another electron conductor. This material is inert to the electrolyte.
- the reference electrode which is arranged in the vicinity of the surface of the aluminum substrate in the electrolyte and has a constant electro-chemical potential with respect to the electrolyte, consists of a cylindrical hollow body made of glass, organic plastic or another insulating material and is made with a special shaped tip potential sensor.
- the reference electrode contains a diaphragm and, thanks to its special construction, enables potential tapping near the wall of the aluminum substrate to be protected.
- Hg / Hg2Cl2, Ag / AgCL or suitable noble metals can be used as the reference system of the 1st half cell in their aqueous solution or in a fixed bed.
- the reference electrode in the protection system has the function of detecting the redox potential (corrosion potential) that occurs on the wall of the aluminum substrate and this "control voltage" as an electrical voltage signal both for the potentiostat (5) for controlling the electrical currents and for determining the steepness of the To supply the potential indicator.
- the reference electrode is almost without current during the electrolysis.
- a current flows in the electrolyte only between the aluminum substrate (3) and the counter electrode (4), this being regulated by the operational amplifier (6) in such a way that the potential applied to the current-carrying circuit, which is connected as the cathode, is reduced by the potential drop in the potentiostat Aluminum substrates (3) (control voltage U ist ) follows the specified 1st limit voltage (U ' s ) and is kept constant at its instantaneous value regardless of electrochemical processes.
- An operational amplifier (6) is preferably used as the potential-regulating unit of the potentiostat (5) shown in FIG. 1 with respect to its basic circuit, and because of its high input resistance (FET input stage) and its low quiescent input current, neither the comparison electrode (7) nor the target voltage source (U should ) of the amplifier. Since the operational amplifier only supplies a maximum output current of +/- 20 mA, a power amplifier is connected downstream of it, which, depending on the electrical requirements, can, for example, generate a maximum output current based on the aluminum substrate of +/- 200 mA and more.
- the critical voltages U ' S and U S are chosen depending on the limit potentials for pitting corrosion (U L ) and surface corrosion (U A ).
- U A and U L are not constants, but must be determined electrochemically for the respective substrate material and corrosion medium. This is usually done by recording and evaluating current density-potential diagrams in accordance with FIG. 2.
- U A and U L result as limit potentials of the passive region, pitting corrosion occurring above U L and surface corrosion occurring below U A.
- the critical voltages U S and U ' S are preferably set approximately 30 to 50 mV away from the limit potentials U A and U L , ie U' S is approximately 30 to 50 mV above U A and U S is approximately 30 to 50 mV below U L.
- U L - 750 mV (SCE)
- U S - 780 mV (SCE)
- U A - 1330 mV (SCE)
- U ' S - 1300 mV (SCE)
- the freely selectable voltage U I is set between the values of U S and U ' S. It serves as an indicator to determine whether the previous polarization period at the voltage U ' S was sufficient. If the voltage U I is not exceeded within a predetermined switch-off time t a after the electrolysis has been switched off, sufficient polarization has been achieved. Otherwise the polarization is repeated immediately.
- a value of U I - 900 mV (SCE) is preferably selected for the AlMgSi 1 alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
Die Erfindung betrifft eine Anordnung und ein Verfahren zur Erzielung eines kathodischen Korrosionsschutzes für eine von einem Elektrolyten (Wärmeträger-, Kühlmedium) umspülbare Oberfläche eines metallischen Aluminium enthaltenden Substrates.The invention relates to an arrangement and a method for achieving cathodic corrosion protection for a surface of a substrate containing metallic aluminum that can be washed around by an electrolyte (heat transfer medium, cooling medium).
Aus GB-A-2 132 226 ist bekannt, den kathodischen Schutz von Aluminium durch periodische Unterbrechung des Kathodenstroms zu erreichen. Dabei wird das kathodische Potential des Substrates gegenüber einer Referenzelektrode beobachtet und - sobald das kathodische Potential in einen Bereich kommt, indem die Korrosion des Substrates beginnt - wird es direkt mit einer elektrischen Quelle verbunden und von der Quelle wieder abgeschaltet, sobald sich das kathodische Potential signifikant erniedrigt hat. Bei dieser Schaltungsweise wird die Möglichkeit eines plötzlichen Anstiegs der Steuerspannung nicht in Betracht gezogen, so daß es unter Umständen zu Korrosionserscheinungen kommen kann, beispielsweise dann, wenn das Steuerspannungspotential während bestimmter zeitlicher Veränderungen plötzlich geändert wird.From GB-A-2 132 226 it is known to achieve the cathodic protection of aluminum by periodically interrupting the cathode current. The cathodic potential of the substrate is observed with respect to a reference electrode and - as soon as the cathodic potential comes into an area where the substrate begins to corrode - it is connected directly to an electrical source and switched off again from the source as soon as the cathodic potential becomes significant has lowered. With this switching mode, the possibility of a sudden increase in the control voltage is not taken into account, so that under certain circumstances corrosion phenomena can occur, for example if the control voltage potential is suddenly changed during certain changes over time.
Elektrochemische Korrosionsschutzmethoden sind ausgesprochen schwierig zu handhaben, wenn das zu schützende Substrat aus Aluminium oder einer Aluminiumbasislegierung besteht. Aluminium ist prinzipiell ein relativ unedles Metall, und der Korrosionsschutz mit "Opferanoden" ist schwieriger. Auch der beschriebene "kathodische Korrosionsschutz" unter Einsatz einer externen Spannungsquelle ist nicht ohne weiteres verwendbar. Bekanntermaßen überzieht sich Aluminium in sauerstoffhaltiger Umgebung alsbald mit einer relativ dichten Oxidschicht, die zwar physikalisch sehr beständig ist, aufgrund des amphoteren Charakters des Aluminiumoxids allerdings nicht nur von Säuren, sondern auch von Laugen angegriffen wird. Die Aluminiumoxidschicht ist nur in einem Elektrolyten beständig, dessen pH-Wert zwischen etwa 4,5 und etwa 8,5 liegt; zu stark saure oder zu stark basische Elektrolyten greifen Metall an. Die Gefahr der Korrosion durch alkalische Medien ist bei Anwendung des üblichen kathodischen Korrosionsschutzes bei Aluminium oder Aluminiumbasislegierungen in der Tat vorhanden; durch die zum kathodischen Korrosionsschutz erforderliche Elektrolyse wird die Kathode beladen mit den durch die Elektrolyse reduzierten Kationen aus dem Elektrolyten;
dadurch entsteht in der Nähe der Oberfläche des zu schützenden Gegenstandes eine alkalische Flussigkeitsgrenzschicht, die unter Umständen zur alkalischen Korrosion des Aluminiums führen kann.Electrochemical corrosion protection methods are extremely difficult to handle if the substrate to be protected is made of aluminum or an aluminum-based alloy. In principle, aluminum is a relatively base metal, and corrosion protection with "sacrificial anodes" is more difficult. The described "cathodic corrosion protection" using an external voltage source cannot be used without further ado. As is known, aluminum in an oxygen-containing environment is soon covered with a relatively dense oxide layer, which is physically very stable, but due to the amphoteric nature of the aluminum oxide it is attacked not only by acids but also by alkalis. The aluminum oxide layer is only stable in an electrolyte whose pH is between about 4.5 and about 8.5; too strongly acidic or too strongly basic electrolytes attack metal. There is indeed a risk of corrosion from alkaline media when using the usual cathodic corrosion protection for aluminum or aluminum-based alloys; due to the electrolysis required for cathodic corrosion protection, the cathode is loaded with the the electrolysis reduced cations from the electrolyte;
This creates an alkaline liquid boundary layer in the vicinity of the surface of the object to be protected, which under certain circumstances can lead to alkaline corrosion of the aluminum.
Sofern also ein Gegenstand aus einem aluminiumhaltigen Werkstoff kathodisch gegen Korrosion geschützt werden soll, müssen die an dem Gegenstand herrschenden chemischen Bedingungen sehr sorgfältig überwacht werden, um das Auftreten alkalischer Korrosion mit Sicherheit auszuschließen. Eine Modifikation der Methode des kathodischen Korrosionschutzes, wobei ein gewisser Grad an Steuerung zumindest der elektrischen Verhältnisse gegeben ist, wird in der DE-U 8900911 vorgeschlagen. Diese Schrift betrifft den kathodischen Korrosionsschutz eines Stahlrohres,
das eine elektrische Hochspannungsleitung umhüllt zur unterirdischen Verlegung, und dessen Gegenelektrode die Erde einer Anschlußstation des Rohres ist. Das Rohr wird gegen die Masse mit einer negativen Spannung beaufschlagt; zur Wahrung der einschlägigen Schutzvorschriften muß jedoch die Spannung des Rohres gegen die Masse in ihrer Höhe zuverlässig begrenzt werden. Es wird vorgeschlagen, dies mittels einer Anzahl antiparallel geschalteter Dioden zu bewerkstelligen. Zur Überwachung der elektro-chemischen Verhältnisse an der Kathode ist dies jedoch nicht geeignet; bei der zwischen Anode und Kathode stattfindenden Elektrolyse wird nicht nur die Kathode verändert; die Kathode wird beladen mit reduzierten Kationen aus dem Elektrolyten, und die Anode wird beladen mit oxidierten Anionen.If an object made of an aluminum-containing material is to be cathodically protected against corrosion, the chemical conditions prevailing on the object must be monitored very carefully in order to exclude the occurrence of alkaline corrosion with certainty. A modification of the method of cathodic corrosion protection, with a certain degree of control at least of the electrical conditions, is proposed in DE-U 8900911. This document relates to the cathodic corrosion protection of a steel pipe,
which envelops an electrical high-voltage line for underground laying, and whose counter electrode is the earth of a connection station of the pipe. A negative voltage is applied to the tube against the mass; However, in order to maintain the relevant protective regulations, the height of the pipe against the mass must be reliably limited. It is proposed to do this using a number of anti-parallel diodes. However, this is not suitable for monitoring the electrochemical conditions at the cathode; in the electrolysis taking place between the anode and cathode, not only is the cathode changed; the cathode is loaded with reduced cations from the electrolyte and the anode is loaded with oxidized anions.
Durch die Elektrolyse ändern mithin beide Elektroden ihr elektro-chemisches Potential gegen den Elektrolyten; die zwischen den Elektroden herrschende Spannung ist somit nicht ein Maß für die Verhältnisse an der Elektrode, sondern sie ist ein Maß für die summierte Änderung an beiden Elektroden und somit nicht heranzuziehen zur zuverlässigen Beurteilung der Verhältnisse an einer einzelnen Elektrode, sei es Kathode oder Anode.As a result of the electrolysis both electrodes change their electro-chemical potential against the electrolyte; The voltage between the electrodes is therefore not a measure of the conditions at the electrode, but rather is a measure of the total change at both electrodes and is therefore not to be used to reliably assess the conditions at a single electrode, be it cathode or anode.
Entsprechend liegt der Erfindung die Aufgabe zugrunde, die Methode des kathodischen Korrosionsschutzes für eine einem Elektrolyten zugewandte Oberfläche eines metallischen, speziell eines aluminiumhaltigen Substrates anzugeben, wobei die elektro-chemischen Verhältnisse an der zu schützenden Oberfläche präzise überwacht und gezielt zur Vermeidung übermäßig alkalischer Grenzschichten gesteuert werden können.Accordingly, the invention is based on the object of the method of cathodic corrosion protection for a surface facing an electrolyte of a metallic, especially an aluminum-containing Specify substrates, the electro-chemical conditions on the surface to be protected can be precisely monitored and controlled to avoid excessively alkaline boundary layers.
Erfindungsgemäß wird eine Anordnung zur Erzielung eines kathodischen Korrosionsschutzes für eine von einem Elektrolyten umspülbare Oberfläche eine metallischen, Aluminium enthaltenden Substrates angegeben, die folgende Bestandteile aufweist:
- a) mindestens eine von dem Elektrolyten umspülbare Gegenelektrode, die durch den Elektrolyten nicht oder nur in unwesentlichem Maße korrodierbar ist;
- b) eine zugehörige, von dem Elektrolyten umspülbare Bezugselektrode, die gegenüber dem Elektrolyten ein konstantes elektro-chemisches Potential aufweist;
- c) einen zugehörigen Potentiostaten, der mit dem Substrat und der Gegenelektrode elektrisch verbunden und durch den in dem Elektrolyten eine Elektrolyse bewirkbar ist, wobei zwischen dem Substrat als Kathode und der Gegenelektrode als Anode eine elektrische Elektrolysierspannung eingeschaltet wird;
- d) eine zugehörige Regeleinrichtung, die mit dem Substrat, der Bezugselektrode und dem Potentiostaten elektrisch verbunden ist, durch die eine elektrische Kontrollspannung zwischen der Bezugselektrode und dem Substrat meßbar sowie die Elektrolysierspannung ein- und ausschaltbar sowie regelbar ist.
- a) at least one counterelectrode which can be rinsed by the electrolyte and which is not or only insignificantly corrodible by the electrolyte;
- b) an associated reference electrode which can be flushed by the electrolyte and which has a constant electrochemical potential compared to the electrolyte;
- c) an associated potentiostat, which is electrically connected to the substrate and the counterelectrode and through which electrolysis can be effected in the electrolyte, an electrical electrolysis voltage being switched on between the substrate as the cathode and the counterelectrode as the anode;
- d) an associated control device which is electrically connected to the substrate, the reference electrode and the potentiostat, by means of which an electrical control voltage between the reference electrode and the substrate can be measured and the electrolysis voltage can be switched on and off and regulated.
Ein wesentliches Element der Erfindung ist es, neben der durch das zu schützende Substrat gegebenen Schutzelektrode und der Gegenelektrode eine weitere Elektrode, nämlich eine Bezugselektrode mit konstantem elektrochemischen Potential gegenüber dem Elektrolyten, vorzusehen. Zwischen Schutzelektrode und Gegenelektrode wird über den Potentiostaten, die Spannungsquelle, eine Elektrolyse betrieben. Zwischen der Schutzelektrode und der Bezugselektrode wird eine Kontrollspannung gemessen; diese Kontrollspannung entspricht der Differenz der elektro-chemischen Potentiale von Bezugselektrode und Schutzelektrode, und sie gibt die elektro-chemischen Verhältnisse an der Schutzelektrode getreulich wieder, da das elektro-chemische Potential der Bezugselektrode durch die Elektrolyse nicht verändert wird und das elektro-chemische Potential der Gegenelektrode zur Kontrollspannung nichts beiträgt. Mithin wird durch das Vorsehen der Bezugselektrode zunächst die Messung des elektro-chemischen Potentials des zu schützenden Substrates möglich.An essential element of the invention is to provide, in addition to the protective electrode given by the substrate to be protected and the counter electrode, a further electrode, namely a reference electrode with constant electrochemical potential with respect to the electrolyte. Electrolysis is operated between the protective electrode and the counter electrode via the potentiostat, the voltage source. Between the protective electrode and the A control voltage is measured for the reference electrode; this control voltage corresponds to the difference between the electrochemical potentials of the reference electrode and the protective electrode, and it faithfully reproduces the electrochemical conditions at the protective electrode, since the electrochemical potential of the reference electrode is not changed by the electrolysis and the electrochemical potential of the Counter electrode contributes nothing to the control voltage. Therefore, the provision of the reference electrode first enables the measurement of the electrochemical potential of the substrate to be protected.
Gem. einem weiteren Element der Erfindung wird die die elektrochemischen Verhältnisse an dem zu schützenden Substrat charakterisierende Kontrollspannung herangezogen, die Elektrolyse zu steuern; dabei kann sowohl die Elektrolyse ein- und ausgeschaltet werden, und es kann auch die Elektrolyse selbst, beispielsweise durch Regelung der Elektrolysierspannung, beeinflußt werden.According to a further element of the invention, the control voltage characterizing the electrochemical conditions on the substrate to be protected is used to control the electrolysis; both the electrolysis can be switched on and off, and the electrolysis itself can also be influenced, for example by regulating the electrolysis voltage.
Im Rahmen der Erfindung sind besonders solche Gegenelektroden geeignet, die eine von dem Elektrolyten umspülbare Oberflächenschicht aufweisen, die von dem Elektrolyten unangreifbar ist und auch durch die Elektrolyse nicht aufgelöst wird; besonders geeignet sind Edelmetalle, vor allen Dingen Platin, platiniertes bzw. mit Oxiden der Platinmetalle beschichtetes Titan, Gold, Silber, Nickel, oder andere wenig oder nicht korrodierbare Metalle oder Elektronenleiter sowie auch Kohlenstoff. Als Bezugselektroden können handelsübliche Bezugselektroden verwendet werden. Diese sind im Regelfall nicht beschichtete. Es können aber auch Bezugselektroden aus Titan, die mit Oxiden der Platinmetalle überzogen sind, verwendet werden.In the context of the invention, those counter electrodes are particularly suitable which have a surface layer which can be rinsed by the electrolyte, which cannot be attacked by the electrolyte and which is not dissolved by the electrolysis; Precious metals, especially platinum, platinum-coated or titanium, gold, silver, nickel, or other metals or electron conductors which are difficult or impossible to corrode, and also carbon, are particularly suitable. Commercial reference electrodes can be used as reference electrodes. As a rule, these are not coated. However, reference electrodes made of titanium, which are coated with oxides of the platinum metals, can also be used.
Eine Möglichkeit der Regelung der Elektrolyse im Rahmen der Erfindung ist die Regelung der Elektrolysierspannung in der Weise, daß die während der Elektrolyse gemessene Kontrollspannung gleich einer der Regeleinrichtung vorgebbaren ersten Grenzspannung ist. Im Laufe der Elektrolyse stellt sich das elektrochemische Potential des zu schützenden Substrates nach Vorgabe der Elektrolysierspannung ein; entsprechend ist es ratsam, die Elektrolysierspannung so zu wählen, daß das elektrochemische Potential des zu schützenden Substrates nicht zu stark negativ wird, damit die Bildung zu stark alkalischer Grenzschichten sicher ausgeschlossen bleibt. Eine kostengünstige und einfach realisierbare Möglichkeit zur Realisierung dessen ist der Aufbau des Potentiostaten mit einem Operationsverstärker mit einem invertierenden Eingang, einem nicht-invertierenden Eingang, einem Ausgang und einem Masseanschluß, wobei das Substrat mit dem Masseanschluß, die Bezugselektrode mit dem invertierenden Eingang und die Gegenelektrode mit dem Ausgang verbunden ist, und weiterhin die erste Grenzspannung zwischen den Masseanschluß und den nicht-invertierenden Eingang gelegt wird.One possible way of regulating the electrolysis in the context of the invention is to regulate the electrolysis voltage in such a way that the control voltage measured during the electrolysis is equal to a first limit voltage that can be predetermined by the control device. In the course of the electrolysis, the electrochemical potential of the substrate to be protected is established according to the electrolysis voltage; Accordingly, it is advisable to choose the electrolysis voltage so that the electrochemical Potential of the substrate to be protected does not become too negative, so that the formation of excessively alkaline boundary layers is reliably excluded. An inexpensive and easily realizable way of realizing this is to build the potentiostat with an operational amplifier with an inverting input, a non-inverting input, an output and a ground connection, the substrate with the ground connection, the reference electrode with the inverting input and the counter electrode is connected to the output, and further the first limit voltage is connected between the ground connection and the non-inverting input.
So geschaltet, regelt der Operationsverstärker generell die Elektrolysierspannung so ein, daß die Kontrollspannung praktisch gleich der ersten Grenzspannung wird. Natürlich muß der Operationsverstärker nicht das einzige aktive Element des Potentiostaten sein, er kann selbstverständlich noch mit den gem. fachmännischem Verständnis erforderlichen Zusatzelementen, beispielsweise Spannungsfolgern oder Leistungsverstärkern, versehen werden.Switched in this way, the operational amplifier generally regulates the electrolysis voltage so that the control voltage becomes practically equal to the first limit voltage. Of course, the operational amplifier does not have to be the only active element of the potentiostat, it can of course still be used with the gem. expert knowledge required additional elements, such as voltage followers or power amplifiers.
Eine weitere, mit Vorteil im Rahmen der Erfindung einsetzbaren Regelmethode ist unbeschadet anderweitiger Ausbildungen der Erfindung gekennzeichnet durch eine Regeleinrichtung, der eine Grenzspannung vorgebbar ist, wobei die zunächst abgeschaltete Elektrolysierspannung eingeschaltet wird, wenn die Kontrollspannung gleich der zweiten Grenzspannung wird. Dies entspricht dem Einschalten der Elektrolyse dann, wenn das elektrochemische Potential des zu schützenden Substrates gleich einem Grenzpotential wird; dieses Grenzpotential ist dabei günstigerweise das höchste Potential, daß das zu schützende Substrat annehmen darf, ohne daß anodische Korrosion eintritt. Die Auswahl dieses Wertes ist - wie im übrigen die Auswahl des Wertes der ersten Grenzspannung - dem Material des Substrates entsprechend zu wählen. Eine solcher Art ausgebildete Anordnung arbeitet dann mit einer zeitlich pulsierenden Elektrolyse; ist das elektro-chemische Potential des zu schützenden Substrates zu stark nach positiven Werten hin verschoben, wird die Elektrolyse eingeschaltet, worauf das elektro-chemische Potential wieder negativer wird. Nach einer gewissen Zeitspanne wird die Elektrolyse dann abgeschaltet, und erneut überwacht die Regeleinrichtung die Kontrollspannung und schaltet ggf. die Elektrolyse wieder ein.A further control method which can advantageously be used within the scope of the invention is characterized, without prejudice to other developments of the invention, by a control device which can be given a limit voltage, the electrolysis voltage which is initially switched off being switched on when the control voltage becomes equal to the second limit voltage. This corresponds to switching on the electrolysis when the electrochemical potential of the substrate to be protected becomes equal to a limit potential; this limit potential is favorably the highest potential that the substrate to be protected may assume without anodic corrosion occurring. The selection of this value is - like the rest of the selection of the value of the first limit voltage - to be chosen according to the material of the substrate. Such a type of arrangement then works with a pulsating electrolysis; If the electrochemical potential of the substrate to be protected is shifted too strongly towards positive values, the electrolysis is switched on, whereupon the electrochemical potential becomes more negative again. After a The electrolysis is then switched off for a certain period of time, and the control device again monitors the control voltage and switches the electrolysis on again, if necessary.
Zur Vervollständigung der Steuerung der Elektrolyse ist die Regeleinrichtung derart ausgebildet, daß ihr eine Elektrolysierdauer vorgebbar ist und die Elektrolyse jeweils für ein Zeitintervall der Dauer gleich der Elektrolysierdauer durchgeführt wird. Die durch die Elektrolyse bedingten Veränderungen an der zu schützenden Oberfläche können damit genau charakterisiert werden, und die Alkalität der Grenzschicht an der Oberfläche bleibt beschränkt.To complete the control of the electrolysis, the control device is designed in such a way that an electrolysis time can be predetermined for it and the electrolysis is carried out for a time interval equal to the electrolysis time. The changes in the surface to be protected which are caused by the electrolysis can thus be precisely characterized, and the alkalinity of the boundary layer on the surface remains limited.
Gegenstand der Erfindung ist auch ein Verfahren zum Betrieb einer erfindungsgemäßen Anordnung, wobei folgende Schritte rekursiv durchgeführt werden:
- a) Durchführung der Elektrolyse für eine vorgegebene Zeitdauer, dann Abschaltung der Elektrolyse;
- b) Beobachtung der Kontrollspannung, und Einschaltung der Elektrolyse, wenn die Kontrollspannung gleich einer vorgegebenen zweiten Grenzspannung ist.
- a) performing the electrolysis for a predetermined period of time, then switching off the electrolysis;
- b) observation of the control voltage, and activation of the electrolysis when the control voltage is equal to a predetermined second limit voltage.
Dieses Verfahren, das schließlich zu einer pulsierenden Elektrolyse zur Bewirkung des kathodischen Korrosionsschutzes führt, weist neben den bereits erwähnten Vorteilen auch den Vorteil eines gegenüber einer kontinuierlichen Elektrolyse signifikant reduzierten Energiebedarfs auf; die Elektrolyse wird nur dann durchgeführt, wenn sie tatsächlich nötig ist, und entsprechend wird der Aufwand an Energie auf diejenigen Fälle beschränkt, in denen er wirklich notwendig ist. Selbstverständlich benötigen auch Regeleinrichtung und Potentiostat eine gewisse Energie; durch handelsübliche, extrem energiesparende elektronische Bauteile (CMOS-Logik) kann dieser Energieaufwand jedoch auf einem praktisch vernachlässigbaren Maß gehalten werden.This method, which ultimately leads to pulsating electrolysis to effect cathodic corrosion protection, has, in addition to the advantages already mentioned, the advantage of a significantly reduced energy requirement compared to continuous electrolysis; electrolysis is only carried out when it is actually necessary, and accordingly the energy expenditure is limited to those cases in which it is really necessary. Of course, the control device and potentiostat also require a certain amount of energy; With commercially available, extremely energy-saving electronic components (CMOS logic), however, this energy expenditure can be kept to a practically negligible level.
Wie bereits erwähnt, ist während der Elektrolyse die Regelung der Elektrolysierspannung in der Weise sinnvoll, daß die Kontrollspannung gleich einer vorgegebenen ersten Grenzspannung ist, bzw. daß das während der Elektrolyse an der Kathode vorliegende elektro-chemische Potential in negativer Richtung auf einen entsprechenden Grenzwert beschränkt bleibt. Dieser Grenzwert, und damit die erste Grenzspannung, ist entsprechend dem Substrat und dem Elektrolyten auszuwählen. Die Beschränkung erlaubt es, in zuverlässiger Weise das Entstehen zu stark alkalischer Grenzschichten, und damit die Gefahr alkalischer Korrosion, zu verhindern.As already mentioned, the regulation of the electrolysis voltage makes sense during the electrolysis in such a way that the control voltage is equal to a predetermined first limit voltage, or that the electro-chemical potential present at the cathode during electrolysis remains limited to a corresponding limit value in the negative direction. This limit value, and thus the first limit voltage, must be selected according to the substrate and the electrolyte. The limitation makes it possible to reliably prevent the formation of excessively alkaline boundary layers and thus the risk of alkaline corrosion.
In besonders günstiger Weiterbildung des erfindungsgemäßen Verfahrens werden zur Überwachung der Kontrollspannung bei abgeschalteter Elektrolyse zusätzlich eine Kontrollzeitdauer und eine kritische Spannung, die zwischen der ersten Grenzspannung und der zweiten Grenzspannung liegt, vorgegeben, und die Elektrolyse wird unmittelbar nach Ablauf der Kontrollzeitdauer seit ihrer Abschaltung wieder eingeschaltet, falls während der Kontrollzeitdauer die Kontrollspannung gleich der kritischen Spannung wird. Im Rahmen dieser Weiterbildung erfolgt zusätzlich zur Beobachtung der Höhe der Kontrollspannung eine Beobachtung ihrer zeitlichen Entwicklung; die Erfüllung der genannten Bedingung bedeutet, daß die Elektrolyse auch dann bereits wieder eingeschaltet wird, falls die Kontrollspannung zwar die zweite Grenzspannung noch nicht erreicht hat, jedoch eine zeitliche Änderung aufweist, die eine gewisse vorgegebene Grenze überschreitet. Dies ist dann der Fall, wenn durch einen Elektrolysierzyklus nur eine relativ geringe Beeinflussung der zu schützenden Oberfläche erreicht werden konnte; durch dieses zusätzliche Einschaltkriterium wird die Zuverlässigkeit des Verfahrens weiter verbessert. Die Modifikation implimentiert in gewissem Umfang einen PD-Regler zur Schaltung des Potentiostaten.In a particularly advantageous further development of the method according to the invention, a control period and a critical voltage, which lies between the first limit voltage and the second limit voltage, are additionally specified for monitoring the control voltage when the electrolysis is switched off, and the electrolysis is switched on again immediately after the control period has elapsed since it was switched off if the control voltage becomes equal to the critical voltage during the control period. As part of this training, in addition to observing the level of the control voltage, there is an observation of its development over time; the fulfillment of the condition mentioned means that the electrolysis is already switched on again even if the control voltage has not yet reached the second limit voltage, but has a change over time that exceeds a certain predetermined limit. This is the case if an electrolysis cycle could only have a relatively small influence on the surface to be protected; This additional switch-on criterion further improves the reliability of the method. To a certain extent, the modification implements a PD controller for switching the potentiostat.
Die Erfindung wird im folgenden anhand einer bevorzugten Ausführungsform einer Anordnung und eines Verfahrens zur Erzielung eines kathodischen Korrosionsschutzes für eine metallische Aluminiumlegierung unter Bezug auf die Zeichnungen näher erläutert.The invention is explained in more detail below with reference to a preferred embodiment of an arrangement and a method for achieving cathodic corrosion protection for a metallic aluminum alloy with reference to the drawings.
In den Zeichnungen zeigen:
Figur 1- Ein Blockschaltbild der Anordnung zur Erzielung eines kathodischen Korrosionsschutzes für das aus einer metallischen Aluminiumlegierung bestehende Substrat, dessen Oberfläche durch einen Eleketrolyten umspült ist und in einer Elektrolyse die Kathode gegenüber einer als Anode fungierenden Gegenelektrode bildet. Letztere ist dabei aufgrund des kathodischen Korrosionsschutzes aus einem Material gebildet, welches durch den Elektrolyten nicht korrodiert. Durch eine Regelvorrichtung in Form eines Triggers ist der Potentiostat ein- und ausschaltbar, so daß eine Regelung der potentiostatischen Impulse ihrer Höhe nach erfolgen kann und insofern durch kurzzeitige Potentialabsenkung eine geeignete kurzzeitige kathodische Polarisation des Substrates erreichbar ist;
Figur 2- Ein Stromdichte-Potential-Diagramm des Substrates während der Durchführung einer Elektrolye unter Darstellung des "Passivbereiches", in dem eine Korrosion nicht auftritt sowie der Bereich in anodische Richtung und in kathodische Richtung, wobei dort eine Lochkorrosion oder eine flächenmäßige Abtragung des Aluminiums unter Aluminatbildung auftritt.
- Figur 3
- Ein Potential-Zeit-Verlauf des Redoxpotentials des Substrates im Elektrolyten bei Durchführung eines aktiven Korrosionsschutzes für das Aluminiumsubstrat unter Anwendung einer Folge von potentialgeregelter kathodischer Spannungsimpulse, welche das Redoxpotential des Aluminiumsubstrates in die Nähe des untersten zulässigen negativen Potentialwertes des "Passivbereiches" absenken, wobei während der Dauer dieser Impulse eine kathodische Polarisation des Substrates eintritt und dabei während einer gewissen Ausschaltdauer des Potentiostaten noch gegeben ist.
- Figure 1
- A block diagram of the arrangement for achieving cathodic corrosion protection for the substrate consisting of a metallic aluminum alloy, the surface of which is washed by an electrolyte and which forms the cathode in an electrolysis in relation to a counter electrode functioning as an anode. The latter is formed from a material which is not corroded by the electrolyte due to the cathodic protection against corrosion. The potentiostat can be switched on and off by a control device in the form of a trigger, so that the level of the potentiostatic impulses can be regulated and a suitable short-term cathodic polarization of the substrate can be achieved by briefly lowering the potential;
- Figure 2
- A current density-potential diagram of the substrate during the implementation of an electrolyte, showing the "passive area" in which corrosion does not occur, as well as the area in the anodic direction and in the cathodic direction, where pitting corrosion or surface removal of the aluminum occurs with formation of aluminate .
- Figure 3
- A potential-time curve of the redox potential of the substrate in the electrolyte when performing an active corrosion protection for the aluminum substrate using a sequence of potential-controlled cathodic voltage pulses, which lower the redox potential of the aluminum substrate in the vicinity of the lowest permissible negative potential value of the "passive area", while the duration of these pulses a cathodic polarization of the substrate occurs and is still present during a certain switch-off time of the potentiostat.
Im Blockschaltbild der Anordnung (1) zur Erzielung eines kathodischen Korrosionsschutzes gemäß Figur 1 ist in der Mitte ein galvanisches Element (2) angedeutet. In diesem Element ist das gegen Korrosion zu schützende Aluminiumsubstrat (3), welches aus einer AlMgSi 1-Legierung besteht und dessen Oberfläche von dem Elektrolyten des galvanischen Elementes umspült wird, angeordnet.In the block diagram of the arrangement (1) for achieving cathodic corrosion protection according to FIG. 1, a galvanic element (2) is indicated in the middle. The aluminum substrate (3) to be protected against corrosion, which consists of an
Das Aluminiumsubstrat kann ein massives Halbzeug oder Fertigteil, wie z. B. Profile, Platten, Bleche, Folien, Behälter, Tanks usw., oder auch eine Aluminiumbeschichtung, hergestellt z. B. durch Walz- bzw. Ziehplattieren, Feuer- bzw. Spritzaluminierung und Alitierung, auf anderen Werkstoffen, wie z. B. Stahl sein.The aluminum substrate can be a solid semi-finished or finished part, such as. B. profiles, plates, sheets, foils, containers, tanks, etc., or an aluminum coating, z. B. by roll or drawing plating, fire or spray aluminum and alitation, on other materials such as. B. be steel.
Zur Durchführung des kathodischen Korrosionsschutzes wird zwischen diesem Aluminiumsubstrat und einer in Abstand dazu angeordneten Gegenelektrode (4) eine Elektrolyse durchgeführt. In dieser Elektrolyse wird das Aluminiumsubstrat als Kathode geschaltet, wobei die Gegenelektrode (4) die Anode darstellt. Auf diese Weise ist die zu schützende Oberfläche des Aluminiumsubstrates mit dem einen stark negativen Charakter aufweisenden Aluminium zwar weiter dem korrodierenden Elektrolyten ausgesetzt, dadurch aber, daß dem Aluminiumsubstrat als Kathode während der Elektrolyse Elektronen zugeführt werden, wird das Potential seiner Metalloberfläche in kathodischer Richtung verschoben und die auftretende Korrosionsgeschwindigkeit so stark verringert, daß praktisch kein Aluminiumabtrag mehr erfolgt. Dies gilt bei dem vorliegenden wäßrigen Elektrolyten allerdings nur in einem pH-Bereich von 4,5 - 8,5, in dem die Löslichkeit der Aluminiumoxidschicht niedrig ist und wenn gem. Figur 2 das sich einstellende Polarisationspotential an der Oberfläche des Aluminiumsubstrates im "Schutzpotentialbereich" (Passivbereich) liegt, sich also weder eine Lochkorrosion noch - durch Entstehung alkalischer Flüssigkeitsgrenzschichten - eine Flächenkorrosion einstellt.To carry out the cathodic corrosion protection, an electrolysis is carried out between this aluminum substrate and a counter electrode (4) arranged at a distance from it. In this electrolysis, the aluminum substrate is switched as a cathode, the counter electrode (4) being the anode. In this way, the surface to be protected of the aluminum substrate with the aluminum having a strongly negative character is still exposed to the corrosive electrolyte, but because electrons are added to the aluminum substrate as the cathode during electrolysis, the potential of its metal surface is shifted in the cathodic direction and the corrosion rate that occurs is reduced so much that there is practically no aluminum removal. This applies to the present aqueous electrolyte, however, only in a pH range from 4.5 to 8.5, in which the solubility of the aluminum oxide layer is low and if, according to. FIG. 2 shows the polarization potential that occurs on the surface of the aluminum substrate in the “protective potential range” (passive range), that is to say neither pitting corrosion, nor — due to the formation of alkaline liquid boundary layers — surface corrosion.
Über den im linken Teil der Zeichnung dargestellten Potentiostaten (5), welcher mit dem Aluminiumsubstrat (3) und der Gegenelektrode (4) elektrisch verbunden ist, wird zwischen diesen Sonden die notwendige Elektrolysierspannung eingeschaltet, welche über einen Operationsverstärker (6) ferner regelbar und auch ausschaltbar ist.Via the potentiostat (5) shown in the left part of the drawing, which with the aluminum substrate (3) and the counter electrode (4) is electrically connected, the necessary electrolysis voltage is switched on between these probes, which voltage can also be regulated and also switched off via an operational amplifier (6).
Das Aluminiumsubstrat wird durch die Elektrolyse auf ein konstantes kathodisches Potential innerhalb des Schutzpotentialbereiches gehalten. Während einer bestimmten Ausschaltdauer der Elektrolyse wird nun zwischen einer vom Elektrolyten umspülten, gegenüber diesem ein konstantes elektro-chemisches Potential aufweisenden Bezugselektrode (7) und dem Aluminiumsubstrat (3) eine "Kontrollspannung" gemessen, welche ein unmittelbares Maß für das Redoxpotential auf der Oberfläche des Aluminiumsubstraten im Elektrolyten ist.The aluminum substrate is kept at a constant cathodic potential within the protective potential range by the electrolysis. During a certain switch-off period of the electrolysis, a "control voltage" is measured between a reference electrode (7) which is surrounded by the electrolyte and has a constant electrochemical potential, and the aluminum substrate (3), which is a direct measure of the redox potential on the surface of the Aluminum substrates in the electrolyte.
Nach Abschaltung der Elektrolyse nach einer bestimmten Elektrolysierdauer wird nun diese Kontrollspannung beobachtet und der Regelvorrichtung für die Elektrolysierspannung zugeführt, wobei damit eine Regelung des Redox- bzw. Polarisationspotentials des Aluminiumsubstrates erfolgt. Die Regelvorrichtung ist dabei aus dem Operationsverstärker (6) und einem Fensterdiskriminator (8) und einem Zeitgeber (9) zum Ein- und Ausschalten des Potentiostaten (5) aufgebaut. Das Ein- und Ausschalten des Potentiostaten erfolgt dabei durch die an den Ausgängen des Fensterdiskriminators zur Verfügung stehenden Spannungszustände. Dazu wird der Zeitgeber (9) nachgeschaltet. Der Zeitgeber (Multivibrator) liefert dabei nach Unterschreiten des notwendigen negativen Schutzpotentials ein Ausgangssignal, welches als solches einen "astabilen Multivibrator" in Betrieb setzt. Mit diesem läßt sich die gewünschte Polarisationsdauer (tp) und die Ausschaltdauer (ta) der Elektrolyse einstellen.After the electrolysis has been switched off after a certain electrolysis time, this control voltage is now observed and fed to the control device for the electrolysis voltage, the redox or polarization potential of the aluminum substrate thereby being regulated. The control device is constructed from the operational amplifier (6) and a window discriminator (8) and a timer (9) for switching the potentiostat (5) on and off. The potentiostat is switched on and off by the voltage states available at the outputs of the window discriminator. For this purpose the timer (9) is connected. After falling below the necessary negative protection potential, the timer (multivibrator) supplies an output signal which, as such, puts an "astable multivibrator" into operation. This can be used to set the desired polarization period (t p ) and the switch-off period (t a ) for the electrolysis.
Es erfolgt dabei durch die Regelvorrichtung nach einer bestimmten Ausschaltdauer wieder eine Einschaltung der Elektrolyse, wenn die Kontrollspannung gleich einer vorgegebenen Grenzspannung U's an der anodischen Grenze des Schutzpotentialbereiches ist. Dadurch wird wiederum ein konstantes kathodisches Potential an das Aluminiumsubstrat angelegt, so daß das Redoxpotential wiederum an der unteren kathodischen Grenze des Schutzpotentialbereiches liegt.The control device switches the electrolysis on again after a certain switch-off period if the control voltage is equal to a predetermined limit voltage U ' s at the anodic limit of the protective potential range. As a result, a constant cathodic potential is applied to the Aluminum substrate applied so that the redox potential is in turn at the lower cathodic limit of the protective potential range.
Das abgesenkte "kathodische Potential" wird dabei durch potentialgeregelte kathodische Spannungsimpulse erzeugt, welche die Oberfläche des Aluminiumsubstrates in Bereiche polarisieren, in welche das "Passivverhalten" von Aluminium gemäß dem Schutzpotentialbereich möglichst lang gegeben ist. Dem Operationsverstärker (6) ist dabei diese untere negative Grenzspannung U's (1. Grenzspannung) vorgebbar, wobei während der Elektrolyse die Elektrolysierspannung derart regelbar ist, daß die Kontrollspannung zwischen Vergleichselektrode (7) und Aluminiumsubstrat (3) gleich dieser ersten Grenzspannung U's wird.The lowered "cathodic potential" is generated by potential-controlled cathodic voltage pulses which polarize the surface of the aluminum substrate in areas in which the "passive behavior" of aluminum is given as long as possible according to the protective potential area. This lower negative limit voltage U ' s (first limit voltage) can be predetermined for the operational amplifier (6), the electrolysis voltage being adjustable during the electrolysis in such a way that the control voltage between the comparison electrode (7) and aluminum substrate (3) is equal to this first limit voltage U' s will.
Wie im Potential-Zeit-Verlauf der Figur 3 dargestellt, werden die potentialgeregelten kathodischen Spannungsimpulse immer nur für einen relativ kleinen Zeitintervall vorgegeben, wobei gleiches für die Elektrolysierdauer und Polarisationsdauer tp an der Oberfläche des Aluminiumsubstrates gilt. Für einen bestimmten Zeitintervall ta wird dabei die Potentialabsenkung durch negative kathodische Spannungsimpulse und auch die Elektrolyse selbst unterbrochen.As shown in the potential-time profile of FIG. 3, the potential-controlled cathodic voltage pulses are always only specified for a relatively small time interval, the same applies to the electrolysis time and polarization time t p on the surface of the aluminum substrate. For a certain time interval t a , the potential drop is interrupted by negative cathodic voltage pulses and also the electrolysis itself.
Dies hat den Vorteil, daß eine an sich bei einer ungünstigen geometrischen Anordnung des Substrates mögliche kathodische Überpolarisation vermieden oder zumindest minimiert wird.This has the advantage that a cathodic overpolarization which is inherently possible with an unfavorable geometric arrangement of the substrate is avoided or at least minimized.
Gegenüber einem andauernden kathodischen Korrosionsschutz ist zudem der notwendige Schutzstrombedarf erheblich geringer. Da die untere und obere Potentialgrenze (U'S, US) des Schutzpotentialbereiches zudem erst nach einer oberflächenspezifischen Induktionszeit überschritten werden, ist es gegenüber einem andauernden kathodischen Korrosionsschutz sinnvoller, das zu schützende Aluminiumsubstrat "nur bei Bedarf", d.h. wenn die oberen Potentialgrenzen (2. Grenzspannung US) erreicht werden, durch eine kathodische Spannungsabsenkung zu polarisieren.Compared to ongoing cathodic corrosion protection, the required protective current requirement is also considerably lower. Since the lower and upper potential limits (U ' S , U S ) of the protective potential range are only exceeded after a surface-specific induction time, it makes more sense compared to continuous cathodic corrosion protection to protect the aluminum substrate "only when required", ie when the upper potential limits ( 2. Limit voltage U S ) can be achieved by polarizing a cathodic voltage drop.
Dieses Schutzverfahren nach der potentialgeregelten Impulsmethode ist dabei im Hinblick auf den Energiebedarf kostengünstiger als eine dauernde Polarisation. Es eignet sich dabei z.B. für die Anwendung bei Aluminium-Werkstoffen im maritimen Bereich oder auch bei Trinkwasserbehältern und Tanks.This protection method based on the potential-controlled pulse method is cheaper in terms of energy consumption than permanent polarization. It is suitable e.g. For use with aluminum materials in the maritime sector or also for drinking water tanks and tanks.
Wie in Figur 3 dargestellt, erfolgt die Regelung der Elektrolysierspannung und der kathodischen Spannungsabsenkung ferner in Abhängigkeit von der Steilheit des Verlaufes des Redoxpotentials des Aluminiumsubstrates nach Ausschaltung der Eletrolyse.As shown in FIG. 3, the regulation of the electrolysis voltage and the cathodic voltage drop also takes place as a function of the steepness of the course of the redox potential of the aluminum substrate after the electrolysis has been switched off.
Sofern nach Abschaltung der Elektrolyse innerhalb einer bestimmten Kontrollzeitdauer, z.B. der Ausschaltdauer ta, eine kritische Spannung UI, die zwischen der 1. Grenzspannung U'S und der 2. Grenzspannung US liegt, durch die entsprechend dem Redoxpotential des Aluminiumsubstrates positiver werdende Kontrollspannung überschritten wird, wird dabei die Elektrolyse wieder eingeschaltet, so daß sich dann wieder eine kathodische Spannungsabsenkung und Polarisation auf das Niveau der 1. Grenzspannung für die Dauer des Spannungsimpulses ergibt.If, after deactivation of the electrolysis within a certain control period, for example, the off-time t a, a critical voltage U i, which is between the first threshold voltage U 'S and the second threshold voltage U S, positive by corresponding to the redox potential of the aluminum substrate expectant control voltage is exceeded, the electrolysis is switched on again, so that cathodic voltage drop and polarization to the level of the first limit voltage again result for the duration of the voltage pulse.
Wird dagegen die kritische Spannung während der Ausschaltzeit ta noch nicht durch die ansteigende Kontrollspannung überschritten, so erfolgt eine Spannungsabsenkung erst, wenn die Kontrollspannung auf den 2. Grenzwert US angestiegen ist. Zur Ermittlung der Steilheit wird dabei ein Potentialindikator verwendet. Dieser dient insofern der Modellierung eines PD-Reglers und ist in den Zeichnungen nicht dargestellt.If, on the other hand, the critical voltage is not exceeded by the increasing control voltage during the switch-off time t a , the voltage is not reduced until the control voltage has risen to the second limit value U S. A potential indicator is used to determine the slope. In this respect, this is used to model a PD controller and is not shown in the drawings.
Die Gegenelektrode (4) besteht aus Platin oder einem anderen wenig - oder nicht korrodierbaren Metall oder sonstigen Elektronenleiter. Dieses Material ist dabei gegenüber dem Elektrolyten inert. Die Bezugselektrode, welche in der Nähe der Oberfläche des Aluminiumsubstrates im Elektrolyten angeordnet ist, und ein gegenüber dem Elektrolyten konstantes elektro-chemisches Potential aufweist, besteht dabei aus einem zylindrischen Hohlkörper aus Glas, organischem Kunststoff oder aus einem anderen isolierenden Material und ist mit einem speziell geformten Spitze-Potentialfühler versehen. Die Bezugselektrode enthält dabei ein Diaphragma und ermöglicht durch ihre besondere Konstruktion einen Potentialabgriff nahe der zu schützenden Wandung des Aluminiumsubstrates. Als Bezugssystem der 1. Halbzelle können Hg/Hg₂ Cl₂, Ag/AgCL oder geeignete edle Metalle in ihrer wäßrigen Lösung oder im Festbett verwendet werden. Die Bezugselektrode hat in dem Schutzsystem die Funktion, das jeweilig an der Wandung des Aluminiumsubstrates auftretende Redoxpotential (Korrosionspotential) zu erfassen und diese "Kontrollspannung" als elektrisches Spannungssignal sowohl dem Potentiostaten (5) zur Steuerung der elektrischen Ströme als auch dem zur Ermittlung der Steilheit des Potentialverlaufes dienenden Potentialindikator zuzuführen.The counterelectrode (4) consists of platinum or another metal that cannot be corroded, or is not corrodible, or another electron conductor. This material is inert to the electrolyte. The reference electrode, which is arranged in the vicinity of the surface of the aluminum substrate in the electrolyte and has a constant electro-chemical potential with respect to the electrolyte, consists of a cylindrical hollow body made of glass, organic plastic or another insulating material and is made with a special shaped tip potential sensor. The reference electrode contains a diaphragm and, thanks to its special construction, enables potential tapping near the wall of the aluminum substrate to be protected. Hg / Hg₂Cl₂, Ag / AgCL or suitable noble metals can be used as the reference system of the 1st half cell in their aqueous solution or in a fixed bed. The reference electrode in the protection system has the function of detecting the redox potential (corrosion potential) that occurs on the wall of the aluminum substrate and this "control voltage" as an electrical voltage signal both for the potentiostat (5) for controlling the electrical currents and for determining the steepness of the To supply the potential indicator.
Die Bezugselektrode ist dabei während der Elektrolyse nahezu stromlos. Es fließt dabei in dem Elektrolyten nur zwischen dem Aluminiumsubstrat (3) und der Gegenelektrode (4) ein Strom, wobei dieser derart durch den Operationsverstärker (6) geregelt wird, daß durch die erfolgende Potentialabsenkung des Potentiostaten das angelegte Potential des als Kathode geschalteten, stromführenden Aluminiumsubstrates (3) (Kontrollspannung Uist) der vorgegebenen 1. Grenzspannung (U's) folgt und unabhängig von elektrochemischen Vorgängen auf seinen Augenblickswert konstant gehalten wird.The reference electrode is almost without current during the electrolysis. A current flows in the electrolyte only between the aluminum substrate (3) and the counter electrode (4), this being regulated by the operational amplifier (6) in such a way that the potential applied to the current-carrying circuit, which is connected as the cathode, is reduced by the potential drop in the potentiostat Aluminum substrates (3) (control voltage U ist ) follows the specified 1st limit voltage (U ' s ) and is kept constant at its instantaneous value regardless of electrochemical processes.
Als potentialregelnde Einheit des in Figur 1 bezüglich seiner Grundschaltung dargestellten Potentiostaten (5) wird dabei vorzugsweise ein Operationsverstärker (6) verwendet, der aufgrund seines hohen Eingangswiderstandes (FET-Eingangsstufe) und seines geringen Eingangsruhestromes weder die Vergleichselektrode (7) noch die Sollspannungsquelle (Usoll) des Verstärkers belastet. Da der Operationsverstärker nur einen maximalen Ausgangsstrom von +/- 20 mA liefert, ist dabei diesem ein Leistungsverstärker nachgeschaltet, welcher je nach den elektrischen Anforderungen z.B. einen maximalen Ausgangsstrom bezogen auf das Aluminiumsubstrat von +/- 200 mA und mehr erzeugen kann.An operational amplifier (6) is preferably used as the potential-regulating unit of the potentiostat (5) shown in FIG. 1 with respect to its basic circuit, and because of its high input resistance (FET input stage) and its low quiescent input current, neither the comparison electrode (7) nor the target voltage source (U should ) of the amplifier. Since the operational amplifier only supplies a maximum output current of +/- 20 mA, a power amplifier is connected downstream of it, which, depending on the electrical requirements, can, for example, generate a maximum output current based on the aluminum substrate of +/- 200 mA and more.
Weitere Anforderungen zur Durchführung eines aktiven Korrosionsschutzes durch potentialgeregelte kathodische Impulse für Aluminiumteile bestehen dabei in einer möglichen maximalen Aussteuerung der Gegenelektrode (4) auf + 12 V, einer manuellen Einstellbarkeit des 1. Grenzpotentials (U'S) an der Sollspannungsquelle von 0.../2000 mV, eine Einstellbarkeit des Schutzpotentials US (2. Grenzspannung) auf einen Wert zwischen 0.../2000 mV, eine Einstellbarkeit der kritischen Spannung des Potentialindikators (UI) auf Werte zwischen 0.../2000 mV und einer Einstellbarkeit der Polarisationsdauer tp zwischen 1 min ... 10 min und der Ausschaltdauer ta zwischen 1 min ... 10 min.Further requirements for performing an active corrosion protection by means of potential-controlled cathodic impulses for aluminum parts are a possible maximum control of the counter electrode (4) to + 12 V, a manual one Adjustment of the 1st limit potential (U ' S ) at the setpoint voltage source from 0 ... / 2000 mV, adjustability of the protective potential U S (2nd limit voltage) to a value between 0 ... / 2000 mV, adjustability of the critical voltage of the potential indicator (U I ) to values between 0 ... / 2000 mV and an adjustability of the polarization duration t p between 1 min ... 10 min and the switch-off duration t a between 1 min ... 10 min.
Die kritischen Spannungen U'S und US werden in Abhängigkeit von den Grenzpotentialen für Lochkorrosion (UL) und Flächenkorrosion (UA) gewählt. UA und UL sind allerdings keine Konstanten, sondern müssen für das jeweilige Substratmaterial und Korrosionsmedium elektrochemisch bestimmt werden. Dies geschieht üblicherweise durch Aufnahme und Auswertung von Stromdichte-Potential-Diagrammen entsprechend Fig. 2. Dabei ergeben sich UA und UL als Grenzpotentiale des Passivbereiches, wobei oberhalb von UL Lochkorrosion und unterhalb von UA Flächenkorrosion erfolgt.The critical voltages U ' S and U S are chosen depending on the limit potentials for pitting corrosion (U L ) and surface corrosion (U A ). However, U A and U L are not constants, but must be determined electrochemically for the respective substrate material and corrosion medium. This is usually done by recording and evaluating current density-potential diagrams in accordance with FIG. 2. Here U A and U L result as limit potentials of the passive region, pitting corrosion occurring above U L and surface corrosion occurring below U A.
Die kritischen Spannungen US und U'S werden vorzugsweise etwa 30 bis 50 mV entfernt von den Grenzpotentialen UA und UL eingestellt, d. h. U'S liegt etwa 30 bis 50 mV oberhalb von UA und US liegt etwa 30 bis 50 mV unterhalb von UL.The critical voltages U S and U ' S are preferably set approximately 30 to 50 mV away from the limit potentials U A and U L , ie U' S is approximately 30 to 50 mV above U A and U S is approximately 30 to 50 mV below U L.
Für die Legierung AlMgSi 0,5 in künstlichem Meerwasser ergeben sich z. B. folgende Werte:
Für die Legierung AlMgSi 1 in künstlichem Meerwasser werden z. B. folgende Werte erhalten:
For the
Für die Legierung AlMgSi 1 wird vorzugsweise ein Wert von UI = - 900 mV (SCE) gewählt.A value of U I = - 900 mV (SCE) is preferably selected for the
Claims (3)
- An assembly (1) for achieving a cathodic corrosion protection for a surface of a metallic, aluminium-containing substrate (3) which may be encircled by an electrolyte (heat carrier or cooling medium), which assembly comprises the following constituents:a) at least one counter electrode (4) which may be encircled by electrolytes and which is not, or only slightly, corrodable by the electrolyte;b) at least one associated reference electrode (7) which may be encircled by the electrolyte and which comprises a constant electro-chemical potential relative to the electrolyte;c) an associated potentiostat (5) which is electrically connected to the substrate (3) and the counter electrode (4) and by means of which it is possible to effect an electrolysis in the electrolyte, with an electric electrolysing voltage being switched on between the substrate (3) as the cathode and the counter-electrode (4) as the anode;d) an associated control device (6, 8, 9), which is electrically connected to the substrate (3) of the reference electrode (7) and the potentiostat (5), by means of which it is possible, between the reference electrode (7) and the substrate (3), to measure an electric control voltage constituting a direct measure for the redox potential on the surface of the aluminium substrate in the electrolyte and by means of which the electrolysing voltage may be switched on and off as well as controlled;e) that a first limit voltage (U's) may be predetermined for the control device (6, 8, 9), with the electrolysing voltage being controllable during the electrolysis in such a way that the control voltage equals the first limit voltage (U's);f) that a second limit voltage may be predetermined for the control device (6, 8, 9), so that the electrolysing voltage is switched on when the control voltage equals the second limit voltage (Us);g) that an electrolysing period tp may be predetermined for the control device (6, 8, 9) and that the electrolysis may be effected for a time interval whose length equals the electrolysing period.
- A process for achieving a cathodic corrosion protection for a surface of a metallic, aluminium-containing substrate (3) which may be encircled by an electrolyte (heat carrier or cooling medium), using an assembly according to claim 1,
characterised in
thata) an electrolysis is carried out for a predetermined period of time and then switched off;b) a control voltage is observed between a reference electrode (7) and the substrate (3) and that the electrolysis is switched on when the control voltage equals the predetermined second limit voltage;c) during the electrolysis, the electrolysing voltage between the substrate (3) as the cathode and a counter electrode (4) as the anode is controlled in such a way that the control voltage equals a first limit voltage;d) there are pretermined a control period and a critical voltage ranging between the first limit voltage and the second limit voltage, and that after elapse of the control period, the electrolysis, after having been switched off, is switched on again if, during the control period, the control voltage becomes equal to the critical voltage;e) that the first limit voltage constitutes a predeterminable lower negative voltage value which is greater than the limit potential which occurs in the cathodic direction in the current density/potential diagram and at which the cathod reduction of oxygen in water takes place;f) the second limit voltage is smaller than/equal to the pitting potential which occurs in the anodic direction of the current density/potential diagram and which, when exceeded, causes localised aluminium dissolution. - A process according to claim 2,
characterised in
that the first limit voltage (lower negative value of the redox potential of the substrate) is removed in the anodic direction away from the limit potential at which the cathodic reduction of oxygen occurs and that the second limit voltage (upper limit value of the redox potential held towards the positive potential) is removed in the cathodic direction away from the pitting potential - in both cases far enough to ensure that, especially when short-term reductions in potential are effected for generating a short-term cathodic polarisation of the substrate by means of potential-controlled cathodic polarising pulses, the control voltage range of the substrate (3) is narrowed (shorter polorisation period and shorter period of disconnection).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4025088 | 1990-08-08 | ||
DE4025088A DE4025088A1 (en) | 1990-08-08 | 1990-08-08 | CATHODICAL CORROSION PROTECTION FOR AN ALUMINUM CONTAINING SUBSTRATE |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0472057A2 EP0472057A2 (en) | 1992-02-26 |
EP0472057A3 EP0472057A3 (en) | 1992-09-02 |
EP0472057B1 true EP0472057B1 (en) | 1995-07-19 |
Family
ID=6411828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91113329A Expired - Lifetime EP0472057B1 (en) | 1990-08-08 | 1991-08-08 | Arrangement and process to obtain a cathodic protection |
Country Status (4)
Country | Link |
---|---|
US (1) | US5338417A (en) |
EP (1) | EP0472057B1 (en) |
JP (1) | JPH05331669A (en) |
DE (1) | DE4025088A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2286196A (en) * | 1994-01-27 | 1995-08-09 | John Crome Latham | Protecting vessels from corrosion using sacrificial anodes to carry impressed current |
US5577083A (en) * | 1994-05-09 | 1996-11-19 | General Electric Company | Method and apparatus for electro-protection of piping systems and reactor-internals from stress corrosion cracking |
JP2958751B2 (en) * | 1996-07-03 | 1999-10-06 | 本田技研工業株式会社 | Cathodic protection law |
JP3062807B2 (en) * | 1997-05-06 | 2000-07-12 | 本田技研工業株式会社 | Corrosion resistance test method for specimen consisting of metal material and coating film |
US8011479B2 (en) * | 2004-03-16 | 2011-09-06 | Otis Elevator Company | Electrical signal application strategies for monitoring a condition of an elevator load bearing member |
US7964146B2 (en) * | 2004-05-30 | 2011-06-21 | Agamatrix, Inc. | Measuring device and methods for use therewith |
US20060070871A1 (en) * | 2004-10-04 | 2006-04-06 | Bushman James B | Cathodic protection system for underground storage tank |
US7774038B2 (en) | 2005-12-30 | 2010-08-10 | Medtronic Minimed, Inc. | Real-time self-calibrating sensor system and method |
CN103014721B (en) * | 2012-12-06 | 2014-12-10 | 青岛雅合科技发展有限公司 | Intelligent multi-channel potentiostat and operating method thereof |
CN107723713A (en) * | 2017-12-08 | 2018-02-23 | 江苏飞视文化发展有限公司 | The system of potentiostat in a kind of cathodic protection system of monitoring in real time |
CN113755847B (en) * | 2021-09-10 | 2023-05-05 | 中国人民解放军海军工程大学 | Pulse current cathodic protection method for aluminum alloy |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB859096A (en) * | 1958-03-12 | 1961-01-18 | Volkswerft Stralsund Veb | Means for the cathodic protection of ships and the like |
NL136909C (en) * | 1960-02-29 | |||
BE614735A (en) * | 1961-03-07 | |||
DE1275793B (en) * | 1964-07-02 | 1968-08-22 | Siemens Ag | Heavy-duty silver-silver chloride electrode for potential measurement in cathodic corrosion protection |
DE2007347A1 (en) * | 1970-02-18 | 1971-08-26 | Ustav Pro Vyzkum A Vyuziti Pal | Automatic control of current impulse operated cathodic - protection installation |
US3634222A (en) * | 1970-05-13 | 1972-01-11 | Engelhard Min & Chem | Sampling and control system for cathodic protection |
US4080272A (en) * | 1977-02-28 | 1978-03-21 | Harco Corporation | Cathodic protection method and apparatus |
DE2916934C2 (en) * | 1979-04-26 | 1981-05-07 | Vereinigte Elektrizitätswerke Westfalen AG, 4600 Dortmund | Method and device for maintaining cathodic protection against corrosion |
CA1229320A (en) * | 1982-12-21 | 1987-11-17 | Koichi Yoshida | Method for cathodic protection of aluminum material |
US4528460A (en) * | 1982-12-23 | 1985-07-09 | Brunswick Corporation | Cathodic protection controller |
FR2589486B1 (en) * | 1985-07-23 | 1991-09-06 | Gaz De France | DEVICE FOR THE CATHODIC PROTECTION OF AN APPLIED CURRENT STRUCTURE |
DE3707791C1 (en) * | 1987-03-11 | 1988-03-31 | Ver Elek Zitaetswerke Westfale | Method and device for maintaining cathodic corrosion protection for metallic surfaces with external current |
US4841988A (en) * | 1987-10-15 | 1989-06-27 | Marquette Electronics, Inc. | Microwave hyperthermia probe |
-
1990
- 1990-08-08 DE DE4025088A patent/DE4025088A1/en not_active Withdrawn
-
1991
- 1991-08-06 JP JP3196278A patent/JPH05331669A/en active Pending
- 1991-08-08 US US07/741,934 patent/US5338417A/en not_active Expired - Fee Related
- 1991-08-08 EP EP91113329A patent/EP0472057B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE4025088A1 (en) | 1992-02-13 |
JPH05331669A (en) | 1993-12-14 |
EP0472057A3 (en) | 1992-09-02 |
US5338417A (en) | 1994-08-16 |
EP0472057A2 (en) | 1992-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0472057B1 (en) | Arrangement and process to obtain a cathodic protection | |
DE1796220B2 (en) | Method of making an electrode for use in electrolytic processes | |
DE2434318C3 (en) | Device for measuring the ion concentration in liquids | |
DE2123652A1 (en) | Sampling and control system to achieve cathodic protection | |
EP0638664A1 (en) | Process and apparatus for regenerating solutions containing metal ions and sulfuric acid | |
DE69006495T2 (en) | METHOD FOR PREVENTING THE SETTING OF LIME LAKES ON SEA WATER BATTERY CATHODES. | |
EP0018522A1 (en) | Method and apparatus for sustaining a cathodic protection against corrosion | |
EP2533036A1 (en) | Method for operating a conductivity sensor, in particular for cleaning the electrode surfaces of the conductivity sensor, and water softener comprising said conductivity sensor | |
DE3338179A1 (en) | Method for cathodic protection of an aluminium object | |
DE3029364A1 (en) | PROCESS FOR THE MANUFACTURE OF LOW HYDROGEN OVERVOLTAGE CATHODE AND THEIR USE | |
EP0285747B1 (en) | Process and apparatus for sustaining the cathodic protection of metal surfaces | |
DE2819964C2 (en) | Metallic diaphragm | |
DE3244217A1 (en) | METHOD FOR ANODICALLY OXYDATING ALUMINUM ALLOYS | |
EP0795047B1 (en) | Process for producing a corrosion and wear-resistant oxide layer with locally reduced layer thickness on the metal surface of a workpiece | |
EP2190617B1 (en) | Electrochemical processing method | |
DE3022634A1 (en) | METHOD AND DEVICE FOR RAPID DETERMINATION OF THE CORROSION RESISTANCE OF AN ELECTROPHORETIC COATING | |
DE2232903C3 (en) | Process for the electrolytic refining of copper using titanium electrodes | |
DE69206157T2 (en) | METHOD AND DEVICE FOR RECEIVING CATHODICAL PROTECTION AGAINST CORROSION. | |
DE2632152C3 (en) | Galvanic cell | |
DE69103425T2 (en) | METHOD FOR PREVENTING THE DESTRUCTION OF SEAWATER CELLS BY BIOLOGICAL POLLUTION. | |
EP0332933A2 (en) | Method for electrically measuring the concentration of acids | |
EP1442155B1 (en) | Method for the treatment of electrically conductive substrates and printed circuit boards and the like | |
DE60121337T2 (en) | METHOD FOR IMPROVING AN ELECTRODE | |
EP3851830B1 (en) | Method for determining the condition of a sacrificial anode in a water storage device | |
DE10001706C2 (en) | Method for controlling an electrode system for the electrochemical renovation of corrosion-damaged reinforced concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE FR IT LU NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VAW ALUMINIUM AG |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE FR IT LU NL |
|
17P | Request for examination filed |
Effective date: 19930226 |
|
17Q | First examination report despatched |
Effective date: 19940606 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE FR IT LU NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950719 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19950719 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950719 Ref country code: BE Effective date: 19950719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950831 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |