EP0471625B1 - Dispositif d'obtention d'une tension continue réglable - Google Patents

Dispositif d'obtention d'une tension continue réglable Download PDF

Info

Publication number
EP0471625B1
EP0471625B1 EP91402248A EP91402248A EP0471625B1 EP 0471625 B1 EP0471625 B1 EP 0471625B1 EP 91402248 A EP91402248 A EP 91402248A EP 91402248 A EP91402248 A EP 91402248A EP 0471625 B1 EP0471625 B1 EP 0471625B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
frequency
pulses
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91402248A
Other languages
German (de)
English (en)
Other versions
EP0471625A1 (fr
Inventor
Jacques Laeuffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0471625A1 publication Critical patent/EP0471625A1/fr
Application granted granted Critical
Publication of EP0471625B1 publication Critical patent/EP0471625B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains

Definitions

  • the present invention relates to devices for obtaining a DC voltage whose value is adjustable over a wide range, said devices being more particularly adapted to polarize a focus of an X-ray tube to a value chosen by the practitioner implementing a radiological installation.
  • Such devices are known from documents US-A-4, 541, 041 and GB-A-2,045,019.
  • a radiological tube is generally constituted as a diode, that is to say by two electrodes, one of which, called cathode, emits electrons while the other, called anode, receives these electrons on a small surface which constitutes the X-ray source.
  • the cathode has a filament heated by an electric current which constitutes the source of electrons.
  • an electric current which constitutes the source of electrons.
  • a metal part, called a concentration part, supporting the filament is isolated from the latter and brought to a negative potential, called polarization, with respect to said filament.
  • polarization a negative potential
  • to modify the shape and therefore the concentration of the electron beam it is usual to modify this polarization potential over a wide range, for example between 300 and 3000 volts.
  • the cathode is itself brought to a voltage of the order of -20 to -75 kilovolts relative to the mass, which poses insulation problems to apply this potential or bias voltage.
  • the invention relates more particularly to a device for obtaining a bias voltage of a concentrating part of an X-ray tube cathode which is variable over a wide range of values.
  • Figure 1 gives the block diagram of a device of the prior art. It includes a supply circuit 10 which supplies a DC voltage E regulated and adjustable from an AC voltage supplied by the sector. The voltage E is applied to the terminals of an inverter circuit 11 which comprises a chopping circuit 12 and a control circuit 14.
  • the alternating signal supplied by the inverter circuit 11 is applied to a voltage step-up transformer 15, the secondary winding of which is connected to a rectification and filtering circuit 16.
  • This circuit 16 provides a direct voltage V s which is applied between the piece of concentration and filament of the x-ray tube.
  • the voltage V s being difficult to measure due to the high common mode potential (20 to 75 kilovolts), it is preferable to measure the voltage E which is substantially proportional to it and to regulate it.
  • the voltage E is measured by a resistive divider comprising the resistors R1 and R2 and the divided signal is applied to a voltage / frequency converter circuit 20 which receives, moreover, a signal V ref corresponding to the voltage that the it is desired to obtain between the concentration piece and the filament of the x-ray tube.
  • the chopper circuit 12 comprises, for example, two transistors 21 and 22, the openings and closings of which are controlled by the control circuit 14.
  • the control circuit 14 is also a voltage / frequency converter circuit similar to the circuit 20 but whose frequency is fixed.
  • the object of the present invention is therefore to provide a device for obtaining an adjustable direct voltage which does not have the above-mentioned drawbacks.
  • the means for undulating said voltage E comprise an oscillating circuit whose resonant frequency is greater than the frequency F.
  • the power circuit 33 comprises, in addition to the inverter circuit 35, a first rectification and filtering circuit 34 which, from an alternating voltage e, supplies a regulated direct voltage E supplying the switches T1 and T2.
  • the pulses supplied by the inverter circuit 35 are applied to the primary winding 36p of an isolation transformer 36 of the pulse type, the secondary winding 36s of which is connected to a rectification and filtering circuit 37 which supplies the required DC voltage V p .
  • the inverter circuit 35 comprises, as indicated above, at least two switches T1 and T2 produced by field effect transistors according to the metal-oxide technology more known by the English abbreviation of MOSFET transistors.
  • these transistors T1 and T2 each include in parallel a diode D1 for the transistor T1 and a diode D2 for the transistor T2, diodes including the anode is connected to the source S and the cathode connected to the drain D of the associated transistor.
  • the gate G of the transistor T1 is connected to the output 32-a of the control circuit 32 while the gate G of the transistor T2 is connected to the output 32-b of the control circuit 32.
  • the inverter circuit also includes a resonant circuit consisting of capacitors C1 and C2 and a coil L.
  • the capacitors C1 and C2 are connected in series between the drain D of the transistor T1 and the source S of the transistor T2 while the coil L is disposed in the primary circuit 36p of the transformer 36 and is connected on one side directly to the source of the transistor T1 and on the other side to the common point C of the capacitors C1 and C2 via the primary winding 36p of the transformer 36.
  • the inverter circuit may comprise only one capacitor, instead of the two capacitors C1 and C2, which would be connected for example to the negative terminal of the supply circuit 34.
  • the rectification and filtering circuit 37 is of the conventional type and has an output resistance R at the terminals of which the bias voltage V p is taken .
  • the control circuit 32 comprises a first logic AND circuit 40 which has two inputs on one of which are applied the variable frequency pulses F supplied by the circuit 31 while the other input is connected to a first delay circuit 41 whose delay is ⁇ 1.
  • the output of the AND circuit 40 is connected, on the one hand, to a bistable circuit 43 and, on the other hand, to the first delay circuit 41 as well as to a second delay circuit 42 whose delay is ⁇ 2.
  • the output corresponding to state 1 of the bistable circuit 43 is connected to one of the two inputs of a second logic AND circuit 44 while the output corresponding to state 0 is connected to one of the two inputs of a third AND circuit logic 45.
  • the second input of AND circuits 44 and 45 is connected to the output of the second delay circuit 42.
  • the purpose of these pulses of frequency F is to alternately control the transistors T1 and T2 by means of circuit 32 so as to create current pulses whose rectification and filtering in circuit 37 leads to the desired voltage V p between terminals 33-a and 33-b.
  • This curve 81 takes account of the linearity faults of the system while the curve 80 is a theoretical curve.
  • a bias voltage V p desired by the practitioner or by the device for controlling the radiological device corresponds to a numerical code N p which, applied to counter 31, leads the latter to supply pulses 70 and 70 '(figure 4-a) at frequency F according to the correspondence given by curve 81 of figure 3-a.
  • the pulse 70 controls the delay circuit 41 to end the opening signal 71 (figure 4-c) so that the AND circuit 40 closes for a time ⁇ 1.
  • the pulse 70 also controls the delay circuit 42 so that it provides a signal T'1 of duration ⁇ 2 (figure 4-b) which makes passing the circuits AND 44 and 45. Only the circuit AND 44, which receives the signal state 1 of the bistable circuit 43, provides a signal T'1 making the transistor T1 conductive at time t o (FIG. 4-d).
  • This signal T'1 makes and keeps the transistor T1 conductive and a current i1 (figure 4-d) says positive, flows in the transistor T1, the coil L, the primary winding 36p of the transformer 36, the capacitors C1 and C2 and the supply circuit 34 (in fact i1 / 2 in each capacitor).
  • This current i1 gives rise to a voltage V (figure 4-e) of rectangular shape at the terminals of the primary winding 36p and this results in a current I (t) (figure 4-f) in the secondary winding 36s of the transformer 36, current of identical appearance to the current i1 flowing in the primary winding.
  • the current i1 charges the capacitor C2 and discharges the capacitor C1 and their charging voltage is opposed to the circulation of the current i1 so that the latter is canceled at time t1, that is to say before the end of signal T'1.
  • the capacitor C2 then discharges while the capacitor C1 charges and a current i2 (figure 4-d), said to be negative, flows in the capacitors C1 and C2, the primary winding 36p, the coil L, the diode D1 and the supply circuit 34 (in fact i2 / 2 in each capacitor).
  • the signal T'1 ends by the effect of the delay circuit 42 introducing a delay ⁇ 2 so that the AND circuits 44 and 45 are blocked.
  • the delay circuit 41 After the time t2 and more precisely after a delay ⁇ 1 from the end of the signal 71 (figure 4-c), the delay circuit 41 provides a signal 71 'which turns the AND circuit 40 on.
  • a pulse 70 ' is supplied by the circuit 31 and its front edge controls the change of state of the bistable circuit 43, which goes to state 0 , as well as the resetting of the delay circuits 41 and 42.
  • This reset has the effect of terminating the signal 71 'and of supplying the signal T'2 which opens the AND circuits 44 and 45.
  • the bistable circuit 43 is at state 0 , only the AND circuit 45 provides a signal output on terminal 32-b and a pulse is applied to the control electrode of transistor T2 at time t ' o to make it conductive.
  • a current i'1 said to be negative, then flows in the transistor T2, the circuit 34, the capacitors C1 and C2 (in fact i'1 / 2 in each condenser), the primary winding 36p of the transformer 36 and the coil L.
  • This negative current gives rise to a negative voltage V (figure 4-e) of rectangular shape across the terminals of the primary winding 36p and it results in a current I (t) negative (figure 4-f) in the secondary winding 36s of the transformer 36, current of identical appearance to the current i'1 circulating in the primary winding.
  • the negative current i'1 charges the capacitor C1 and discharges the capacitor C2 and their charging voltage is opposed to the circulation of the current i'1 so that the latter is canceled out at time t'1.
  • the capacitor C1 then discharges while the capacitor C2 charges and a positive current i'2 flows in the capacitors C1 and C2 (in fact i'2 / 2 in each capacitor), the primary winding 36p, the coil L, the diode D2 and the supply circuit 34.
  • This positive current gives rise to a positive rectangular voltage (FIG. 4-e) at the terminals of the primary winding 36p and, consequently, to a positive current I (t) (figure 4-f) in the secondary winding 36s.
  • the pulses which are thus created by the inverter circuit 35 are applied to the transformer 36 and are rectified and filtered in the circuit 37 and it appears at the terminals of the load resistor R a voltage V p corresponding to the frequency F determined by calibration.
  • the curves 80 'and 81' of the figure 4-b show the variations of the ratio V p / F according to the frequency F in correspondence with the curves 80 and 81 respectively of the figure 4-a. These curves and in particular the real curve 81 ′ resulting from the calibration are linear throughout the range.
  • the rectangular shape of the signals of the figure 4-e is due to the fact of the presence of the rectifying and filtering circuit 37 including / understanding diodes which, while becoming conducting, realize short-circuits.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)
  • Dc-Dc Converters (AREA)

Description

  • La présente invention concerne les dispositifs pour obtenir une tension continue dont la valeur est réglable dans une large gamme, lesdits dispositifs étant plus particulièrement adaptés à polariser un foyer d'un tube radiologique à une valeur choisie par le praticien mettant en oeuvre une installation radiologique. De tels dispositifs sont connus des documents US-A- 4, 541, 041 et GB-A- 2.045.019.
  • Un tube radiologique est généralement constitué comme une diode, c'est-à-dire par deux électrodes dont l'une, appelée cathode, émet des électrons tandis que l'autre, appelée anode, reçoit ces électrons sur une petite surface qui constitue la source de rayonnement X.
  • La cathode comporte un filament chauffé par un courant électrique qui constitue la source d'électrons. Quand une haute tension, fournie par un générateur, est appliquée aux bornes des deux électrodes, de façon que la cathode soit à un potentiel négatif, un courant dit anodique s'établit au travers du générateur et traverse l'espace entre la cathode et l'anode sous la forme d'un faisceau d'électrons.
  • Pour concentrer le faisceau d'électrons, une pièce métallique, appelée pièce de concentration, supportant le filament est isolée de ce dernier et portée à un potentiel négatif, dit de polarisation, par rapport audit filament. En outre, pour modifier la forme et donc la concentration du faisceau d'électrons, il est habituel de modifier ce potentiel de polarisation dans une large gamme, par exemple entre 300 et 3000 volts. Par ailleurs, il est à noter que la cathode est elle-même portée à une tension de l'ordre de -20 à -75 kilovolts par rapport à la masse, ce qui pose des problèmes d'isolement pour appliquer ce potentiel ou tension de polarisation.
  • L'invention concerne plus particulièrement un dispositif pour obtenir une tension de polarisation d'une pièce de concentration d'une cathode de tube à rayons X qui soit variable dans une large gamme de valeurs.
  • De tels dispositifs sont connus et, à titre indicatif, la figure 1 donne le schéma de principe d'un dispositif de l'art antérieur. Il comprend un circuit d'alimentation 10 qui fournit une tension continue E régulée et réglable à partir d'une tension alternative fournie par le secteur. La tension E est appliquée aux bornes d'un circuit onduleur 11 qui comprend un circuit hâcheur 12 et un circuit de commande 14.
  • Le signal alternatif fourni par le circuit onduleur 11 est appliqué à un transformateur élévateur de tension 15 dont l'enroulement secondaire est connecté à un circuit de redressement et filtrage 16. Ce circuit 16 fournit une tension continue Vs qui est appliquée entre la pièce de concentration et le filament du tube à rayons X.
  • Il est à remarquer que la tension Vs étant difficile à mesurer du fait du fort potentiel de mode commun (20 à 75 kilovolts), il est préférable de mesurer la tension E qui lui est sensiblement proportionnelle et de la réguler. A cet effet, la tension E est mesurée par un diviseur résistif comportant les résistances R1 et R2 et le signal divisé est appliqué à un circuit convertisseur tension/fréquence 20 qui reçoit, par ailleurs, un signal Vref correspondant à la tension que l'on souhaite obtenir entre la pièce de concentration et le filament du tube à rayons X. Le circuit convertisseur 20 fournit des impulsions de fréquence variable et/ou de durée variable qui commandent les commutateurs du circuit d'alimentation 10 de manière à modifier la tension de sortie E et donc modifier la tension Vs pour obtenir Vs = Vref.
  • De manière classique, le circuit hâcheur 12 comporte, par exemple, deux transistors 21 et 22 dont les ouvertures et fermetures sont commandées par le circuit de commande 14.
  • Le circuit de commande 14 est également un circuit convertisseur tension/fréquence semblable au circuit 20 mais dont la fréquence est fixe.
  • Les inconvénients de ce dispositif de l'art antérieur qui vient d'être décrit sont :
    • de nécessiter deux convertisseurs de puissance : le premier 20 pour réguler la tension E et le deuxième 14 pour l'onduler,
    • de commuter brutalement le courant dans les semiconducteurs, ce qui est source de parasites,
    • d'avoir une faible gamme de tensions de sortie car la tension E que l'on règle ne peut pas tendre vers zéro à cause des limitations en rapport cyclique du circuit hâcheur.
  • Le but de la présente invention est donc de réaliser un dispositif d'obtention d'une tension continue réglable quine présente pas les inconvénients précités.
  • L'invention concerne un dispositif d'obtention d'une tension continue réglable Vp caractérisé en ce qu'il comprend :
    • des moyens d'alimentation pour élaborer une tension continue E constante,
    • des moyens pour onduler ladite tension continue E de manière à obtenir des impulsions alternatives de fréquence F correspondant chacune à une quantité d'électricité constante d'une impulsion à la suivante,
    • un transformateur pour éléver la tension des impulsions alternatives,
    • des moyens pour redresser et filtrer lesdites impulsions alternatives élévées de manière à obtenir ladite tension continue Vp.
    • des moyens pour modifier la fréquence F desdites impulsions alternatives en fonction de la tension continue Vp que l'on souhaite obtenir.
  • Les moyens pour onduler ladite tension E comportent un circuit oscillant dont la fréquence de résonance est supérieure à la fréquence F.
  • La fréquence F est déterminée par étalonnage du dispositif en relevant la courbe Vp = f(F), courbe dont les caractéristiques sont enregistrées par un microprocesseur.
  • D'autres buts, caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :
    • la figure 1 est un schéma de principe d'un dispositif d'obtention d'une tension continue réglable selon l'art antérieur,
    • la figure 2 est un schéma de principe d'un dispositif d'obtention d'une tension continue réglable selon l'invention,
    • les figures 3-a et 3-b sont des diagrammes montrant d'une part une courbe d'étalonnage du dispositif et, d'autre part, la linéarité du dispositif selon l'invention.
    • les figures 4-a à 4-f sont des diagrammes permettant de comprendre le fonctionnement du dispositif selon l'invention,
  • Conformément au schéma fonctionnel de principe de la figure 2, le dispositif d'obtention d'une tension continue réglable selon l'invention comprend :
    • un microprocesseur 30 auquel est appliqué un signal de commande indiquant la valeur d'une tension continue Vp à obtenir et qui fournit un signal numérique Np indiquant une fréquence F caractéristique de la tension continue Vp à obtenir,
    • un compteur programmable 31 auquel est appliqué le signal numérique Np correspondant au signal Vp fourni par le microprocesseur 30 et qui fournit des impulsions de fréquence variable F selon la valeur de Np et donc de Vp,
    • un circuit de commande 32 auquel sont appliquées les impulsions de fréquence variable F et qui fournit sur ses sorties 32-a et 32-b des impulsions de commande des interrupteurs T1 et T2 d'un circuit onduleur 35, et
    • un circuit dit de puissance 33, comprenant le circuit onduleur 35, qui fournit sur ses bornes de sortie 33-a et 33-b la tension continue Vp.
  • Le circuit de puissance 33 comprend, outre le circuit onduleur 35, un premier circuit de redressement et de filtrage 34 qui, à partir d'une tension alternative e, fournit une tension continue régulée E alimentant les interrupteurs T1 et T2. Les impulsions fournies par le circuit onduleur 35 sont appliquées à l'enroulement primaire 36p d'un transformateur d'isolement 36 de type impulsionnel dont l'enroulement secondaire 36s est connecté à un circuit de redressement et filtrage 37 qui fournit la tension continue requise Vp.
  • Le circuit onduleur 35 comprend, comme on l'a indiqué ci-dessus, au moins deux interrupteurs T1 et T2 réalisés par des transistors à effet de champ selon la technologie métal-oxyde plus connus sous l'abréviation anglo-saxonne de transistors MOSFET. De par construction, ces transistors T1 et T2 comportent en parallèle chacun une diode D1 pour le transistor T1 et une diode D2 pour le transistor T2, diodes dont l'anode est connectée à la source S et la cathode connectée au drain D du transistor associé. La grille G du transistor T1 est connectée à la sortie 32-a du circuit de commande 32 tandis que la grille G du transistor T2 est connectée à la sortie 32-b du circuit de commande 32.
  • Le circuit onduleur comprend également un circuit résonant constitué de condensateurs C1 et C2 et d'une bobine L. Les condensateurs C1 et C2 sont connectés en série entre le drain D du transistor T1 et la source S du transistor T2 tandis que la bobine L est disposée dans le circuit primaire 36p du transformateur 36 et est connectée d'un côté directement à la source du transistor T1 et de l'autre côté au point commun C des condensateurs C1 et C2 par l'intermédiaire de l'enroulement primaire 36p du transformateur 36.
  • Dans une variante connue, le circuit onduleur peut ne comporter qu'un seul condensateur, au lieu des deux condensateurs C1 et C2, qui serait connecté par exemple à la borne négative du circuit d'alimentation 34.
  • Le circuit de redressement et de filtrage 37 est de type classique et présente une résistance de sortie R aux bornes de laquelle est prise la tension de polarisation Vp.
  • Le circuit de commande 32 comprend un premier circuit ET logique 40 qui comporte deux entrées sur l'une desquelles sont appliquées les impulsions de fréquence variable F fournies par le circuit 31 tandis que l'autre entrée est connectée à un premier circuit retardateur 41 dont le retard est Θ₁. La sortie du circuit ET 40 est connectée, d'une part, à un circuit bistable 43 et, d'autre part, au premier circuit retardateur 41 ainsi qu'à un deuxième circuit retardateur 42 dont le retard est Θ₂.
  • La sortie correspondant à l'état 1 du circuit bistable 43 est connectée à une des deux entrées d'un deuxième circuit ET logique 44 tandis que la sortie correspondant à l'état 0 est connectée à une des deux entrées d'un troisième circuit ET logique 45. La deuxième entrée des circuits ET 44 et 45 est connectée à la sortie du deuxième circuit retardateur 42.
  • Le microprocesseur 30 réalise la fonction : N p = f (V p )
    Figure imgb0001

    c'est-à-dire qu'il donne pour chaque valeur de la tension de polarisation Vp, souhaitée par le praticien ou par le dispositif de commande, un code numérique, par exemple à huit chiffres ou digits qui, appliqué au compteur 31, conduit ce dernier à fournir des impulsions de fréquence F. Ces impulsions de fréquence F ont pour but de commander alternativement les transistors T1 et T2 par l'intermédiaire du circuit 32 de manière à créer des impulsions de courant dont le redressement et le filtrage dans le circuit 37 conduisent à la tension Vp souhaitée entre les bornes 33-a et 33-b.
  • En d'autres termes, le microprocesseur 30 et le compteur 31 réalisent la fonction F = f' (Vp), fonction qui est obtenue par étalonnage et dont l'allure est donnée par la courbe 81 de la figure 3-a. Cette courbe 81 tient compte des défauts de linéarité du système tandis que la courbe 80 est une courbe théorique.
  • Le fonctionnement du dispositif selon l'invention sera maintenant expliqué à l'aide de la figure 2 et des diagrammes des figures 3 et 4. A une tension de polarisation Vp souhaitée par le praticien ou par le dispositif de commande de l'appareil radiologique correspond un code numérique Np qui, appliqué au compteur 31, conduit ce dernier à fournir des impulsions 70 et 70' (figure 4-a) à la fréquence F selon la correspondance donnée par la courbe 81 de la figure 3-a. Ces impulsions ont par exemple, une fréquence de 30 kilohertz pour obtenir Vp = 3000 volts et une durée d'une microseconde environ. Si l'on suppose que le circuit retardateur 41 fournit un signal d'ouverture 71, l'impulsion 70 commande le changement d'état du circuit bistable 43 qui passe, par exemple, à l'état 1. L'impulsion 70 commande le circuit retardateur 41 pour terminer le signal d'ouverture 71 (figure 4-c) de sorte que le circuit ET 40 se ferme pendant un temps Θ₁. L'impulsion 70 commande également le circuit retardateur 42 pour qu'il fournisse un signal T'1 de durée Θ₂ (figure 4-b) qui rend passant les circuits ET 44 et 45. Seul le circuit ET 44, qui reçoit le signal de l'état 1 du circuit bistable 43, fournit un signal T'1 rendant conducteur le transistor T1 au temps to (figure 4-d).
  • Ce signal T'1 rend et maintient conducteur le transistor T1 et un courant i₁ (figure 4-d) dit positif, circule dans le transistor T1, la bobine L, l'enroulement primaire 36p du transformateur 36, les condensateurs C1 et C2 et le circuit d'alimentation 34 (en fait i₁/2 dans chaque condensateur).
  • Ce courant i₁ donne naissance à une tension V (figure 4-e) de forme rectangulaire aux bornes de l'enroulement primaire 36p et il en résulte un courant I(t) (figure 4-f) dans l'enroulement secondaire 36s du transformateur 36, courant d'allure identique au courant i₁ circulant dans l'enroulement primaire.
  • Le courant i₁ charge le condensateur C2 et décharge le condensateur C1 et leur tension de charge s'oppose à la circulation du courant i₁ de sorte que ce dernier s'annule au temps t₁, c'est-à-dire avant la fin du signal T'1. Le condensateur C2 se décharge ensuite tandis que le condensateur C1 se charge et un courant i₂ (figure 4-d), dit négatif, circule dans les condensateurs C1 et C2, l'enroulement primaire 36p, la bobine L, la diode D1 et le circuit d'alimentation 34 (en fait i₂/2 dans chaque condensateur).
  • Ce courant négatif donne naissance à une tension rectangulaire négative (figure 4-e) aux bornes de l'enroulement primaire 36p et, par voie de conséquence, à un courant I(t) (figure 4-f) négatif dans l'enroulement secondaire 53. Lorsque le courant i₂ s'annule, l'impulsion est terminée.
  • Avant le temps t₂, le signal T'1 prend fin par l'effet du circuit retardateur 42 introduisant un retard Θ₂ de sorte que les circuits ET 44 et 45 sont bloqués.
  • Après le temps t₂ et plus précisément après un retard Θ₁ à compter de la fin du signal 71 (figure 4-c), le circuit retardateur 41 fournit un signal 71' qui rend passant le circuit ET 40.
  • Après un temps variable défini par la fréquence F, une impulsion 70' est fournie par le circuit 31 et son front avant commande le changement d'état du circuit bistable 43, qui passe à l'état 0, ainsi que la remise à zéro des circuits retardateurs 41 et 42.
  • Cette remise à zéro a pour effet de terminer le signal 71' et de fournir le signal T'2 qui ouvre les circuits ET 44 et 45. Comme le circuit bistable 43 est à l'état 0, seul le circuit ET 45 fournit un signal de sortie sur la borne 32-b et une impulsion est appliquée à l'électrode de commande du transistor T2 au temps t'o pour le rendre conducteur. Un courant i'₁, dit négatif, circule alors dans le transistor T2, le circuit 34, les condensateurs C1 et C2 (en fait i'₁/2 dans chaque condensateur), l'enroulement primaire 36p du transformateur 36 et la bobine L. Ce courant négatif donne naissance à une tension V négative (figure 4-e) de forme rectangulaire aux bornes de l'enroulement primaire 36p et il en résulte un courant I(t) négatif (figure 4-f) dans l'enroulement secondaire 36s du transformateur 36, courant d'allure identique au courant i'₁ circulant dans l'enroulement primaire.
  • Le courant i'₁ négatif charge le condensateur C1 et décharge le condensateur C2 et leur tension de charge s'oppose à la circulation du courant i'₁ de sorte que ce dernier s'annule au temps t'₁. Le condensateur C1 se décharge ensuite tandis que le condensateur C2 se charge et un courant i'₂ positif circule dans les condensateurs C1 et C2 (en fait i'₂/2 dans chaque condensateur), l'enroulement primaire 36p, la bobine L, la diode D2 et le circuit d'alimentation 34. Ce courant positif donne naissance à une tension rectangulaire positive (figure 4-e) aux bornes de l'enroulement primaire 36p et, par voie de conséquence, à un courant I(t) positif (figure 4-f) dans l'enroulement secondaire 36s. Lorsque le courant i'₂ s'annule, l'impulsion est terminée.
  • Les impulsions qui sont ainsi créées par le circuit onduleur 35 sont appliquées au transformateur 36 et sont redressées et filtrées dans le circuit 37 et il apparaît aux bornes de la résistance de charge R une tension Vp correspondant à la fréquence F déterminée par étalonnage.
  • Cette relation entre la fréquence F et la tension Vp résulte du fait que la charge électrique contenue dans chaque impulsion (figures 4-d et 4-f) est toujours la même quel que soit le point de fonctionnement à condition que la fréquence F soit inférieure à la fréquence du circuit résonant du circuit onduleur, ce qui signifie que le circuit onduleur est du type hyporésonant impulsionnel.
  • En effet, la charge électrique Q d'une impulsion (figure 4-d) est donnée par :
    Figure imgb0002

    avec
       E la tension d'alimentation,
       V la tension aux bornes de l'enroulement primaire 36p,
    Z= L/C
    Figure imgb0003
    l'impédance du circuit résonnant,
       avec C = C1 + C2,
    T= 2 π LC
    Figure imgb0004

    on en déduit Q = 2 CE c'est-à-dire une constante si E et C sont constants, ce qui est le cas car le circuit d'alimentation 34 fournit une tension régulée et la capacité C est fixée par construction.
  • Or le courant Ir qui circule dans la résistance de charge R est donné par : I r = Q x F
    Figure imgb0005

    de sorte que la tension Vp = RIr = R x Q x F, ce qui signifie que Vp est proportionnel à F car R et Q sont des constantes. Ceci correspond à la courbe en pointillés 80 de la figure 4-a. Cependant, en pratique, le phénomène n'est pas parfaitement linéaire et la courbe réelle est celle référencée 81. Pour que le dispositif selon l'invention fonctionne selon la courbe 81, il est nécessaire de réaliser un étalonnage en utilisant au moins deux points de fonctionnement, par exemple ceux définis par A et B sur la courbe 81.
  • Les courbes 80' et 81' de la figure 4-b montrent les variations du rapport Vp/F en fonction de la fréquence F en correspondance avec les courbes 80 et 81 respectivement de la figure 4-a. Ces courbes et notamment la courbe réelle 81' résultant de l'étalonnage est linéaire dans toute la gamme.
  • Dans la description du fonctionnement du circuit onduleur 35, on a indiqué que les courants i₁, i₂, i'₁ et i'₂ circulaient dans les condensateurs C1 et C2 mais il est clair que chacun de ces courants se divise en deux parties égales au point C, une moitié vers la branche contenant le condensateur C1 et l'autre moitié vers la branche contenant le condensateur C2.
  • La forme rectangulaire des signaux de la figure 4-e est due au fait de la présence du circuit de redressement et de filtrage 37 comportant des diodes qui, en devenant conductrices, réalisent des court-circuits.

Claims (3)

  1. Dispositif d'obtention d'une tension continue réglable Vp d'une pièce de concentration d'une cathode de tube à rayons X comprenant :
    - des moyens d'alimentation (33) pour élaborer une tension continue E constante,
    - des moyens (35) pour onduler ladite tension continue E de manière à obtenir des impulsions alternatives de fréquence F correspondant chacune à une quantité d'électricité constante d'une impulsion à la suivante, lesdits moyens (35) consistant en un circuit oscillant dont la fréquence de résonance est supérieure à la fréquence F,
    - un transformateur (36) pour éléver la tension des impulsions alternatives,
    - des moyens (37) pour redresser et filtrer lesdites impulsions alternatives élévées de manière à obtenir ladite tension continue Vp,
    - des moyens pour modifier la fréquence F desdites impulsions alternatives en fonction de la tension continue Vp que l'on souhaite obtenir, lesdits moyens comportant :
    - des moyens (31) pour déterminer par étalonnage la fréquence F desdites impulsions en fonction de la tension Vp à obtenir,
    - des moyens (32) pour élaborer des impulsions de commande à la fréquence F à partir de l'information de la valeur de ladite fréquence F, lesdites impulsions étant appliquées auxdits moyens pour onduler ladite tension continue E.
  2. Dispositif selon la revendication 1, caractérisé en ce que les moyens pour élaborer des impulsions de commande à la fréquence F comportent :
    - un circuit compteur (31) qui fournit des impulsions de fréquence F, et
    - un circuit logique (32) qui fournit des signaux de commande des moyens d'ondulation de la tension E dont la durée est supérieure à la demi-période mais inférieure à ladite période de résonance et dont la période de la répétition est au plus égale à ladite période de résonance.
  3. Dispositif selon la revendication 2, caractérisé en ce que le circuit logique (32) comprend :
    - un premier circuit ET (40) dont une des deux entrées est connectée à la sortie du circuit compteur (31),
    - un circuit bistable (43) dont l'entrée de commande est connectée à la sortie du premier circuit ET (40) de manière à changer d'état à chaque signal fournit par ce dernier,
    - un deuxième circuit ET (44) dont une des deux entrées est connectée à la sortie du circuit bistable (43) correspondant à l'état 1,
    - un troisième circuit ET (45) dont une des deux entrées est connectée à la sortie du circuit bistable (43) correspondant à l'état 0,
    - un premier circuit retardateur (41) dont l'entrée est connectée à la sortie du premier circuit ET (40) et dont la sortie est connectée à la deuxième entrée du premier circuit ET (40), et
    - un deuxième circuit retardeur (42) dont l'entrée est connectée à la sortie du premier circuit ET (40) et dont la sortie est connectée à l'autre entrée des deuxième et troisième circuits ET (44,45).
EP91402248A 1990-08-14 1991-08-14 Dispositif d'obtention d'une tension continue réglable Expired - Lifetime EP0471625B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9010348A FR2665999B1 (fr) 1990-08-14 1990-08-14 Dispositif d'obtention d'une tension continue reglable.
FR9010348 1990-08-14

Publications (2)

Publication Number Publication Date
EP0471625A1 EP0471625A1 (fr) 1992-02-19
EP0471625B1 true EP0471625B1 (fr) 1994-03-23

Family

ID=9399670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91402248A Expired - Lifetime EP0471625B1 (fr) 1990-08-14 1991-08-14 Dispositif d'obtention d'une tension continue réglable

Country Status (4)

Country Link
US (1) US5243509A (fr)
EP (1) EP0471625B1 (fr)
DE (1) DE69101476T2 (fr)
FR (1) FR2665999B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638260A (en) * 1995-05-19 1997-06-10 Electronic Measurements, Inc. Parallel resonant capacitor charging power supply operating above the resonant frequency
US5715155A (en) * 1996-10-28 1998-02-03 Norax Canada Inc. Resonant switching power supply circuit
FR2768241B1 (fr) * 1997-09-10 1999-12-03 Ge Medical Syst Sa Dispositif et procede de regulation a commande optimale d'un convertisseur a transistors
JP3673075B2 (ja) * 1998-03-09 2005-07-20 新電元工業株式会社 スイッチング電源装置
JP3322217B2 (ja) * 1998-07-21 2002-09-09 株式会社豊田自動織機 インバータ
WO2001044655A2 (fr) * 1999-12-17 2001-06-21 Fleck Carl M Interrupteur d'allumage controlable
JP5382139B2 (ja) * 2009-12-28 2014-01-08 トヨタ自動車株式会社 電源装置
DE102020212085A1 (de) * 2020-09-25 2022-03-31 Siemens Healthcare Gmbh System zur Regelung einer Hochspannung für Röntgenanwendungen, ein Röntgenerzeugungssystem und ein Verfahren zur Regelung einer Hochspannung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2908767A1 (de) * 1979-03-06 1980-09-18 Siemens Ag Roentgendiagnostikgenerator mit einem dem hochspannungstransformator vorgeschalteten wechselrichter
JPS5753100A (en) * 1980-09-13 1982-03-29 Toshiba Corp X-ray equipment
FR2507842A1 (fr) * 1981-06-12 1982-12-17 Gen Equip Med Sa Regulateur de tension a semi-conducteur et generateur de radiologie comportant un tel regulateur
NL8103265A (nl) * 1981-07-08 1983-02-01 Hollandse Signaalapparaten Bv Energieomzetter.
US4541041A (en) * 1983-08-22 1985-09-10 General Electric Company Full load to no-load control for a voltage fed resonant inverter
JPS61161698A (ja) * 1985-01-09 1986-07-22 Hitachi Medical Corp インバ−タ式x線装置
FR2577373B1 (fr) * 1985-02-12 1995-02-17 Thomson Cgr Alimentation haute tension continue, notamment pour emetteur de rayons x
DE3621803A1 (de) * 1986-06-28 1988-01-07 Philips Patentverwaltung Roentgengenerator
FR2629959B1 (fr) * 1988-04-08 1994-02-11 Thomson Cgr Procede de regulation de la tension d'un signal de tension, notamment pour tube a rayons x
FR2646972B1 (fr) * 1989-05-12 1992-01-03 Gen Electric Cgr Generateur haute tension a grande dynamique de puissance
JP2707465B2 (ja) * 1989-06-29 1998-01-28 スタンレー電気株式会社 インバータ装置

Also Published As

Publication number Publication date
FR2665999B1 (fr) 1994-01-28
DE69101476T2 (de) 1994-08-11
EP0471625A1 (fr) 1992-02-19
DE69101476D1 (de) 1994-04-28
US5243509A (en) 1993-09-07
FR2665999A1 (fr) 1992-02-21

Similar Documents

Publication Publication Date Title
FR2562284A1 (fr) Regulateur predictif de retour a modulation d'impulsions en duree
FR2745446A1 (fr) Circuit integre de correction de facteur de puissance
EP0471625B1 (fr) Dispositif d'obtention d'une tension continue réglable
EP0499589A1 (fr) Dispositif de mesure de courants
EP0471626B1 (fr) Dispositif d'alimentation et de régulation en courant d'un filament de cathode d'un tube radiogène
FR2702044A1 (fr) Circuit de traitement pour signal de sortie de capteur analogique résistif, notamment pour jauge de carburant sur véhicule automobile et systèmes équipés.
EP0278193B1 (fr) Circuit de mesure de la composante continue du courant parcourant l'enroulement primaire du transformateur de sortie d'un onduleur
EP0612141B1 (fr) Procédé et dispositif de commande de puissance pour un circuit comportant un onduleur à résonance
EP0011534B1 (fr) Procédé et dispositif de traitement d'un signal analogique, notamment pseudopériodique
EP0401067A1 (fr) Dispositif d'excitation pour actionneur électromagnétique
FR2685474A1 (fr) Circuit d'exploitation pour capteur inductif dont l'inductance depend de la grandeur a mesurer.
EP0480796B1 (fr) Dispositif d'obtention et de commutation de hautes tensions de polarisaion d'électrodes de tube à rayons X
US4648702A (en) Toner density detector and toner supplier
EP0241373A1 (fr) Dispositif d'alimentation en courant d'un filament de tube radiogène
CA1074862A (fr) Generateur de tres haute tension commutable
FR2472879A1 (fr) Circuit et procede d'isolement de signaux electriques
EP0038240B1 (fr) Alimentation continue et son utilisation pour alimenter un tube cathodique
EP0109871B1 (fr) Perfectionnements aux dispositifs de mesure de rayonnements ionisants
FR2538632A1 (fr) Procede et circuit de commande de transistor de puissance
EP0490711A1 (fr) Dispositif de mesure électrique à double configuration de branchement
US3988611A (en) Direct voltage power supply apparatus
EP0051007B1 (fr) Dispositif de balayage vertical et/ou horizontal à correction sur une partie de l'image, et récepteur de télévision comportant un tel dispositif
FR2684501A1 (fr) Dispositif d'alimentation en tension continue reguliere a convertisseur hyporesonant commande en dephasage retard.
FR2680297A1 (fr) Dispositif d'alimentation d'une charge non lineaire.
FR2672166A1 (fr) Dispositif pour obtenir une tension continue a faible ondulation residuelle.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE NL

17P Request for examination filed

Effective date: 19920320

17Q First examination report despatched

Effective date: 19930714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940323

REF Corresponds to:

Ref document number: 69101476

Country of ref document: DE

Date of ref document: 19940428

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050930

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301