EP0471266B1 - Use of oligomers, respectively cooligomers of (meth)acrylates esters and 1-alkenes as synthetic oils - Google Patents

Use of oligomers, respectively cooligomers of (meth)acrylates esters and 1-alkenes as synthetic oils Download PDF

Info

Publication number
EP0471266B1
EP0471266B1 EP91113123A EP91113123A EP0471266B1 EP 0471266 B1 EP0471266 B1 EP 0471266B1 EP 91113123 A EP91113123 A EP 91113123A EP 91113123 A EP91113123 A EP 91113123A EP 0471266 B1 EP0471266 B1 EP 0471266B1
Authority
EP
European Patent Office
Prior art keywords
degrees
carbon atoms
meth
weight
cooligomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91113123A
Other languages
German (de)
French (fr)
Other versions
EP0471266A1 (en
Inventor
Claudia Dr. Beyer
Rüdiger Dr. Jelitte
Horst Dr. Pennewiss
Heinz Jost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of EP0471266A1 publication Critical patent/EP0471266A1/en
Application granted granted Critical
Publication of EP0471266B1 publication Critical patent/EP0471266B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/28Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • C10M2209/0845Acrylate; Methacrylate used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • C10M2209/0863Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid used as base material

Definitions

  • the invention relates to the use of cooligomers of (meth) acrylic acid esters and ⁇ -olefins as synthetic oils in tribology.
  • Polymers obtained from ⁇ -olefins of different origins and with different polymerization processes were of particular interest. This is how polymers of ⁇ -olefins with 8-12 C atoms come in, which are obtained, for example, by means of Ziegler catalysts or catalysts for ionic polymerization, meaning due to their good VI and pour point values. Mixtures of such ⁇ -olefin oligomers with ester oils are said to have a relatively good compatibility with rubber materials. Another advantage described is the better miscibility of the olefin oligomer / ester mixtures with polar additives compared to the pure components.
  • cooligomers or copolymers of ⁇ -olefins with (meth) acrylic acid esters as mineral oil additives have attracted the interest of technology.
  • the included ⁇ -olefin greatly improves the thermal stability of the additives.
  • US Pat. No. 4,419,106 describes oil preparations which contain a hydrocarbon oil and a portion of a pour point depressant consisting of a copolymer of approx. 10-90% by weight alkyl acrylate units containing 8-20 alkyl carbon atoms and 90- Have 10% by weight of ⁇ -monoolefin units with 12-40 carbon atoms per 100% by weight of copolymer with a molecular weight M w of 1,000-100,000.
  • the narrow molecular weight range achieved and the high uniformity of the products are emphasized.
  • US Pat. No. 4,009,195 describes an oligomerization process in which a wide variety of (meth) acrylic acid derivatives, such as, for example, C1-C4-alkyl esters, in proportions of 1-35% by weight in addition to (meth) acrylic acid esters of C8-C34- Alkanols in proportions of 1-45% by weight are added continuously and at the same time to a mixture of radical initiators and 10-90% by weight of a 1-alkene having 4-32 C atoms in such a way that what occurs essentially immediately molar ratio of acid derivatives to 1-alkene in the reaction mixture is kept relatively constant in the range 0.001 to 0.2, the addition being intended to take place at a temperature which does not impair the oligomerization.
  • Copolymers containing isocyanate groups in the molecular weight range 500-10,000 can be prepared by solution polymerization of C1-C20-alkyl esters of (meth) acrylic acid and olefins with 1-alkenyl isocyanate (cf. DE-A 32 45 298).
  • 4,526,950 describes a preparation process for copolymers in which, starting from at least one ⁇ -olefin having at least 6 C atoms and at least one unsaturated carboxylic acid or derivatives which are copolymerizable with the olefins, in the presence of a radical Initiator, the mixture of the components is heated to at least 135 degrees C in the absence of solvents or diluents, none of the reactive monomers being used in excess in order to avoid a dilution effect.
  • SU-A 1 135 752 copolymers of decyl methacrylate and tetradecene with a molecular weight of 8,000 - 13,000 are claimed as lubricating oil thickeners.
  • EP-A 217 602 discloses oil additives based on ethylene copolymers, inter alia with ethylenically unsaturated mono- or dicarboxylic acids or their esters, which have a molecular weight M n of ⁇ 1,000.
  • both classes of substances used have disadvantages. Due to their non-polar structure, the polyolefins show too little solubility when they are to be used together with polar components, for example high-pressure (EP) additives. Because of their polar structure, the esters are known to have serious disadvantages, such as problems with the miscibility with mineral oils, non-mineral oil-based base oils and poor seal compatibility. In addition, the ester function can give rise to hydrolysis, with the result that that the corrosion of metal parts is promoted. Attempts are made to compensate for the disadvantages mentioned by mixing hydrocarbons with esters, but this requires a considerable amount of development work in practice.
  • EP high-pressure
  • the synthetic oil mixtures used are to have dispersing activity for, for example, black sludge, it is necessary to add low or high molecular weight substances (for example "Ashless Dispersants" of the polyisobutenylsuccinimide type or VI improvers provided with polar groups). This means a considerable effort.
  • these mostly nitrogen-containing compounds can cause sealing problems.
  • the cooligomers CM used according to the invention contain component C), dispersing efficiency is achieved without the notorious problems which occur when using, for example, nitrogen-containing monomers, in particular seal incompatibility.
  • the components A), B) and C) in the cooligomers CM should be 100% complementary.
  • the cooligomers used according to the invention are by definition in the molecular weight range Mw 1,500 to 25,000 (determination by gel permeation chromatography, cf. HF Mark et al. Encyclopedia of Polymer Science & Technology Vol. 10, 1-19, J. Wiley 1987).
  • Examples of representatives of component A) include: Butene-1, Penten-1, Hexen-1, Hepten-1, Octen-1, Nonen-1, Decen-1, Undecen-1, Dodecen-1, Tridecen-1, Tetradecen-1, Pentadecen-1, Hexadecen- 1, Heptadecen-1, Octadecen-1, Nonadecen-1, Eicosen-1, Heneicosen-1, Docosen-1, Trocosen-1, Tetracosen-1, Pentacosen-1, Hexacosen-1, Heptacosen-1, Octacosen-1, Nonacosen-1, Triaconten-1, Hentriaconten-1, Dotriaconten-1, or the like. Also suitable are branched-chain alkenes, such as vinylcyclohexane, 3,3-dimethylbutene-1, 3-methylbutene-1, diisobutylene-4-methylpentene-1 or the
  • alkenes-1 having 10 to 32 carbon atoms which are obtained in the polymerization of ethylene, propylene or mixtures thereof, these materials in turn being obtained from hydrocracked materials.
  • component A) of the cooligomers CM stands for 1-decene, dodecene or for tetradecene is particularly preferred. Decen is very particularly preferred, when it is used the best low-temperature behavior (pour point) is registered.
  • cooligomers CM in which component B) consists of (meth) acrylic acid esters with 4 to 24, preferably 8 to 22, carbon atoms in the alkyl radical or mixtures thereof.
  • component B) consists of (meth) acrylic acid esters with 4 to 24, preferably 8 to 22, carbon atoms in the alkyl radical or mixtures thereof.
  • Examples include the monomers: Butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, isodecyl acrylate, decyl acrylate, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, Dodecylpentadecylacrylat, hexadecyl, Heptadecylacrylat, octadecyl acrylate, Cetylstearylacrylat, oleyl, Nonadecylacrylat, eicosyl acrylate
  • Cooligomeric CM of the type described are synthetic oil components of the prior art quite comparable in terms of characteristics such as viscosities, VI index, low-temperature behavior, evaporation and oxidation stability and other practical properties. However, they have the following advantages over the prior art described: Due to the combination of polar monomers with nonpolar, there are no problems with miscibility Mineral oils, poly- ⁇ -olefins (PAO), esters or other basic liquids as well as no solubility problems with additives. The sealing behavior is absolutely neutral. Corrosion due to acid formation can also be excluded.
  • oligomers are used as a synthetic oil component, which also contain component C) in a sufficient amount, there is good dispersing action, sealing problems being avoided due to the oxygen-containing dispersing group and there being no loss in the shear stability of the mixture, as occurs, for example, when using high molecular weight VI - Improvers occur.
  • Synthetic oils are understood to mean in particular the polyalphaolefins (PAO) preferred by technology and the organic esters (OE) such as dicarboxylic acid and polyol esters (cf. EI Williamson, J. Synth. Lubr. 2 (4) 329 - 341 (1986); 3 (1) 45 - 53 (1987); A. Plagge, Tribologie und Schmtechnikstechnik 34, 148 - 156 (1987); Ullmann, 4th edition, Vol. 20, loc. cit. pp. 514-821). Crack olefins primarily serve as starting materials for the polyalphaolefins, predominantly with a boiling point between 30 and 300 degrees C.
  • the polyalphaolefins generally correspond to the general formula III where R is an alkyl radical, in particular having 6-10 carbon atoms, with a molecular weight of usually 300-6000 ( M w).
  • Organic esters are, on the one hand, the esters of dicarboxylic acids with 3 to 17 carbon atoms, such as adipic acid, azelaic acid and sebacic acid with primary alcohols - the most important alcohol component in this case are polyalkylene glycols - on the other hand, the monocarboxylic acid esters, especially the esters of C6-C12 carboxylic acids with in particular branched alcohols, especially those with the neopentyl skeleton such as Neopentyl alcohol, trimethylol propane and pentaerythritol.
  • the ester oils have a high adsorption capacity on metal surfaces and therefore good lubricity, but at the price of relative sensitivity to (hydrolytic) degradation, so that corrosive degradation products can occur.
  • the viscosities range from values around 5.9 [mm2 / s at 38 degrees C] for the neopentyl glycol ester of n-C7 acid to 16.2 for the corresponding ester of n-C12 acid, or from the value 12, 1 for the trimethylolpropane ester of n-C6 acid up to 36.4 for the corresponding ester of n-C12 acid.
  • the cooligomers of the claimed type can be prepared under certain conditions by radical-induced polymerization, for example by thermal polymerization and with the addition of a suitable initiator or a redox system.
  • the polymerization can be carried out in the absence of a solvent or in the presence of suitable solvents.
  • all conventional solvents identified as polymerization media can be used, as well as mineral oils, HC oils, PAO, esters or oligomers that have already been produced.
  • the 1-alkene according to component A) can be specified in a suitable reaction vessel and brought to a suitable reaction temperature. Generally, a temperature range from 80 to 200 degrees C, in particular 160 ⁇ 20 degrees C are considered to be a suitable range.
  • component B) or B) + C) is added in the proportions provided for this purpose in the same temperature range, preferably in the feed over a certain period, for example 0.25-10 hours, for example within 5 1/2 hours. It is advisable to allow the batch to polymerize for a while, usually a few hours - as a starting point, approx. 6 hours - It has proven advantageous to add the initiator throughout the reaction, for example in portions at about thirty minute intervals or continuously in accordance with Art an admission procedure.
  • Known radical initiators can be used as initiators (cf.Kirk-Othmer, 3rd Ed., Vol. 13, pg. 355 - 373, Wiley Interscience 1981; Rauch-Puntigam loc.cit.).
  • the total amount of initiator used is generally in the range 0.1-10% by weight, preferably in the range 0.1-5% by weight, based on the total of the monomers.
  • Initiators are expediently chosen whose decay characteristics are adapted to the polymerization modalities.
  • a guideline is a half-life of the initiator (in benzene) at the reaction temperature of approximately 0.25 hours.
  • These include, for example, peroxidic initiators such as di-tert-butyl peroxide.
  • the addition of 0.001-0.005 mol of initiator per portion should be given when adding in portions. According to the available results, there is an extensive conversion of the monomers, for example by 98%, so that in many cases there is no need to separate off the monomers or even further work up. If the requirements for the flash point are high, for example, the residual monomer must be removed.
  • the products generally are colorless, oily liquids that mix completely with mineral oil, PAO, HC oils and ester oils.
  • reaction temperature but 140 degrees C initiator used: tert-butyl perbenzoate
  • reaction temperature 140 degrees C initiator: tert-butyl perbenzoate 4.8% by weight.
  • reaction temperature 126 degrees C initiator: tert-butyl personoate 4.8% by weight.
  • Example 4 Carried out as in Example 4, but in addition to 1 mol of 1-decene in the initial charge, 280 g of synthetic oil prepared in accordance with Example 4 were used as the solvent.
  • methacrylate component is butyl methacrylate, feed time 3.5 hours.
  • PAO40 in PAO 6 Oligomer from Example 18 in PAO6 formulation 45% PAO 40 14.2% commercial DI package 40.8% PAO6 45% oligomer 14.2% commercial DI package 40.8 PAO6 ⁇ (100 degrees C) 19.5 mm2 / s 18.7 mm2 / s VI 147 148 SAE class 10W-50 10W-50 VW TD result 63.7 points, all rings free 67.2 points, all rings free

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention relates to synthetic oils containing, in addition to conventional components, 5 to 100% by weight of cooligomers of (meth)acrylates and 1-alkenes, the cooligomers CM being composed of A) 0 - 75% by weight of at least one 1-alkene having 4 to 32 carbon atoms in the molecule, B) 20 - 100% by weight of at least one (meth)acrylate of the formula I <IMAGE> wherein R represents hydrogen or methyl and R1 represents a straight-chain or branched alkyl radical or a cycloalkyl radical having 4 to 32 carbon atoms in the alkyl radical and C) 0 - 65% by weight of a (meth)acrylate of the formula II <IMAGE> wherein R' represents hydrogen or methyl and R2 represents an alkyl radical which is substituted by at least one hydroxyl group and has 2 to 6 carbon atoms, or represents a radical <IMAGE> wherein R3 and R4 denote hydrogen or methyl, R5 denotes hydrogen or a straight-chain or branched alkyl radical having 1 to 40 carbon atoms and n denotes an integer from 1 to 60, with the proviso that, when n represents 1, R5 simultaneously represents a straight-chain or branched alkyl radical having 1-40 carbon atoms.

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft die Verwendung von Cooligomeren aus (Meth)acrylsäureestern und α-Olefinen, als Syntheseöle in der Tribologie.The invention relates to the use of cooligomers of (meth) acrylic acid esters and α-olefins as synthetic oils in tribology.

Stand der TechnikState of the art

Die oft extremen Anforderungen, welche moderne Maschinen in Bezug auf die Schmierung stellen, haben zur Entwicklung synthetischer Schmiermittel (Syntheseöle) geführt. (Vgl. Ullmanns Encyclopädie der Techn. Chemie, 4. Auflage, Bd. 20, 503 - 530, Verlag Chemie 1981). Die gebräuchlichen Syntheseöle gehören verschiedenen Substanzklassen an; neben Polyethern, Estern (von ein- und mehrbasischen Carbonsäuren mit ein- und mehrbasischen Alkoholen), Phosphorsäure und Phosphonsäureestern, Siliconen, Silicatestern, Polyhalogenkohlenstoffen und fluorierten Estern sind dies Polyolefine und Alkylaromaten.The often extreme demands that modern machines place on lubrication have led to the development of synthetic lubricants (synthetic oils). (See Ullmann's Encyclopedia of Techn. Chemistry, 4th Edition, Vol. 20, 503-530, Verlag Chemie 1981). The common synthetic oils belong to different classes of substances; in addition to polyethers, esters (of mono- and polybasic carboxylic acids with mono- and polybasic alcohols), phosphoric acid and phosphonic acid esters, silicones, silicate esters, polyhalocarbons and fluorinated esters, these are polyolefins and alkyl aromatics.

Besonderes Interesse fanden Polymerisate die ausgehend von α-Olefinen verschiedener Provenienzen und mit unterschiedlichem Polymerisationsverfahren gewonnen werden. So kommt Polymerisaten von α-Olefinen mit 8-12 C-Atomen, die z.B. mittels Ziegler-Katalysatoren oder Katalysatoren für die ionische Polymerisation gewonnen werden, Bedeutung zu aufgrund ihrer guten VI- und Stockpunkt-Werte.
Gemischen derartiger α-Olefinoligomere mit Esterölen wird eine relativ gute Verträglichkeit mit Kautschukmaterialien Zugeschrieben. Ein weiterer beschriebener Vorteil ist die im Vergleich zu den reinen Komponenten bessere Mischbarkeit der Olefinoligomeren/Ester-Gemische mit polaren Additiven. Weiter sind Cooligomere bzw. Copolymere von α-Olefinen mit (Meth)acrylsäureestern als Mineralöladditive auf das Interesse der Technik gestoßen. Im Vergleich zu den länger gebräuchlichen reinen Polymethacrylat-Polymeren wird durch das eingeschlossene α-Olefin die thermische Stabilität der Additive stark verbessert.
Polymers obtained from α-olefins of different origins and with different polymerization processes were of particular interest. This is how polymers of α-olefins with 8-12 C atoms come in, which are obtained, for example, by means of Ziegler catalysts or catalysts for ionic polymerization, meaning due to their good VI and pour point values.
Mixtures of such α-olefin oligomers with ester oils are said to have a relatively good compatibility with rubber materials. Another advantage described is the better miscibility of the olefin oligomer / ester mixtures with polar additives compared to the pure components. Furthermore, cooligomers or copolymers of α-olefins with (meth) acrylic acid esters as mineral oil additives have attracted the interest of technology. Compared to the longer common pure polymethacrylate polymers, the included α-olefin greatly improves the thermal stability of the additives.

In der US-A 4 419 106 werden Ölzubereitungen beschrieben, die ein Kohlenwasserstofföl und einen Anteil an einem Pour Point Depressant bestehend aus einem Copolymer aus ca. 10 - 90 Gew.-% Alkylacrylateinheiten enthaltend 8 - 20 Alkyl-C-Atome und 90 - 10 Gew.-% α-Monoolefineinheiten mit 12 - 40 C-Atomen pro 100 Gew.-% Copolymer mit einem Molekulargewicht Mw von 1 000 - 100 000 besitzen.US Pat. No. 4,419,106 describes oil preparations which contain a hydrocarbon oil and a portion of a pour point depressant consisting of a copolymer of approx. 10-90% by weight alkyl acrylate units containing 8-20 alkyl carbon atoms and 90- Have 10% by weight of α-monoolefin units with 12-40 carbon atoms per 100% by weight of copolymer with a molecular weight M w of 1,000-100,000.

In der US-A 3 968 148 bzw. der DE-A 22 43 064 werden z.B. Oligomere dieses Typs beschrieben, die aus drei Monomergruppen aufgebaut sind sowie deren Anwendung als VI-Verbesserer. Beansprucht werden Oligomere aus:

ca. 10 - 90 Gew.-%
eines 1-Alkens mit 4 bis 32 C-Atomen
ca. 1 - 35 Gew.-%
eines oder mehrerer Alkyl(meth)acrylsäureester mit 8 - 34 C-Atomen im Alkylrest und
ca. 1 - 35 Gew.-%
eines oder mehrerer Alkylester der (Meth)acrylsäure oder homologer, endständig ungesättigter Carbonsäuren mit 1 - 4 C-Atomen im Alkylrest.
US Pat. No. 3,968,148 and DE-A 22 43 064, for example, describe oligomers of this type which are composed of three monomer groups and their use as VI improvers. Oligomers from:
approx. 10 - 90% by weight
of a 1-alkene with 4 to 32 C atoms
approx. 1 - 35% by weight
one or more alkyl (meth) acrylic acid esters with 8 - 34 C atoms in the alkyl radical and
approx. 1 - 35% by weight
one or more alkyl esters of (meth) acrylic acid or homologous, terminally unsaturated carboxylic acids with 1 - 4 carbon atoms in the alkyl radical.

Das Molekulargewicht derartiger Oligomerer liegt vorzugsweise bei M n = 1 000 bis 4 000. Betont wird der erreichte enge Molekulargewichtsbereich und die hohe Einheitlichkeit der Produkte.
Weiter wird in der US-A 4 009 195 ein Oligomerisierungsverfahren beschrieben, bei dem die verschiedensten (Meth)acrylsäurederivate, wie z.B. C1-C4-Alkylester in Anteilen von 1 - 35 Gew.-% neben (Meth)acrylsäureestern von C8-C34-Alkanolen in Anteilen von 1 - 45 Gew.-% kontinuierlich und gleichzeitig zu einem Gemisch von Radikal-Initiatoren und 10 - 90 Gew.-% eines 1-Alkens mit 4 - 32 C-Atomen derart zugesetzt werden, daß das im wesentlichen sofort eintretende molare Verhältnis Säure-Derivate zu 1-Alken im Reaktionsansatz relativ konstant im Bereich 0,001 zu 0,2 gehalten wird, wobei der Zusatz bei einer Temperatur erfolgen soll, welche die Oligomerisation nicht beeinträchtigt.
The molecular weight of such oligomers is preferably about M n = 1,000 to 4,000. The narrow molecular weight range achieved and the high uniformity of the products are emphasized.
Furthermore, US Pat. No. 4,009,195 describes an oligomerization process in which a wide variety of (meth) acrylic acid derivatives, such as, for example, C1-C4-alkyl esters, in proportions of 1-35% by weight in addition to (meth) acrylic acid esters of C8-C34- Alkanols in proportions of 1-45% by weight are added continuously and at the same time to a mixture of radical initiators and 10-90% by weight of a 1-alkene having 4-32 C atoms in such a way that what occurs essentially immediately molar ratio of acid derivatives to 1-alkene in the reaction mixture is kept relatively constant in the range 0.001 to 0.2, the addition being intended to take place at a temperature which does not impair the oligomerization.

Aus derselben Prioritätsanmeldung wie die vorgenannte US-A ist auch die US-A 3 994 958 hervorgegangen, bei der ein Oligomer, dessen Zusammensetzung von der vorgenannten US-A umfaßt wird, nachträglich mit einem Alkylendiamin zur Reaktion gebracht wurde um zu dispergierwirksamen VI-Verbesserern zu kommen.
Weiter werden in der DE-A 32 23 694 Copolymere aus α,β-ungesättigten Dicarbonsäureestern mit α-Olefinen beansprucht. Die α,β-ungesättigten Dicarbonsäureester enthalten dabei definitionsgemäß als Alkoholkomponente geradkettige oder verzweigte Monoalkohole mit 3 - 10 Kohlenstoffatomen; die α-Olefine weisen 10 - 16 Kohlenstoffatome auf. Die Copolymeren können gegebenenfalls vernetzt sein und ihr Pour-point soll zwischen -60 und 0 Grad C liegen.
The same priority application as the aforementioned US-A also gave rise to US-A 3 994 958, in which an oligomer whose composition is different from the aforementioned US-A is subsequently reacted with an alkylenediamine in order to arrive at dispersing VI improvers.
Furthermore, copolymers of α, β-unsaturated dicarboxylic acid esters with α-olefins are claimed in DE-A 32 23 694. The α, β-unsaturated dicarboxylic acid esters contain, by definition, straight-chain or branched monoalcohols with 3 to 10 carbon atoms as the alcohol component; the α-olefins have 10-16 carbon atoms. The copolymers can optionally be crosslinked and their pour point should be between -60 and 0 degrees C.

Copolymere mit einem Gehalt von Isocyanat-Gruppen im Molgewichtsbereich 500 - 10 000 können durch Lösungspolymerisation von C1-C20-Alkylestern der (Meth)acrylsäure und Olefinen mit 1-Alkenylisocyanat hergestellt werden (vgl. DE-A 32 45 298). In der US-A 4 526 950 wird ein Herstellungsverfahren für Copolymere beschrieben, bei dem ausgehend von mindestens einem α-Olefin mit mindestens 6 C-Atomen und mindestens einer ungesättigten Carbonsäure bzw. Derivaten, die mit den Olefinen copolymerisierbar sind, in Gegenwart eines Radikal-Initiators die Mischung aus den Komponenten in Abwesenheit von Lösungs- oder Verdünnungsmitteln auf mindestens 135 Grad C erhitzt wird, wobei keines der reaktiven Monomeren im Überschuß zur Anwendung kommt, um eine Verdünnungwirkung zu vermeiden. Weiter werden in der SU-A 1 135 752 Copolymerisate aus Decylmethacrylat und Tetradecen mit einem Molgewicht von 8 000 - 13 000 als Schmierölverdicker beansprucht.Copolymers containing isocyanate groups in the molecular weight range 500-10,000 can be prepared by solution polymerization of C1-C20-alkyl esters of (meth) acrylic acid and olefins with 1-alkenyl isocyanate (cf. DE-A 32 45 298). US Pat. No. 4,526,950 describes a preparation process for copolymers in which, starting from at least one α-olefin having at least 6 C atoms and at least one unsaturated carboxylic acid or derivatives which are copolymerizable with the olefins, in the presence of a radical Initiator, the mixture of the components is heated to at least 135 degrees C in the absence of solvents or diluents, none of the reactive monomers being used in excess in order to avoid a dilution effect. In SU-A 1 135 752 copolymers of decyl methacrylate and tetradecene with a molecular weight of 8,000 - 13,000 are claimed as lubricating oil thickeners.

Aus der EP-A 217 602 sind Öladditive auf Basis von Ethylencopolymerisaten u.a. mit ethylenisch ungesättigten Mono- oder Dicarbonsäuren bzw. deren Estern bekannt, die ein Molgewicht M n von < 1 000 besitzen.EP-A 217 602 discloses oil additives based on ethylene copolymers, inter alia with ethylenically unsaturated mono- or dicarboxylic acids or their esters, which have a molecular weight M n of <1,000.

Aufgabe und LösungTask and solution

Der vorstehend geschilderte Stand der Technik läßt erkennen, daß der Klasse der Methacrylat/α-Olefin-Copolymeren und ihrer Anwendung als Mineralöl-Additive relativ viel Aufmerksamkeit geschenkt wurde. Diese Verbindungsklasse stand jedoch bislang in keinem unmittelbaren technologischen Zusammenhang mit den sogenannten "Syntheseölen".
Syntheseöle des Standes der Technik sind gewöhnlich aus Kohlenwasserstoffen wie z.B. Oligomeren von 1-Decen und/oder Estern beispielsweise Dicarbonsäureestern aufgebaut. (Ullmann's Encyclopädie der Techn. Chemie, 4. Auflage, Bd. 20, 503 - 530, Verlag Chemie 1981).
The above-described prior art shows that the class of methacrylate / α-olefin copolymers and their use as mineral oil additives have received relatively much attention. However, this class of compounds has so far had no direct technological connection with the so-called "synthetic oils".
Prior art synthetic oils are usually composed of hydrocarbons such as oligomers of 1-decene and / or esters, for example dicarboxylic acid esters. (Ullmann's Encyclopedia of Techn. Chemistry, 4th edition, Vol. 20, 503 - 530, Verlag Chemie 1981).

Beide verwendeten Substanzklassen besitzen jedoch Nachteile. Die Polyolefine zeigen aufgrund ihrer unpolaren Struktur zu geringe Löslichkeit, wenn sie zusammen mit polaren Komponenten beispielsweise Hochdruck-(EP)-Additiven eingesetzt werden sollen.
Die Ester weisen aufgrund ihrer polaren Struktur bekanntermaßen gravierende Nachteile auf, wie z.B. Probleme bei der Mischbarkeit mit Mineralölen, nicht-mineralölbasischen Grundölen sowie schlechte Dichtungsverträglichkeit. Darüber hinaus kann die Esterfunktion Anlaß zur Hydrolyse geben mit dem Ergebnis, daß die Korrosion von Metallteilen gefördert wird. Man versucht, die genannten Nachteile durch Abmischung von Kohlenwasserstoffen mit Estern zu kompensieren, was in der Praxis jedoch einen beträchtlichen Entwicklungsaufwand voraussetzt.
Sollen die verwendeten Syntheseöl-Aufmischungen Dispergierwirksamkeit für z.B. Schwarzschlamm aufweisen, ist es nötig, zusätzlich nieder- oder hochmolekulare Substanzen zuzufügen (z.B. "Ashless Dispersants" vom Polyisobutenylsuccinimid-Typ oder VI-Verbesserer versehen mit polaren Gruppen). Dies bedeutet einen beträchtlichen Aufwand. Hinzu tritt, daß diese meist stickstoffhaltigen Verbindungen Dichtungsprobleme verursachen können. Sofern die erfindungsgemäß eingesetzten Cooligomeren CM die Komponente C) enthalten, wird Dispergierwirksamkeit erreicht, ohne die notorischen Probleme, die bei Verwendung beispielsweise stickstoffhaltiger Monomerer auftreten, insbesondere Dichtungsunverträglichkeit.
However, both classes of substances used have disadvantages. Due to their non-polar structure, the polyolefins show too little solubility when they are to be used together with polar components, for example high-pressure (EP) additives.
Because of their polar structure, the esters are known to have serious disadvantages, such as problems with the miscibility with mineral oils, non-mineral oil-based base oils and poor seal compatibility. In addition, the ester function can give rise to hydrolysis, with the result that that the corrosion of metal parts is promoted. Attempts are made to compensate for the disadvantages mentioned by mixing hydrocarbons with esters, but this requires a considerable amount of development work in practice.
If the synthetic oil mixtures used are to have dispersing activity for, for example, black sludge, it is necessary to add low or high molecular weight substances (for example "Ashless Dispersants" of the polyisobutenylsuccinimide type or VI improvers provided with polar groups). This means a considerable effort. In addition, these mostly nitrogen-containing compounds can cause sealing problems. If the cooligomers CM used according to the invention contain component C), dispersing efficiency is achieved without the notorious problems which occur when using, for example, nitrogen-containing monomers, in particular seal incompatibility.

Es wurde nun gefunden, daß die (Meth)acrylsäureester-α-Olefin-Cooligomeren der vorliegenden Erfindung die Anforderungen der Technik in besonderem Maße erfüllen.It has now been found that the (meth) acrylic acid ester-α-olefin cooligomers of the present invention particularly meet the requirements of the art.

Die vorliegende Erfindung betrifft die Verwendung von Cooligomeren CM aufgebaut aus:

  • A) 10 - 40 Gew.-% mindestens eines 1-Alkens mit 4 bis 32 Kohlenstoffatomen, vorzugsweise 10 bis 14 Kohlenstoffatomen im Molekül
  • B) 40 - 90 Gew.-% mindestens eines (Meth)acrylsäureesters der Formel I
    Figure imgb0001
    worin R für Wasserstoff oder Methyl und R₁ für einen unverzweigten und/oder verzweigten Alkylrest oder einen Cycloalkylrest mit 4 bis 32 Kohlenstoffatomen, vorzugsweise 8 bis 20 Kohlenstoffatomen im Alkylrest
  • C) 0 - 65 Gew.-%, vorzugsweise 5 bis 40 Gew.-% eines (Meth)acrylsäureesters der Formel II
    Figure imgb0002
    worin R' für Wasserstoff oder Methyl und R₂ für einen mit mindestens einer Hydroxylgruppe substituierten Alkylrest mit 2 bis 6 Kohlenstoffatomen oder für einen Rest
    Figure imgb0003
    worin R₃ und R₄ Wasserstoff oder Methyl, R₅ Wasserstoff oder einen gegebenenfalls verzweigten Alkylrest mit 1 bis 40, vorzugsweise 1 bis 20 Kohlenstoffatomen und n eine ganze Zahl von 1 bis 60 bedeutet, mit der Maßgabe, daß, wenn n für 1 steht, R₅ gleichzeitig ausschließlich für einen gegebenenfalls verzweigten Alkylrest mit 1 bis 40 Kohlenstoffatomen steht, wobei die Cooligomeren ein Molekulargewicht Mw im Bereich 1 500 bis 25 000 besitzen, als Syntheseöle in der Tribologie.
The present invention relates to the use of cooligomers CM composed of:
  • A) 10-40% by weight of at least one 1-alkene with 4 to 32 carbon atoms, preferably 10 to 14 carbon atoms in the molecule
  • B) 40-90% by weight of at least one (meth) acrylic acid ester of the formula I.
    Figure imgb0001
    wherein R represents hydrogen or methyl and R₁ represents an unbranched and / or branched alkyl radical or a cycloalkyl radical having 4 to 32 carbon atoms, preferably 8 to 20 carbon atoms in the alkyl radical
  • C) 0-65% by weight, preferably 5 to 40% by weight, of a (meth) acrylic acid ester of the formula II
    Figure imgb0002
    wherein R 'for hydrogen or methyl and R₂ for an alkyl radical having 2 to 6 carbon atoms substituted by at least one hydroxyl group or for a radical
    Figure imgb0003
    wherein R₃ and R₄ are hydrogen or methyl, R₅ is hydrogen or an optionally branched alkyl radical having 1 to 40, preferably 1 to 20 carbon atoms and n is an integer from 1 to 60, with the proviso that when n is 1, R₅ simultaneously stands exclusively for an optionally branched alkyl radical having 1 to 40 carbon atoms, the cooligomers having a molecular weight M w in the range from 1,500 to 25,000, as synthetic oils in tribology.

Die Bestandteile A), B) und C) in den Cooligomeren CM sollen sich zu 100 % ergänzen.
Die erfindungsgemäß verwendeten Cooligomeren liegen definitionsgemäss im Molekulargewichtsbereich Mw 1 500 bis 25 000 (Bestimmung durch Gelpermeationschromatographie, vgl. H.F. Mark et al. Encyclopedia of Polymer Science & Technology Vol. 10, 1 - 19, J. Wiley 1987).
The components A), B) and C) in the cooligomers CM should be 100% complementary.
The cooligomers used according to the invention are by definition in the molecular weight range Mw 1,500 to 25,000 (determination by gel permeation chromatography, cf. HF Mark et al. Encyclopedia of Polymer Science & Technology Vol. 10, 1-19, J. Wiley 1987).

Beispielhaft für Vertreter der Komponente A) seien etwa genannt:
Buten-1, Penten-1, Hexen-1, Hepten-1, Octen-1, Nonen-1, Decen-1, Undecen-1, Dodecen-1, Tridecen-1, Tetradecen-1, Pentadecen-1, Hexadecen-1, Heptadecen-1, Octadecen-1, Nonadecen-1, Eicosen-1, Heneicosen-1, Docosen-1, Trocosen-1, Tetracosen-1, Pentacosen-1, Hexacosen-1, Heptacosen-1, Octacosen-1, Nonacosen-1, Triaconten-1, Hentriaconten-1, Dotriaconten-1, oder dergleichen. Geeignet sind ferner verzweigt-kettige Alkene, wie beispielsweise Vinylcyclohexan, 3,3-Dimethylbuten-1, 3-Methylbuten-1, Diisobutylen-4-methylpenten-1 oder dergleichen.
Examples of representatives of component A) include:
Butene-1, Penten-1, Hexen-1, Hepten-1, Octen-1, Nonen-1, Decen-1, Undecen-1, Dodecen-1, Tridecen-1, Tetradecen-1, Pentadecen-1, Hexadecen- 1, Heptadecen-1, Octadecen-1, Nonadecen-1, Eicosen-1, Heneicosen-1, Docosen-1, Trocosen-1, Tetracosen-1, Pentacosen-1, Hexacosen-1, Heptacosen-1, Octacosen-1, Nonacosen-1, Triaconten-1, Hentriaconten-1, Dotriaconten-1, or the like. Also suitable are branched-chain alkenes, such as vinylcyclohexane, 3,3-dimethylbutene-1, 3-methylbutene-1, diisobutylene-4-methylpentene-1 or the like.

Ferner eignen sich Alkene-1 mit 10 bis 32 Kohlenstoffatomen, die bei der Polymerisation von Ethylen, Propylen oder Mischungen davon anfallen, wobei diese Materialien ihrerseits aus hydrogecrackten Materialien gewonnen werden.
Besonders bevorzugt ist die Ausführungsart bei der die Komponente A) der Cooligomeren CM für 1-Decen, Dodecen oder für Tetradecen steht. Ganz besonders bevorzugt ist Decen, bei dessen Verwendung das beste Tieftemperaturverhalten (Stockpunkt) registriert wird.
Also suitable are alkenes-1 having 10 to 32 carbon atoms which are obtained in the polymerization of ethylene, propylene or mixtures thereof, these materials in turn being obtained from hydrocracked materials.
The embodiment in which component A) of the cooligomers CM stands for 1-decene, dodecene or for tetradecene is particularly preferred. Decen is very particularly preferred, when it is used the best low-temperature behavior (pour point) is registered.

Weiter sind von besonderem Interesse Cooligomere CM worin die Komponente B) aus (Meth)acrylsäureestern mit 4 - 24, vorzugsweise 8 - 22 Kohlenstoffatomen im Alkylrest bzw. aus Gemischen derselben besteht.
Genannt seien z.B. die Monomeren:
Butylacrylat, 2-Äthylhexylacrylat, Cyclohexylacrylat, Isodecylacrylat, Decylacrylat, Undecylacrylat, Dodecylacrylat, Tridecylacrylat, Tetradecylacrylat, Pentadecylacrylat, Dodecylpentadecylacrylat, Hexadecylacrylat, Heptadecylacrylat, Octadecylacrylat, Cetylstearylacrylat, Oleylacrylat, Nonadecylacrylat, Eicosylacrylat, Cetyleicosylacrylat, Stearyleicosylacrylat, Docosylacrylat, Eicosyltetratriacontylacrylat bzw. die entsprechenden Methacrylate.
Hervorgehoben seien Alkylmethacrylate mit ≧ C10 im Alkylrest mit einem höheren Iso-Anteil. Erwähnt seien z.B. C12-C15-Alkylester der Methacrylsäure mit ca. 60 - 90 % Iso-Anteil sowie Isodecylmethacrylat, wobei sich ein hoher Verzweigungsgrad günstig auf das Tieftemperaturverhalten, inclusive den Stockpunkt auswirkt und eine gewisse C-Zahlverteilung das Viskositäts-Temperaturverhalten verbessert.
Also of particular interest are cooligomers CM in which component B) consists of (meth) acrylic acid esters with 4 to 24, preferably 8 to 22, carbon atoms in the alkyl radical or mixtures thereof.
Examples include the monomers:
Butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, isodecyl acrylate, decyl acrylate, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, Dodecylpentadecylacrylat, hexadecyl, Heptadecylacrylat, octadecyl acrylate, Cetylstearylacrylat, oleyl, Nonadecylacrylat, eicosyl acrylate, Cetyleicosylacrylat, Stearyleicosylacrylat, Docosyl acrylate, or the corresponding methacrylates Eicosyltetratriacontylacrylat .
Emphasis should be given to alkyl methacrylates with ≧ C10 in the alkyl radical with a higher iso content. C12-C15-alkyl esters of methacrylic acid with approx. 60 - 90% iso content and isodecyl methacrylate should be mentioned, whereby a high degree of branching has a favorable effect on the low-temperature behavior, including the pour point, and a certain C number distribution improves the viscosity-temperature behavior.

Die als Syntheseöle verwendeten
Cooligomere CM der beschriebenen Art sind Syntheseölbestandteilen des Standes der Technik durchaus vergleichbar in Bezug auf Kenndaten wie Viskositäten, VI-Index, Tieftemperatur-Verhalten, Verdampfungs- und Oxidationsstabilität und weitere praxisrelevante Eigenschaften.
Gegenüber dem beschriebenen Stand der Technik weisen sie jedoch folgende Vorteile auf:
Aufgrund der Kombination von polaren Monomeren mit unpolaren gibt es keinerlei Mischbarkeitsprobleme mit Mineralölen, Poly-α-Olefinen (PAO), Estern oder anderen Grundflüssigkeiten sowie keinerlei Löslichkeitsprobleme mit Additiven. Das Dichtungsverhalten ist absolut neutral. Korrosion aufgrund von Säurebildung kann ebenfalls ausgeschlossen werden.
Darüber hinaus wurde überraschenderweise gefunden, daß Syntheseöl-Aufmischungen der Cooligomeren CM z.B. mit Polyolefinen und/oder Estern einen deutlich gegenüber den Einzelkomponenten erhöhten VI-Index aufweisen, was auf den Einfluß des Oligomers zurückzuführen ist. Weiterhin bewirkt die Coooligomerkomponente CM, daß deutlich niedrigere Tieftemperatur-Viskositäten als z.B. mit synthetischen Kohlenwasserstoffen möglich sind. (Gemessen im Cold Cranking Simulator, siehe Beispiel 12) Das Verhalten bei starker thermisch-oxidativer Belastung ist trotz teilweise vorhandener Rest-Doppel-Bindungen ausgezeichnet (Beispiel 18, VW-TD-Motortest, Vergleich mit PAO-Formulierung).
Werden Oligomere als Syntheseölbestandteil verwendet, die auch Komponente C) in ausreichender Menge beinhalten, so ist gute Dispergierwirkung gegeben, wobei aufgrund der sauerstoffhaltigen dispergierenden Gruppe Dichtungsprobleme vermieden werden und es keine Einbußen in der Scherstabilität der Aufmischung gibt, wie sie z.B. bei der Verwendung hochmolekularer VI-Verbesserer auftreten.
The used as synthetic oils
Cooligomeric CM of the type described are synthetic oil components of the prior art quite comparable in terms of characteristics such as viscosities, VI index, low-temperature behavior, evaporation and oxidation stability and other practical properties.
However, they have the following advantages over the prior art described:
Due to the combination of polar monomers with nonpolar, there are no problems with miscibility Mineral oils, poly-α-olefins (PAO), esters or other basic liquids as well as no solubility problems with additives. The sealing behavior is absolutely neutral. Corrosion due to acid formation can also be excluded.
In addition, it has surprisingly been found that mixtures of synthetic oils in the cooligomers CM, for example with polyolefins and / or esters, have a VI index which is significantly higher than that of the individual components, which is due to the influence of the oligomer. Furthermore, the coooligomer component CM has the effect that significantly lower low-temperature viscosities are possible than, for example, with synthetic hydrocarbons. (Measured in the Cold Cranking Simulator, see Example 12) The behavior in the case of strong thermal-oxidative stress is excellent in spite of the partial double bonds present (Example 18, VW-TD engine test, comparison with PAO formulation).
If oligomers are used as a synthetic oil component, which also contain component C) in a sufficient amount, there is good dispersing action, sealing problems being avoided due to the oxygen-containing dispersing group and there being no loss in the shear stability of the mixture, as occurs, for example, when using high molecular weight VI - Improvers occur.

All dies hat zur Konsequenz, daß die Kenndaten für die verschiedenen Mineralölspezifikationen ohne oder mit einem geringeren Anteil an hochmolekularen VI-Verbesserern erreichbar sind. Hierdurch ergeben sich u.a. Vorteile bei der Scherstabilität. Weiter verringert sich die Gefahr der Bildung von Ablagerungen.All of this has the consequence that the characteristic data for the various mineral oil specifications can be achieved with little or no proportion of high-molecular VI improvers. This results in advantages in shear stability, among other things. The risk of deposits forming is also reduced.

Für die besonders vorteilhafte Abmischung mit anderen Syntheseölen gilt: Unter "Syntheseölen" seien insbesondere die von der Technik bevorzugten Polyalphaolefine (PAO) sowie die organischen Ester (OE) wie Dicarbonsäure-und Polyolester verstanden (vgl. E.I. Williamson, J. Synth. Lubr. 2(4) 329 - 341 (1986); 3 (1) 45 - 53 (1987); A. Plagge, Tribologie und Schmierungstechnik 34, 148 - 156 (1987); Ullmann, 4. Auflage, Bd. 20, loc.cit. S. 514 - 821).
Als Ausgangsmaterialien für die Polyalphaolefine dienen primär Crack-olefine, vorwiegend mit Siedepunkt zwischen 30 und 300 Grad C. Die Polyalphaolefine entsprechen in der Regel der allgemeinen Formel III

Figure imgb0004

worin R für einen Alkylrest, insbesondere mit 6 - 10 Kohlenstoffatomen steht, bei einem Molgewicht von gewöhnlich 300 - 6 000 (Mw).The following applies to the particularly advantageous blending with other synthetic oils: “Synthetic oils” are understood to mean in particular the polyalphaolefins (PAO) preferred by technology and the organic esters (OE) such as dicarboxylic acid and polyol esters (cf. EI Williamson, J. Synth. Lubr. 2 (4) 329 - 341 (1986); 3 (1) 45 - 53 (1987); A. Plagge, Tribologie und Schmierungstechnik 34, 148 - 156 (1987); Ullmann, 4th edition, Vol. 20, loc. cit. pp. 514-821).
Crack olefins primarily serve as starting materials for the polyalphaolefins, predominantly with a boiling point between 30 and 300 degrees C. The polyalphaolefins generally correspond to the general formula III
Figure imgb0004

where R is an alkyl radical, in particular having 6-10 carbon atoms, with a molecular weight of usually 300-6000 ( M w).

Als organische Ester (OE) seien einerseits die Ester von Dicarbonsäuren mit 3 bis 17 C-Atomen wie der Adipinsäure, Azelainsäure und Sebacinsäure mit primären Alkoholen genannt - als wichtigste Alkoholkomponente haben in diesem Fall Polyalkylenglykole zu gelten - andererseits die Monocarbonsäureester, insbesondere die Ester von C6-C12-Carbonsäuren mit insbesondere verzweigten Alkoholen, speziell solchen mit dem Neopentyl-Gerüst wie Neopentylalkohol, Trimethylolpropan und Pentaerythrit. Die Esteröle weisen eine hohe Adsorptionsfähigkeit auf Metalloberflächen und damit gutes Schmiervermögen auf, allerdings um den Preis relativer Empfindlichkeit gegenüber (hydrolytischem) Abbau, so daß korrosive Abbauprodukte auftreten können.
Die Viskositäten reichen z.B. von Werten um 5,9 [mm²/s bei 38 Grad C] für den Neopentylglykolester der n-C7-Säure bis zu 16,2 für den entsprechenden Ester der n-C12-Säure, bzw. vom Wert 12,1 für den Trimethylolpropanester der n-C6-Säure bis zum Wert 36,4 für den entsprechenden Ester der n-C12-Säure.
Organic esters (OE) are, on the one hand, the esters of dicarboxylic acids with 3 to 17 carbon atoms, such as adipic acid, azelaic acid and sebacic acid with primary alcohols - the most important alcohol component in this case are polyalkylene glycols - on the other hand, the monocarboxylic acid esters, especially the esters of C6-C12 carboxylic acids with in particular branched alcohols, especially those with the neopentyl skeleton such as Neopentyl alcohol, trimethylol propane and pentaerythritol. The ester oils have a high adsorption capacity on metal surfaces and therefore good lubricity, but at the price of relative sensitivity to (hydrolytic) degradation, so that corrosive degradation products can occur.
The viscosities range from values around 5.9 [mm² / s at 38 degrees C] for the neopentyl glycol ester of n-C7 acid to 16.2 for the corresponding ester of n-C12 acid, or from the value 12, 1 for the trimethylolpropane ester of n-C6 acid up to 36.4 for the corresponding ester of n-C12 acid.

Herstellung der Cooligomeren CMProduction of the cooligomers CM

Wie aus dem Stande der Technik bekannt, lassen sich die Cooligomeren des beanspruchten Typs unter bestimmten Voraussetzungen durch radikalinduzierte Polymerisation herstellen, beispielsweise durch thermische Polymerisation und unter Zugabe eines geeigneten Initiators bzw. eines Redoxsystems. Die Polymerisation kann in Abwesenheit eines Lösungsmittels aber auch in Anwesenheit geeigneter Lösungsmittel durchgeführt werden. Es können demnach alle herkömmlichen als Polymerisationsmedien ausgewiesenen Lösungsmittel verwendet werden, sowie auch Mineralöle, HC-Öle, PAO, Ester oder bereits hergestelltes Oligomer. Dabei kann z.B. das 1-Alken gemäß Komponente A) in einem geeigneten Reaktionsgefäß vorgegeben und auf eine geeignete Reaktionstemperatur gebracht werden. Im allgemeinen kann ein Temperaturbereich von 80 bis 200 Grad C, insbesondere 160 ± 20 Grad C als zweckmäßiger Bereich gelten. Dazu gibt man im gleichen Temperaturbereich, vorzugsweise im Zulauf über einen gewissen Zeitraum, beispielsweise 0,25 - 10 Stunden, beispielsweise innerhalb 5 1/2 Stunden die Komponente B) bzw. B) + C) in den dafür vorgesehenen Anteilen zu. Zweckmäßig läßt man noch einige Zeit, in der Regel einige Stunden - als Anhalt seien ca. 6 Stunden genannt - im Batch auspolymerisieren Als vorteilhaft hat es sich erwiesen, den Initiator während der gesamten Reaktion zuzusetzen z.B. portionsweise in etwa dreißigminütigen Abständen oder auch kontinuierlich nach Art eines Zulaufverfahrens. Als Initiatoren kommen an sich bekannte Radikalstarter infrage (vgl. Kirk-Othmer, 3rd. Ed., Vol. 13, pg. 355 - 373, Wiley Interscience 1981; Rauch-Puntigam loc.cit.). Die insgesamt verwendeten Initiatormengen liegen in der Regel im Bereich 0,1 - 10 Gew.-%, bevorzugt im Bereich 0,1 - 5 Gew.-% bezogen auf die Gesamtheit der Monomeren. Zweckmäßig werden Initiatoren gewählt, deren Zerfallscharakteristika den Polymerisationsmodalitäten angepaßt sind. Als Richtwert sei eine Halbwertszeit des Initiators (in Benzol) bei der Reaktionstemperatur von ungefähr 0,25 Stunden genannt. Dazu gehören z.B. peroxidische Initiatoren, wie etwa Di-tert.Butylperoxid. Als Anhalt sei wiederum die Zugabe von 0,001 - 0,005 mol Initiator pro Portion bei portionsweiser Zugabe angegeben. Nach vorliegenden Ergebnissen tritt eine weitgehende Umsetzung der Monomeren beispielsweise um 98 % ein, so daß sich in vielen Fällen eine Abtrennung der Monomeren, ja selbst eine weitergehende Aufarbeitung erübrigt. Sind die Anforderungen z.B. an den Flammpunkt hoch, muß das Restmonomere entfernt werden.As is known from the prior art, the cooligomers of the claimed type can be prepared under certain conditions by radical-induced polymerization, for example by thermal polymerization and with the addition of a suitable initiator or a redox system. The polymerization can be carried out in the absence of a solvent or in the presence of suitable solvents. Accordingly, all conventional solvents identified as polymerization media can be used, as well as mineral oils, HC oils, PAO, esters or oligomers that have already been produced. For example, the 1-alkene according to component A) can be specified in a suitable reaction vessel and brought to a suitable reaction temperature. Generally, a temperature range from 80 to 200 degrees C, in particular 160 ± 20 degrees C are considered to be a suitable range. To this end, component B) or B) + C) is added in the proportions provided for this purpose in the same temperature range, preferably in the feed over a certain period, for example 0.25-10 hours, for example within 5 1/2 hours. It is advisable to allow the batch to polymerize for a while, usually a few hours - as a starting point, approx. 6 hours - It has proven advantageous to add the initiator throughout the reaction, for example in portions at about thirty minute intervals or continuously in accordance with Art an admission procedure. Known radical initiators can be used as initiators (cf.Kirk-Othmer, 3rd Ed., Vol. 13, pg. 355 - 373, Wiley Interscience 1981; Rauch-Puntigam loc.cit.). The total amount of initiator used is generally in the range 0.1-10% by weight, preferably in the range 0.1-5% by weight, based on the total of the monomers. Initiators are expediently chosen whose decay characteristics are adapted to the polymerization modalities. A guideline is a half-life of the initiator (in benzene) at the reaction temperature of approximately 0.25 hours. These include, for example, peroxidic initiators such as di-tert-butyl peroxide. As an indication, the addition of 0.001-0.005 mol of initiator per portion should be given when adding in portions. According to the available results, there is an extensive conversion of the monomers, for example by 98%, so that in many cases there is no need to separate off the monomers or even further work up. If the requirements for the flash point are high, for example, the residual monomer must be removed.

Die Produkte stellen i.a. farblose, ölige Flüssigkeiten dar, die sich vollständig mit Mineralöl, PAO, HC-Ölen und Esterölen mischen.The products generally are colorless, oily liquids that mix completely with mineral oil, PAO, HC oils and ester oils.

Die folgenden Beispiele dienen zur Erläuterung der Erfindung:
Dabei werden die physikalischen Daten anhand folgender Normen bestimmt: (Vgl. Ullmann 4. Aufl. Bd. 20 loc.cit, F.H. Mark et al. Vol. 10. loc.cit).

Viskosität:
η (100 Grad C und 40 Grad C) (nach DIN 51 562 bzw. ASTM D 445 im Ubbelohde-Kapillar-Viskosimeter)
: VIB Errechnet aus der 40- und 100 Grad-Viskosität des Grundöls
Stockpunkt:
im Stockpunkt-Automaten nach DIN 51 583,
Molgewicht:
(durch Gelchromatographie gegen PMMA als Standard)
Br-Zahl:
nach DIN 51 774
Noack-Zahl:
nach DIN 51 581
Uneinheitlichkeit:
Figure imgb0005
Die im folgenden verwendete Abkürzung "AMA" steht für Alkylmethacrylate, "PAO" steht für Polyalphaolefin, "TMA-OD-Ester" steht für den Ester von Trimethylolpropan mit Adipinsäure.The following examples serve to illustrate the invention:
The physical data are determined using the following standards: (See Ullmann 4th ed. Vol. 20 loc.cit, FH Mark et al. Vol. 10. loc.cit).
Viscosity:
η (100 degrees C and 40 degrees C) (according to DIN 51 562 or ASTM D 445 in the Ubbelohde capillary viscometer)
: VIB Calculated from the 40 and 100 degree viscosity of the base oil
Pour point:
in the pour point automat according to DIN 51 583,
Molecular weight:
(by gel chromatography against PMMA as standard)
Br number:
according to DIN 51 774
Noack number:
according to DIN 51 581
Inconsistency:
Figure imgb0005
The abbreviation "AMA" used below stands for alkyl methacrylates, "PAO" stands for polyalphaolefin, "TMA-OD-Ester" stands for the ester of trimethylolpropane with adipic acid.

BEISPIELEEXAMPLES Herstellung der Syntheseöl-BestandteileProduction of synthetic oil components Beispiel 1example 1

1 mol 1-Decen (140 g) wird im Reaktionsgefäß auf 160 Grad C erhitzt. Ein Gemisch aus 0,5 mol Isodecylmethacrylat (113 g) und 0,5 mol C12-C15-Alkylmethacrylat mit 60 % Iso-Anteil (136 g) wird nun während 4 Stunden zulaufen gelassen. Nach Ende des Zulaufs wird noch 12 Stunden im Batch auspolymerisiert. Während der gesamten Reaktionszeit von hier 16 Stunden wird mit Ausnahme der letzten Stunde in 30-minütigen Abständen Di-tert-butylperoxid als Initiator zugegeben (hier 30 Portionen, Gesamtmenge 2,8 Gew.-% bezogen auf die Monomeren).
Nach Ende der Reaktion liegt der Umsatz der Monomeren bei ca. 98 %.
Das Produkt ist eine farblose, ölige Flüssigkeit, die vollständig mit Mineralölen, Poly-Olefinen oder Esterölen mischbar ist.
1 mol of 1-decene (140 g) is heated to 160 degrees C in the reaction vessel. A mixture of 0.5 mol of isodecyl methacrylate (113 g) and 0.5 mol of C12-C15-alkyl methacrylate with 60% iso content (136 g) is then run in for 4 hours. After the end of the feed, the batch is polymerized for a further 12 hours. During the entire reaction time of 16 hours here, with the exception of the last hour, di-tert-butyl peroxide is added as an initiator at 30-minute intervals (here 30 portions, total amount 2.8% by weight based on the monomers).
At the end of the reaction, the conversion of the monomers is approximately 98%.
The product is a colorless, oily liquid that is completely miscible with mineral oils, polyolefins or ester oils.

Stoffdaten:Substance data:

η (100 Grad C) = 45,1 mm²/s,
η (40 Grad C) = 489,0 mm²/s
VIB = 146
Stockpunkt = -43,2 Grad C
Mw = 4 000
Mn = 1 790 U = 1,23
Verdampfungsverlust nach Noack = 4 - 5 Gew.-%
η (100 degrees C) = 45.1 mm² / s,
η (40 degrees C) = 489.0 mm² / s
VIB = 146
Pour point = -43.2 degrees C.
M w = 4,000
M n = 1 790 U = 1.23
Evaporation loss according to Noack = 4 - 5% by weight

Beispiel 2Example 2

Durchführung wie in Beispiel 1, aber Zulauf der Methacrylat-Mischung während 1,5 Stunden.Carried out as in Example 1, but the methacrylate mixture was fed in over 1.5 hours.

Stoffdaten:Substance data:

η (100 Grad C) = 94,9 mm²/s,
η (40 Grad C) = 1 210,8 mm²/s,
VIB = 164
Stockpunkt = -33,6 Grad C
Mw = 8 330
Mn = 2 280
U = 2,65
Monomer-Umsatz = 95 %
η (100 degrees C) = 94.9 mm² / s,
η (40 degrees C) = 1 210.8 mm² / s,
VIB = 164
Pour point = -33.6 degrees C.
M w = 8,330
M n = 2,280
U = 2.65
Monomer conversion = 95%

Beispiel 3Example 3

Wie Beispiel 1, Reaktionstemperatur aber 140 Grad C, verwendeter Initiator: tert.-ButylperbenzoatAs example 1, reaction temperature but 140 degrees C, initiator used: tert-butyl perbenzoate

Stoffdaten:Substance data:

η (100 Grad C) = 87,8 mm²/s
η (40 Grad C) = 1 188,3 mm²/s
VIB = 154
Stockpunkt = -34,7 Grad C
Mw = 6 890
Mn = 2 240
U = 2,00
Monomer-Umsatz = 97 %.
η (100 degrees C) = 87.8 mm² / s
η (40 degrees C) = 1 188.3 mm² / s
VIB = 154
Pour point = -34.7 degrees C.
M w = 6 890
M n = 2,240
U = 2.00
Monomer conversion = 97%.

Beispiel 4Example 4

2 mol 1-Decen (280 g) werden im Reaktionsgefäß auf 160 Grad C erhitzt. 1 mol Isodecylmethacylat (227 g) wird bei dieser Temperatur während 5 Stunden zulaufen gelassen. Nach Ende des Zulaufs wird noch 6 Stunden im Batch nachpolymerisiert. Während der gesamten Reaktionszeit von 11 Stunden wird mit Ausnahme der letzten Stunde in 30-minütigen Abständigen Di-tert-butylperoxid als Initiator zugegeben (hier 20 Portionen insgesamt 4,3 Gew.-% bez. auf die Monomeren).
Nach Ende der Reaktion liegt der Umsatz der Monomeren bei ca. 92 %.
2 mol of 1-decene (280 g) are heated to 160 degrees C in the reaction vessel. 1 mol of isodecyl methacrylate (227 g) is run in at this temperature for 5 hours. After the end of the feed, the batch is polymerized for a further 6 hours. During the entire reaction time of 11 hours, with the exception of the last hour, di-tert-butyl peroxide is added as initiator in 30-minute intervals (here 20 portions totaling 4.3% by weight, based on the monomers).
After the reaction has ended, the conversion of the monomers is approximately 92%.

Stoffdaten:Substance data:

η (100 Grad C) = 25,9 mm²/s
η (40 Grad C) = 250,3 mm²/s
VIB = 134
Stockpunkt = -48,4 Grad C
Mw = 2 240
Mn = 1 370
U = 0,64
η (100 degrees C) = 25.9 mm² / s
η (40 degrees C) = 250.3 mm² / s
VIB = 134
Pour point = -48.4 degrees C.
M w = 2 240
M n = 1,370
U = 0.64

Beispiel 5Example 5

Wie Beispiel 4, aber Isodecylmethacrylat/Decen 1 : 1 mol, Gesamt-Initiator-Menge 2,8 Gew.-%.As example 4, but isodecyl methacrylate / decene 1: 1 mol, total amount of initiator 2.8% by weight.

Stoffdaten:Substance data:

η (100 Grad C) = 47,6 mm²/s
η (40 Grad C) = 603,8 mm²/s
VIB = 132
Stockpunkt = -38,9 Grad C
Mw = 3120
Mn = 1 610
U = 0,94
η (100 degrees C) = 47.6 mm² / s
η (40 degrees C) = 603.8 mm² / s
VIB = 132
Pour point = -38.9 degrees C.
M w = 3120
M n = 1,610
U = 0.94

Beispiel 6Example 6

Wie Beispiel 4, aber Isodecylmethacrylat/Decen im Verhältnis 1 : 0,25 mol-Verhältnis, Gesamt-Initiator-Menge = 2,8 Gew.-%Like example 4, but isodecyl methacrylate / decene in a ratio of 1: 0.25 mol ratio, total amount of initiator = 2.8% by weight

Stoffdaten:Substance data:

η (100 Grad C) = 424,6 mm²/s
η (40 Grad C) = 1 219,7 mm²/s
VIB = 170
Stockpunkt = -10,7 Grad C
Mw = 12 300
Mn = 2 890
U = 3,26
Monomer-Umsatz = 98 %
η (100 degrees C) = 424.6 mm² / s
η (40 degrees C) = 1 219.7 mm² / s
VIB = 170
Pour point = -10.7 degrees C.
M w = 12,300
M n = 2,890
U = 3.26
Monomer conversion = 98%

Beispiel 7Example 7

Wie Beispiel 6, aber Zulauf des Isodecylmethacrylats während 2,5 Stunden, Gesamt-Initiatormenge = 2,8 Gew.-%As example 6, but the isodecyl methacrylate is fed in over 2.5 hours, total amount of initiator = 2.8% by weight

Stoffdaten:Substance data:

η (100 Grad C) = 888,2 mm²/s
η (40 Grad C) = 27162 mm²/s
VIB = 206
Stockpunkt: (zu viskos)
Mw = 24 800
Mn = 3 480
U = 6,12
Monomer-Umsatz > 99 %
η (100 degrees C) = 888.2 mm² / s
η (40 degrees C) = 27162 mm² / s
VIB = 206
Pour point: (too viscous)
M w = 24,800
M n = 3,480
U = 6.12
Monomer conversion> 99%

Beispiel 8Example 8

Wie Beispiel 5, aber Reaktionstemperatur 140 Grad C, Initiator: tert.-Butylperbenzoat 4,8 Gew.-%.As example 5, but reaction temperature 140 degrees C, initiator: tert-butyl perbenzoate 4.8% by weight.

Stoffdaten:Substance data:

η = (100 Grad C) = 130,7 mm²/s
η = (40 Grad C) = 2 335,1 mm²/s
VIB = 147
Stockpunkt = -25,9 Grad C
Mw = 6 690
Mn = 2 200
U = 2,04
Monomer-Umsatz = 96 %
η = (100 degrees C) = 130.7 mm² / s
η = (40 degrees C) = 2 335.1 mm² / s
VIB = 147
Pour point = -25.9 degrees C.
M w = 6 690
M n = 2,200
U = 2.04
Monomer conversion = 96%

Beispiel 9Example 9

Wie Beispiel 5, aber Reaktionstemperatur 126 Grad C, Initiator: tert.Butylpernonoat 4,8 Gew.-%.As example 5, but reaction temperature 126 degrees C, initiator: tert-butyl personoate 4.8% by weight.

Stoffdaten:Substance data:

η (100 Grad C) = 460,1 mm²/s
η (40 Grad C) = 12321,7 mm²/s
VIB = 180
Stockpunkt = -8,5 Grad C
Mw = 11 800
Mn = 2 560
U = 2,31
Monomer-Umsatz = 88 %
η (100 degrees C) = 460.1 mm² / s
η (40 degrees C) = 12321.7 mm² / s
VIB = 180
Pour point = -8.5 degrees C.
M w = 11,800
M n = 2,560
U = 2.31
Monomer conversion = 88%

Beispiel 10Example 10

Durchführung wie Beispiel 4, aber zusätzlich zu 1 mol 1-Decen in der Vorlage noch 280 g nach Beispiel 4 hergestelltes Syntheseöl als Lösungsmittel verwendet.Carried out as in Example 4, but in addition to 1 mol of 1-decene in the initial charge, 280 g of synthetic oil prepared in accordance with Example 4 were used as the solvent.

Stoffdaten:Substance data:

η (100 Grad C) = 28,0 mm²/s
η (40 Grad C) = 294,0 mm²/s
VIB = 127
Stockpunkt = -44,5 Grad C
Mw = 2 180
Mn = 1 350
U = 0,61
Monomer-Umsatz = 98 %
η (100 degrees C) = 28.0 mm² / s
η (40 degrees C) = 294.0 mm² / s
VIB = 127
Pour point = -44.5 degrees C.
M w = 2,180
M n = 1,350
U = 0.61
Monomer conversion = 98%

Beispiel 11Example 11

Wie Beispiel 1, Methacrylat-Komponente ist aber Butylmethacrylat, Zulaufzeit 3,5 Stunden.Like example 1, but the methacrylate component is butyl methacrylate, feed time 3.5 hours.

Stoffdaten:Substance data:

η (100 Grad C) = 148,0 mm²/s
η (40 Grad C) = 2836,2 mm²/s
VIB = 147
Stockpunkt: - 26,3 Grad C
Mw = 6 500
Mn = 1 860
U = 2,51
Monomer-Umsatz = 91 %
η (100 degrees C) = 148.0 mm² / s
η (40 degrees C) = 2836.2 mm² / s
VIB = 147
Pour point: - 26.3 degrees C.
M w = 6,500
M n = 1,860
U = 2.51
Monomer conversion = 91%

Beispiel 12Example 12

3 mol Dodecan (523 g) werden im Reaktionsgefäß auf 160 Grad C erhitzt, 1 mol C12-C15-Alkylmethacrylat mit 90 % Iso-Anteil (272 g) wird während 5,5 Stunden umlaufen gelassen. Nach Ende des Zulaufs wird noch 11 Stunden im Batch nachpolymerisiert. Die Initiator-Zugabe erfolgt wie in Beispiel 1 beschrieben. Nach der Reaktion wird das Lösungsmittel destillativ entfernt. Das erhaltene Produkt ist eine farblose, ölige Flüssigkeit, die vollständig mit Mineralölen, PAO oder Esterölen mischbar ist.3 mol of dodecane (523 g) are heated in the reaction vessel to 160 ° C., 1 mol of C12-C15-alkyl methacrylate with 90% iso content (272 g) is circulated for 5.5 hours. After the end of the feed, the batch is polymerized for a further 11 hours. The initiator is added as described in Example 1. After the reaction, the solvent is removed by distillation. The product obtained is a colorless, oily liquid which is completely miscible with mineral oils, PAO or ester oils.

Stoffdaten:Substance data:

η (100 Grad C) = 16,7 mm²/s,
η (40 Grad C) = 128,1 mm²/s
VIB = 141
Stockpunkt < -52,1 Grad C
Mw = 1 510
Mn = 1 230
U = 0,23
Verdampfungsverlust nach Noack 6 %
Monomer-Umsatz = 95 %
η (100 degrees C) = 16.7 mm² / s,
η (40 degrees C) = 128.1 mm² / s
VIB = 141
Pour point <-52.1 degrees C.
M w = 1 510
M n = 1 230
U = 0.23
Evaporation loss according to Noack 6%
Monomer conversion = 95%

Beispiel 13Example 13

Wie Beispiel 12, aber statt Dodecan die gleiche Gewichtsmenge Hydrocrack-Öl als Lösungsmittel.Like example 12, but instead of dodecane, the same amount by weight of hydrocrack oil as solvent.

Stoffdaten Hydrocrack-Öl:Substance data for hydrocrack oil:

η (100 Grad C) = 3,62 mm²/s
VIB = 126
Stockpunkt = -33,0 Grad C
η (100 degrees C) = 3.62 mm² / s
VIB = 126
Pour point = -33.0 degrees C.

Stoffdaten der erhaltenen Oligomer/Öl-Mischung:Material data of the oligomer / oil mixture obtained:

η (100 Grad C) = 5,08 mm²/s
η (40 Grad C) = 24,1 mm²/s
VIB = 144
Stockpunkt = -34,5 Grad C
η (100 degrees C) = 5.08 mm² / s
η (40 degrees C) = 24.1 mm² / s
VIB = 144
Pour point = -34.5 degrees C.

Beispiel 14Example 14

400 g (0,28 mol) C1* werden in 450 g (1,99 mol) Isodecylmethacrylat gelöst. 250 g (1,78 mol) 1-Decen werden im Reaktionsgefäß auf 140 Grad C erhitzt. Während 1,5 Stunden wird das Methacrylat-Gemisch zulaufen gelassen. Nach Ende des Zulaufs wird noch 15 Stunden im Batch nachpolymerisiert. Die Initiator-Zugabe erfolgt wie in Beispiel 1 beschrieben. Der Initiator ist tert-Butylperbenzoat, Gesamtmenge ≈ 3 Gew.-%. Das erhaltene Produkt ist ein gelbliches Öl, das Mineralöl-löslich ist.
* C1 ist der Methacrylsäureester eines ethoxylierten C16 -C18-Fettalkoholgemisches, mittlerer Ethoxylierungsgrad 25, hier ist der Alkohol Marlipal 1618/25 R, Produkt der Hüls AG angewendet worden.
400 g (0.28 mol) C1 * are dissolved in 450 g (1.99 mol) isodecyl methacrylate. 250 g (1.78 mol) of 1-decene are heated to 140 degrees C in the reaction vessel. The methacrylate mixture is run in for 1.5 hours. After the end of the feed, the batch is polymerized for a further 15 hours. The initiator is added as described in Example 1. The initiator is tert-butyl perbenzoate, total amount ≈ 3% by weight. The product obtained is a yellowish oil which is soluble in mineral oil.
* C1 is the methacrylic acid ester of an ethoxylated C16-C18 fatty alcohol mixture, medium degree of ethoxylation 25, here the alcohol Marlipal 1618/25 R , product of Hüls AG, was used.

Stoffdaten:Substance data:

η (100 Grad C) = 1 006 mm²/s
η (40 Grad C) = 15 756 mm²/s
VIB = 276
Stockpunkt: (zu viskos)
Mw, Mn = über GPC wegen starker Adsorption nicht bestimmbar.
Ausbeute: > 98 %
η (100 degrees C) = 1 006 mm² / s
η (40 degrees C) = 15 756 mm² / s
VIB = 276
Pour point: (too viscous)
M w, M n = cannot be determined via GPC due to strong adsorption.
Yield:> 98%

Beispiel 15Example 15

300 g (0,37 mol) Komponente C2** wird in 400 g (1,77 mol) Isodecylmethacrylat gelöst. 300 g (2,14 mol) 1-Decen wird im Reaktionsgefäß auf 160 Grad C erhitzt. Die Methacrylatmischung wird während 2 Stunden zulaufen gelassen. Gesamtreaktionszeit 16,5 Stunden, Initiator-Zugabe wie in Beispiel 1. Initiator: Di-tert.-butylperoxid, Gesamtmenge 3 Gew.-%. Das Produkt ist Mineralöl-löslich.
** C2 ist der Methacrylsäureester von Methoxypolyethylenglykol mittlerer Ethoxylierungsgrad ≈16; hier wurde der Alkohol Carbowax 750® (Trademark der Union Carbide) verwendet.
300 g (0.37 mol) of component C2 ** is dissolved in 400 g (1.77 mol) of isodecyl methacrylate. 300 g (2.14 mol) of 1-decene is heated to 160 degrees C in the reaction vessel. The methacrylate mixture is run in for 2 hours. Total reaction time 16.5 hours, initiator addition as in Example 1. Initiator: di-tert-butyl peroxide, total amount 3% by weight. The product is soluble in mineral oil.
** C2 is the methacrylic acid ester of methoxypolyethylene glycol medium degree of ethoxylation ≈16; here the alcohol Carbowax 750® (Trademark of Union Carbide) was used.

Stoffdaten:Substance data:

n (100 Grad C) = 293,4 mm²/s
n (40 Grad C) = 3 999,0 mm²/s
VIB = 217
Stockpunkt = -22,1 Grad C
Mw, Mn über GPC wegen starker Adsorption nicht bestimmbar Umsatz annähernd 100 %
n (100 degrees C) = 293.4 mm² / s
n (40 degrees C) = 3 999.0 mm² / s
VIB = 217
Pour point = -22.1 degrees C.
M w, M n cannot be determined via GPC due to strong adsorption

Beispiel 16Example 16

Wie Beispiel 5, aber statt Isodecylmethacrylat C12-C15-Alkylmethacrylat mit 90 % Iso-AnteilLike example 5, but instead of isodecyl methacrylate C12-C15 alkyl methacrylate with 90% iso content

Stoffdaten:Substance data:

η (100 Grad C) = 41,8 mm²/s
η (40 Grad C) = 417,6 mm²/s
VIB 152
Stockpunkt = -44,1 Grad C
Mw = 3 430
Mn = 1 830
U = 0,78
η (100 degrees C) = 41.8 mm² / s
η (40 degrees C) = 417.6 mm² / s
VIB 152
Pour point = -44.1 degrees C.
M w = 3,430
M n = 1,830
U = 0.78

Beispiel 17Example 17

Wie Beispiel 1, Methacrylatkomponente aber C12-C15-Alkylmethacrylat (90 % iso), AMA/Decen-Verhältnis: 1 : 0,5 mol, 1 Stunde AMA-Zulauf.As example 1, methacrylate component but C12-C15 alkyl methacrylate (90% iso), AMA / decene ratio: 1: 0.5 mol, 1 hour AMA feed.

Stoffdaten:Substance data:

η (100 Grad C) = 234,4 mm²/s
η (40Grad C) = 4 810,6 mm²/s
VIB = 165
Stockpunkt = -25,6 Grad C
Mw = 23 100
Mn = 3 230
U = 6,14
η (100 degrees C) = 234.4 mm² / s
η (40 degrees C) = 4 810.6 mm² / s
VIB = 165
Pour point = -25.6 degrees C.
M w = 23 100
M n = 3,230
U = 6.14

Anwendungstechnische BeispieleApplication engineering examples Beispiel 18Example 18

Vergleich einer Oligomer/Esteröl-Mischung mit einer Poly-α-Olefin/Esteröl-Mischung in den Viskositätsdaten 20 % PAO 100 in TMA-OD®-Ester 20 % Oligomer aus Beispiel 17 in TMA-OD®-Ester n (100 Grad C) 6,68 mm²/s 7,70 mm²/s VIB 193 212 CCS (-30 Grad C) 1 800 mPa s 1 600 mPa s Comparison of an oligomer / ester oil mixture with a poly-α-olefin / ester oil mixture in the viscosity data 20% PAO 100 in TMA-OD® ester 20% oligomer from Example 17 in TMA-OD® ester n (100 degrees C) 6.68 mm² / s 7.70 mm² / s VIB 193 212 CCS (-30 degrees C) 1,800 mPa s 1,600 mPa s

Deutlich erkennbar ist, daß mit dem Cooligomeren in der Mischung trotz höherer Viskosität bei 100 Grad C eine niedrigere Viskosität bei -30 Grad C und damit ein besseres Tieftemperatur-Verhalten erreichbar ist.It is clearly recognizable that with the cooligomer in the mixture, despite the higher viscosity at 100 degrees C, a lower viscosity at -30 degrees C and thus better low-temperature behavior can be achieved.

Beispiel 19Example 19

Vergleich einer Oligomer/PAO-Formulierung mit einer PAO6/PAO40-Formulierung im VW-TD-Motortest PAO40 in PAO 6 Oligomer aus Beispiel 18 in PAO6 Formulierung 45 % PAO 40 14,2 % handelsübliches DI-Paket 40,8 % PAO6 45 % Oligomer 14,2 % handelsübliches DI-Paket 40,8 PAO6 η (100 Grad C) 19,5 mm²/s 18,7 mm²/s VI 147 148 SAE-Klasse 10W-50 10W-50 VW-TD-Ergebnis 63,7 Punkte, alle Ringe frei 67,2 Punkte, alle Ringe frei Comparison of an oligomer / PAO formulation with a PAO6 / PAO40 formulation in the VW TD engine test PAO40 in PAO 6 Oligomer from Example 18 in PAO6 formulation 45% PAO 40 14.2% commercial DI package 40.8% PAO6 45% oligomer 14.2% commercial DI package 40.8 PAO6 η (100 degrees C) 19.5 mm² / s 18.7 mm² / s VI 147 148 SAE class 10W-50 10W-50 VW TD result 63.7 points, all rings free 67.2 points, all rings free

Mit der Oligomer/PAO-Mischung ist also eine hervorragende Dieselbewertung zu erzielen, was für sehr gute thermischoxidative Stabilität spricht. Zu berücksichtigen ist weiterhin, daß die als Vergleich herangezogene reine PAO-Formulierung bekanntermaßen sehr gute Diesel-Performance aufweist.An excellent diesel rating can be achieved with the oligomer / PAO mixture, which speaks for very good thermal-oxidative stability. It should also be taken into account that the pure PAO formulation used for comparison is known to have very good diesel performance.

Claims (1)

  1. Use of co-oligomers as synthesis oil in Tribology, synthesised from
    A) 10 to 40 wt.% of at least one 1-alkene having 4 to 32 carbon atoms in the molecule,
    B) 40 to 90 wt.% of at least one (meth)acrylic acid ester of Formula I
    Figure imgb0009
    wherein R represents hydrogen or methyl and R₁ represents an optionally branched alkyl group or a cycloalkyl group having 4 to 32 carbon atoms in the alkyl group,
    C) 0 to 65, preferably 5 to 40 wt.% of a (meth)acrylic acid ester of Formula II
    Figure imgb0010
    wherein R' represents hydrogen or methyl and R₂ represents an alkyl group having 2 to 6 carbon atoms, which is substituted by at least one hydroxyl group, or R' represents a group
    Figure imgb0011
    wherein R₃ and R₄ represent hydrogen or methyl, R₅ represents hydrogen or an optionally branched alkyl group having 1 to 40 carbon atoms and n is an integer of 1 to 60, with the proviso that if n represents 1, R₅ is at the same time an optionally branched alkyl group having 1 to 40 carbon atoms,
       the co-oligomers having a molecular weight Mw within the range of 1,500 to 25,000.
EP91113123A 1990-08-11 1991-08-05 Use of oligomers, respectively cooligomers of (meth)acrylates esters and 1-alkenes as synthetic oils Expired - Lifetime EP0471266B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4025494 1990-08-11
DE4025494A DE4025494A1 (en) 1990-08-11 1990-08-11 SYNTHESIC OILS, WHOLE OR PARTLY FROM OLIGOMERS OR CONSIST OF COOLIGOMERS OF (METH) ACRYLIC ACID ESTERS AND 1-ALKENES

Publications (2)

Publication Number Publication Date
EP0471266A1 EP0471266A1 (en) 1992-02-19
EP0471266B1 true EP0471266B1 (en) 1994-12-21

Family

ID=6412070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91113123A Expired - Lifetime EP0471266B1 (en) 1990-08-11 1991-08-05 Use of oligomers, respectively cooligomers of (meth)acrylates esters and 1-alkenes as synthetic oils

Country Status (5)

Country Link
EP (1) EP0471266B1 (en)
AT (1) ATE115995T1 (en)
DE (2) DE4025494A1 (en)
DK (1) DK0471266T3 (en)
ES (1) ES2068441T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212569A1 (en) * 1992-04-15 1993-10-21 Roehm Gmbh Synthetic oils containing cooligomers, consisting of 1-alkenes and (meth) acrylic acid esters
DE4404620A1 (en) * 1994-02-14 1995-08-17 Roehm Gmbh Improved additives for lubricating oils
DE4427473A1 (en) 1994-08-03 1996-02-08 Roehm Gmbh Motor oils with high dispersibility and good wear protection
IT1270673B (en) * 1994-10-19 1997-05-07 Euron Spa MULTIFUNCTIONAL ADDITIVE FOR LUBRICANTS COMPATIBLE WITH FLUOROELASTOMERS
DE19603696A1 (en) * 1996-02-02 1997-08-07 Roehm Gmbh Demulsifiers
DE102010001040A1 (en) * 2010-01-20 2011-07-21 Evonik RohMax Additives GmbH, 64293 (Meth) acrylate polymers for improving the viscosity index
US20140113847A1 (en) * 2012-10-24 2014-04-24 Exxonmobil Research And Engineering Company High viscosity index lubricating oil base stock and viscosity modifier combinations, and lubricating oils derived therefrom
KR20210092765A (en) 2018-11-13 2021-07-26 에보닉 오퍼레이션스 게엠베하 Method for preparing random copolymer
ES2925364T3 (en) * 2018-11-13 2022-10-17 Evonik Operations Gmbh Random copolymers for use as base oils or lubricant additives
ES2950909T3 (en) 2020-05-05 2023-10-16 Evonik Operations Gmbh Hydrogenated linear polydiene copolymers as base material or lubricant additives for lubricant compositions
EP4015604B1 (en) 2020-12-18 2023-01-25 Evonik Operations GmbH Acrylate-olefin copolymers as high viscosity base fluids
CA3197881A1 (en) 2022-05-24 2023-11-24 Evonik Operations Gmbh Acrylate-olefin copolymers as high viscosity base fluids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB663702A (en) * 1949-09-10 1951-12-27 Standard Oil Dev Co Improvements in or relating to copolymers and to lubricant compositions containing them
GB759918A (en) * 1952-10-22 1956-10-24 California Research Corp Lubricant composition
US3001942A (en) * 1958-12-15 1961-09-26 California Research Corp Lubricant composition
US3968148A (en) * 1971-09-13 1976-07-06 Rohm And Haas Company Copolymers of 1-alkenes and acrylic acid derivatives
JPS515645B2 (en) * 1971-12-02 1976-02-21
DE3785586T2 (en) * 1987-09-25 1993-09-23 Tonen Corp DRIVE FLUID.

Also Published As

Publication number Publication date
ES2068441T3 (en) 1995-04-16
ATE115995T1 (en) 1995-01-15
DE59103970D1 (en) 1995-02-02
DE4025494A1 (en) 1992-02-13
EP0471266A1 (en) 1992-02-19
DK0471266T3 (en) 1995-04-24

Similar Documents

Publication Publication Date Title
EP0418610B1 (en) Viscosity index improver, with a dispersant activity
EP0140274B1 (en) Lubricating oil additives
DE2740449C2 (en) Process for the manufacture of lubricating oil additives
EP0471266B1 (en) Use of oligomers, respectively cooligomers of (meth)acrylates esters and 1-alkenes as synthetic oils
DE2905954C2 (en) Concentrated polymer emulsions as viscosity index improvers for mineral oils
DE112006003061B4 (en) Anti-corrosive agent for high-paraffin lubricating oils, finished lubricant and manufacturing process therefor, and use thereof
DE69918615T2 (en) (Meth) acrylate Copolymers with excellent cold properties
DE60026735T2 (en) LONG LIFE LUBRICANT AND HIGH ASH CONTENT LUBRICANT WITH INCREASED NITRIER RESISTANCE
DE69909363T2 (en) Car engine oil with high fuel savings
EP0744457B1 (en) Lubricant additive
DE2356364A1 (en) LUBRICATING OIL MIXTURE
US5691284A (en) Synthetic oligomeric oils
DE60030772T2 (en) LUBE LONG LIFE OIL, USING CLEANING MIXTURES
DE69007995T2 (en) Lubricating oil viscosity additive, process for its preparation and lubricant compositions containing it.
DE1063312B (en) lubricant
EP0471258B1 (en) Process for preparing homooligomers and cooligomers
EP0710711A1 (en) Additive for lubricating oil
EP0607553B1 (en) Use of polymethylalkanes as biodegradable base oils in lubricants and functional fluids
EP0566048A1 (en) Synthetic oil containing cooligomers comprising alpha-olefins and (meth)acrylate esters
DE1257329B (en) Mineral or synthetic lubricating oil
EP0697457B1 (en) Motor oil with high dispersing capacity and with good wear protection
DE69217907T2 (en) Lubricating oil compositions
DE2810248A1 (en) OIL SOLUBLE PRODUCT AND ITS USES
JPH10298576A (en) Viscosity index improver having good low temperature property
DE19542120A1 (en) Polymer emulsions with bimodal molecular weight distribution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19920331

17Q First examination report despatched

Effective date: 19930305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 115995

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59103970

Country of ref document: DE

Date of ref document: 19950202

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950314

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2068441

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ROEHM GMBH & CO. KG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020725

Year of fee payment: 12

Ref country code: DK

Payment date: 20020725

Year of fee payment: 12

Ref country code: BE

Payment date: 20020725

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020729

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020809

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030806

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

BERE Be: lapsed

Owner name: *ROHM G.M.B.H.

Effective date: 20030831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030806

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20100223

Ref country code: NL

Ref legal event code: TD

Effective date: 20100223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100813

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100901

Year of fee payment: 20

Ref country code: DE

Payment date: 20100823

Year of fee payment: 20

Ref country code: IT

Payment date: 20100824

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100819

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59103970

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59103970

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20110805

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110806