EP0470347A1 - Veränderliche konvexe Oberfläche von Skis - Google Patents

Veränderliche konvexe Oberfläche von Skis Download PDF

Info

Publication number
EP0470347A1
EP0470347A1 EP91110208A EP91110208A EP0470347A1 EP 0470347 A1 EP0470347 A1 EP 0470347A1 EP 91110208 A EP91110208 A EP 91110208A EP 91110208 A EP91110208 A EP 91110208A EP 0470347 A1 EP0470347 A1 EP 0470347A1
Authority
EP
European Patent Office
Prior art keywords
ski
radius
upper face
section
average radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91110208A
Other languages
English (en)
French (fr)
Other versions
EP0470347B1 (de
Inventor
Jacques Lacroix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salomon SAS
Original Assignee
Salomon SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salomon SAS filed Critical Salomon SAS
Publication of EP0470347A1 publication Critical patent/EP0470347A1/de
Application granted granted Critical
Publication of EP0470347B1 publication Critical patent/EP0470347B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/003Structure, covering or decoration of the upper ski surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/04Structure of the surface thereof
    • A63C5/0405Shape thereof when projected on a plane, e.g. sidecut, camber, rocker

Definitions

  • the present invention relates to skis used in winter sports, and intended to slide on snow and ice.
  • skis have a lower sliding face connecting to two lateral faces along two lower edges provided with metal edges, the lateral faces connecting to an upper face.
  • the skis have a relatively small width compared to their length, their anterior end being curved upwards to form a spatula.
  • the thickness of the ski is generally greater in the central part than in the front and rear parts of the ski.
  • the width of the lower face of the ski is smaller in the central part than in the rear and front parts, the width being maximum in the front part of the ski, that is to say at the neighborhood of the spatula.
  • the upper face of the ski is generally a ruled surface, that is to say defined by the longitudinal displacement of a straight transverse line parallel to the lower face of the ski.
  • the cross section of the ski is generally a rectangle or a trapezoid, the large opposite sides of the rectangle or the trapezium being formed by the lower face and the upper face of the ski, the small opposite sides of the rectangle or the trapezoid being formed by the side faces of the ski.
  • the greater thickness of the ski in the central zone gives this central zone increased rigidity.
  • This central zone is also intended to receive the bindings for the adaptation of a user's shoe.
  • the front and rear areas of the ski which have a reduced thickness, are more flexible and elastically deform when the ski is used. If it is desired to produce a ski having good flexibility in the anterior and posterior zones, it is therefore necessary to provide such anterior and posterior zones having a reduced thickness.
  • a first problem encountered in traditional ski structures is that the central zone of the ski, which has a relatively large thickness to give it great rigidity, causes a fairly appreciable increase in the weight of the ski.
  • a second problem encountered in known ski structures is that the necessary thickness of the ski, in order to obtain sufficient mechanical strength, leads to having lateral ski faces having a relatively large height. This relatively large height of the lateral faces gives the ski a relatively heavy appearance, and constitutes a lateral bearing surface of large surface opposing the lateral penetration of the ski into the snow, thus slowing the lateral movements of the ski when cornering or in skid.
  • the central part of the ski has a relatively reduced width compared to the end parts of the ski, so that the ski boot adapted to the bindings in the central zone of the ski generally extends on both sides of the ski.
  • the edge of the boot inside the turn is brought closer to the ground and tends to touch it, which risks slowing down the progression. of the skier and disturb the effectiveness of the support on edges.
  • the present invention proposes to remedy these drawbacks by designing a new form of ski.
  • the shape of the ski is scalable as a function of the longitudinal portion considered along the ski, and this scalable shape is such that the ski can be given an increased real height while reducing the height of the edges or side faces of the ski, giving in skiing the appearance of a thinner ski, and favoring the lateral penetration of the ski in the snow.
  • the progressive shape of the ski according to the invention is such that the end regions of the ski can be simultaneously given increased flexibility without excessively reducing the height of the edges of the ski in said end zones, so as to maintain resistance sufficient mechanics of the part supporting the lower edges of the ski.
  • the ski structure according to the invention has the effect of raising the boot support zone relative to the lower sliding surface of the ski, favoring the release of the boot sole from the ground when driving the turns, without increasing the volume and weight of the ski compared to a traditional structure with rectangular or trapezoidal section.
  • ski properties of increased mechanical resistance in bending in the central zone, and / or resistance properties.
  • increased mechanical torsion over the entire length of the ski without increasing the volume and weight of the ski compared to a traditional structure with rectangular or trapezoidal section.
  • the ski comprises, over most of its length, an upper blade of mechanical strength arranged in the vicinity of the upper face of the ski in its median zone close to the vertical longitudinal median plane of the ski, so that the distance between said upper blade and the plane of the neutral horizontal fibers of the ski varies as a function of the mean radius RM of the upper face of the ski, and said blade is thus further from the plane of neutral fibers in the zones with a small average radius RM, and is closer to the plane of the neutral fibers in the areas with a larger average radius RM.
  • the ski comprises a box structure, formed of a central core surrounded by a tubular element of mechanical strength, the tubular element having an outer surface close to the outer surface of the ski and substantially parallel to this, so that the cross section of the tubular element is rounded to follow the convex shape of the upper face of the ski, giving the tubular element better torsional rigidity.
  • the ski according to the invention comprises a lower sliding face 1 connecting to two lateral faces 2 and 3 along two respective lower edges 4 and 5 provided with metal edges.
  • the lateral faces 2 and 3 are connected to an upper face 6.
  • the front end of the ski is bent upwards to form a spatula 7.
  • the rear end of the ski is slightly bent upwards to form the heel 8.
  • the ski can in particular comprise a tip tip 7 and a heel protector 8, fixed by any means such as snap-fastening, bonding or the like.
  • the lateral faces 2 and 3 of the ski in the embodiment shown in FIGS. 3 to 5, are inclined relative to the perpendicular to the lower face 1 of the ski, at a substantially constant angle A.
  • the side faces 2 and 3 of the ski are substantially perpendicular to the bottom face 1.
  • the angle A may be greater in the vicinity of the ends of the ski, on sections A-A in FIG. 3 or C-C in FIG. 5, than in the central zone of the ski on section B-B in FIG. 4.
  • the lateral faces 2 and 3 of the ski are connected to the upper face 6 by upper lateral edges 9 and 10 with rounded cross section of radius RL.
  • the radius RL advantageously has a value less than 6 millimeters.
  • the upper face 6 of the ski according to the invention has, in cross section, over at least the greatest part of the length of the ski, a convex shape, for example rounded.
  • This convex cross-sectional shape of the upper face 6 of the ski is an upper line, the central part of which forms a vertex and the two ends of which are inclined at an angle of less than about 60 degrees relative to the lower face of the ski.
  • Said upper line has a shape identical to or little different from a circle, that is to say that it deviates relatively little from the circle passing through said vertex and said ends.
  • Said circle which best approximates the convex cross-sectional shape of the upper face of the ski has a radius called the mean radius RM of cross-section.
  • the average radius RM of cross section varies as a function of the longitudinal position of cross section considered along the ski.
  • the values taken by the average radius RM in the central zone of the ski are lower than the values taken by the average radius RM in at least one of the front or rear end zones of the ski.
  • the convex cross-sectional shape of the upper ski face is substantially identical to a circle, that is to say that its curvature is substantially constant over the entire width of the cross section. This embodiment confers a certain regularity on the upper surface.
  • the invention also applies to other convex shapes of cross section of the upper face.
  • it must be avoided that the curvature of the lateral zones of the upper face is too great, because it then approaches a rectangle, and the advantages of the invention are lost.
  • an upper face of the ski the cross section of which is a polygonal line close to the circle of medium radius RM, for example a line with three segments, with a central segment substantially parallel to the underside of the ski and two inclined lateral segments. .
  • said convex shape of cross section of the upper ski face must remain little different from a circle passing through its central part and its ends.
  • the values which the mean radius RM takes in the central zone of the ski, represented in FIG. 4 are less than the values of said mean radius RM in the anterior end zone of the ski, represented in FIG. 3, and are less than the values that said average radius RM takes in the rear end region of the ski, represented in FIG. 5.
  • the maximum average radius REA in the region of front end of the ski is advantageously greater than the maximum average radius REP in the rear end zone of the ski.
  • the maximum average radius REA in the anterior end region of the ski is less than the maximum average radius REP in the rear region of the ski.
  • the ski bindings intended to secure a ski boot on the upper face 6 of the ski, are generally arranged in the central area of the ski or a little behind the middle of the ski in the area represented in FIGS. 1 and 2 between the cross sections FF and GG.
  • the bindings are fixed on the upper face of the ski in longitudinal positions which may differ from one case to another, and which fall in an area between 40 and 60 cm in length.
  • the average radius RM of cross section keeps a substantially constant value RC throughout the central zone between the planes F-F and G-G. It is thus possible to provide bindings the lower support face of which is shaped to apply exactly to the upper ski face, whatever the longitudinal position in the central zone intended to receive the bindings.
  • FIG. 9 illustrates the variations in average radius RM, or curvature, of the cross section of the upper face of the ski as a function of the longitudinal position of the cross section considered.
  • the curve 20 represents the transverse profile of the upper ski face in the central area of the ski. In this central zone, the curvature is constant, and, to follow the variations in width of the ski, the curve stops at the ends 21 and 22 in the narrowest part of the ski, and extends to the ends 23 and 24 in the cross sections of the central ski part closer to the ends of the ski.
  • the curve 30 represents the transverse profile of the upper ski face in the heel area.
  • the curve 40 represents the transverse profile of the upper ski face in the tip region.
  • the mean radius RM of the upper face 6 of the ski varies continuously as a function of the longitudinal position of transverse section considered along the ski, from the value RC in the central area of the ski, up to maximum REA and REP in the anterior and posterior ski areas.
  • the mean radius RM of the upper face of the ski varies as a function of the longitudinal position of the cross-section considered, because in order to obtain the desired flexibility, the thickness of the ski must decrease the closer we get to the ends. And, as the ski widens at the same time, the upper face 6 must flatten more and more in a progressive manner, to avoid reducing the height of the edges too much in the vicinity of the ends. As a result, it is in the interest of continuously increasing the value of the mean radius RM when approaching the ends.
  • the ski according to the present invention makes it possible to increase the height H1 or distance of the shoe sole from the ground, and makes it possible to simultaneously decrease the height H2 of the edges or lateral faces 2 and 3 of the ski.
  • the internal structure of the ski comprises an upper blade of mechanical strength 11, of thickness E1 and of width B1, disposed near the upper face 6 of the ski.
  • the upper blade of mechanical strength 11 has the effect of giving the ski sufficient rigidity to correctly oppose the flexing of the ski in the longitudinal direction.
  • the ski reacts like a beam and forms an arc, the fibers located towards the inside of the arc tending to shorten, the fibers located towards the outside of the arc tending to lengthen , and it is possible to define a mean plane 12 containing the neutral fibers, that is to say the fibers whose length is not appreciably modified during bending.
  • the stiffening effect obtained by the upper blade of mechanical strength 11 naturally depends on the thickness E1 and the width B1 of the blade, as well as on the nature of the material used to form this blade, but also depends so very large the average distance 0.5 x (Y1 + Z1) between this strip 11 and the plane 12 of the neutral fibers.
  • the rigidity obtained is thus greatly increased when the distance Y1 is increased between said blade 11 and the plane 12 of the neutral fibers.
  • the convex shape of the upper face 6 of the ski makes it possible to arrange the upper blade of mechanical resistance 11 at an average distance 0.5 x (Y1 + Z1) greater than the average distance 0, 5 x (Y + Z) possible in a structure with rectangular section as shown in FIG. 6. Thanks to this increase in distance, the invention makes it possible to significantly reduce the thickness E1 and the width B1, and therefore the volume and the weight of the upper blade of mechanical strength 11 for equivalent performance compared to a traditional structure with rectangular section of thickness E and width B.
  • the particular shape of the ski according to the invention is used to increase its torsional rigidity.
  • the ski comprises a box structure, formed of a central core 13 surrounded by a tubular element 14 of mechanical strength.
  • the tubular element 14 has an outer surface which is close to the outer surface of the ski and substantially parallel thereto, or which can constitute the outer surface of the ski itself.
  • the cross section of the tubular element is convex, for example rounded convex at least in the portion corresponding to the upper face 6 of the ski, so that the general section of the tubular element approaches a section circular, giving the tubular element better torsional rigidity.

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicon Compounds (AREA)
  • Toys (AREA)
  • Hybrid Cells (AREA)
  • Road Paving Structures (AREA)
  • Battery Electrode And Active Subsutance (AREA)
EP91110208A 1990-08-06 1991-06-21 Veränderliche konvexe Oberfläche von Skis Expired - Lifetime EP0470347B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9010228 1990-08-06
FR9010228A FR2665369B1 (fr) 1990-08-06 1990-08-06 Ski a face superieure convexe variable.

Publications (2)

Publication Number Publication Date
EP0470347A1 true EP0470347A1 (de) 1992-02-12
EP0470347B1 EP0470347B1 (de) 1994-09-21

Family

ID=9399596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91110208A Expired - Lifetime EP0470347B1 (de) 1990-08-06 1991-06-21 Veränderliche konvexe Oberfläche von Skis

Country Status (6)

Country Link
US (1) US5244227A (de)
EP (1) EP0470347B1 (de)
JP (1) JPH04244177A (de)
AT (1) ATE111755T1 (de)
DE (1) DE69104156T2 (de)
FR (1) FR2665369B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725236A (en) * 1993-06-02 1998-03-10 Skis Rossignol Sa Ski with improved profile

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375868A (en) * 1993-03-03 1994-12-27 Sarver; Jeff Ski having compound curve undersurface
US5405161A (en) * 1994-02-04 1995-04-11 Dennis Young Alpine ski with exaggerated tip and tail
EP0940160B1 (de) * 1998-03-06 2005-06-01 Jean-Claude Bibollet Schneesportgerät
FR2799659B1 (fr) * 1999-10-14 2002-01-11 Rossignol Sa Planche de glisse
US6955236B2 (en) * 2002-06-21 2005-10-18 Starting Line Products, Inc. Snowmobile ski
DE502006006873D1 (de) 2005-12-09 2010-06-10 Hansjuerg Kessler Schneegleitbrett
DE102008034293A1 (de) * 2008-07-22 2010-01-28 Marker Völkl (International) GmbH Ski, insbesondere Abfahrtski

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2126613A5 (de) * 1971-02-12 1972-10-06 Sactra Sa
DE3236016A1 (de) * 1982-09-29 1984-04-12 Hubert Dipl.-Ing. Architekt 7833 Endingen Brinckemper Hohlkoerper-ski
FR2565836A1 (fr) * 1983-11-25 1985-12-20 Cheramy Sylvain Structure monobloc de ski a profil bi-convexe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652507B1 (fr) * 1989-09-29 1991-12-13 Rossignol Sa Ski de neige, procede pour sa fabrication et dispositif pour la mise en óoeuvre de ce procede.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2126613A5 (de) * 1971-02-12 1972-10-06 Sactra Sa
DE3236016A1 (de) * 1982-09-29 1984-04-12 Hubert Dipl.-Ing. Architekt 7833 Endingen Brinckemper Hohlkoerper-ski
FR2565836A1 (fr) * 1983-11-25 1985-12-20 Cheramy Sylvain Structure monobloc de ski a profil bi-convexe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725236A (en) * 1993-06-02 1998-03-10 Skis Rossignol Sa Ski with improved profile

Also Published As

Publication number Publication date
DE69104156D1 (de) 1994-10-27
US5244227A (en) 1993-09-14
EP0470347B1 (de) 1994-09-21
JPH04244177A (ja) 1992-09-01
DE69104156T2 (de) 1995-01-19
ATE111755T1 (de) 1994-10-15
FR2665369B1 (fr) 1992-10-16
FR2665369A1 (fr) 1992-02-07

Similar Documents

Publication Publication Date Title
EP0622096B1 (de) Snowboard
EP0465794B1 (de) Ski mit gerippter Oberfläche
EP1109604B1 (de) Vorrichtung zur befestigung eines schuhes an einen sportartikel
FR2675392A1 (fr) Dispositif d'amortissement pour ski.
EP0628327B1 (de) Alpinski mit verbessertem Profil
FR2598932A1 (fr) Ski profile dissymetrique
EP0470347B1 (de) Veränderliche konvexe Oberfläche von Skis
FR2618078A1 (fr) Ski a face superieure divergente
EP0977502A1 (de) Schuh mit slide-pad
EP0473898B1 (de) Langlaufski, insbesondere für die Praxis des abwechselnden Schrittes
FR2686520A1 (fr) Perfectionnement pour ski comprenant une plateforme centrale en saillie.
EP0439713B1 (de) Langlaufski zum Gleiten
EP0855201B1 (de) Gleitbrett
EP0373083B1 (de) Alpin-Ski
CH673227A5 (de)
EP0571763B1 (de) Slalomski mit Schaufelspitze
FR2598931A1 (fr) Ski profile a dissymetrie variable
FR2773998A1 (fr) Planche de glisse comportant une plateforme rigide de surelevation
CH668000A5 (fr) Ski.
FR2598934A1 (fr) Fixation de securite d'une chaussure sur un ski
FR2848466A1 (fr) Ski alpin
FR2664172A1 (fr) Ski a face superieure nervuree.
FR2769239A1 (fr) Dispositif de retenue d'une chaussure sur une planche de glisse destinee a la pratique du surf sur neige
EP0661086A1 (de) Ski
FR2659562A1 (fr) Planche de neige de type ski alpin ou surf de neige.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE LI

17P Request for examination filed

Effective date: 19920730

17Q First examination report despatched

Effective date: 19930908

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REF Corresponds to:

Ref document number: 111755

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69104156

Country of ref document: DE

Date of ref document: 19941027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950726

Year of fee payment: 5

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040611

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050621