EP0469385B1 - Magnetsystem - Google Patents
Magnetsystem Download PDFInfo
- Publication number
- EP0469385B1 EP0469385B1 EP91111897A EP91111897A EP0469385B1 EP 0469385 B1 EP0469385 B1 EP 0469385B1 EP 91111897 A EP91111897 A EP 91111897A EP 91111897 A EP91111897 A EP 91111897A EP 0469385 B1 EP0469385 B1 EP 0469385B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnet
- pole
- magnetic
- armature
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 83
- 230000004907 flux Effects 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- ZWKKPKNPCSTXGA-UHFFFAOYSA-N iron neodymium Chemical compound [Fe].[Fe].[Nd] ZWKKPKNPCSTXGA-UHFFFAOYSA-N 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000005684 electric field Effects 0.000 claims 1
- 230000005415 magnetization Effects 0.000 claims 1
- 239000007779 soft material Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 20
- 239000000446 fuel Substances 0.000 description 16
- 230000007423 decrease Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- VVCMGAUPZIKYTH-VGHSCWAPSA-N 2-acetyloxybenzoic acid;[(2s,3r)-4-(dimethylamino)-3-methyl-1,2-diphenylbutan-2-yl] propanoate;1,3,7-trimethylpurine-2,6-dione Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O.CN1C(=O)N(C)C(=O)C2=C1N=CN2C.C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 VVCMGAUPZIKYTH-VGHSCWAPSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1638—Armatures not entering the winding
- H01F7/1646—Armatures or stationary parts of magnetic circuit having permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F2007/1676—Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/122—Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
Definitions
- the invention is based on a magnet system for solenoid valves for controlling liquids, in particular for fuel injection valves, of the type defined in the preamble of claim 1.
- the known magnet system according to FIG. 1 has an electromagnet 1 with an excitation coil 2, which surrounds a cylindrical magnetic core 3 forming a magnetic pole with a pole face. Coaxial to the magnetic core 3, the excitation coil 2 is enclosed by a magnet housing 4 which, on the one hand, has a yoke 5 at which the Pole face away from the end face of the magnetic core 3 and on the other hand via a ring web 6 with a magnetic constriction 7 near the pole face of the magnetic core 3 with this magnetically conductive.
- an armature 10 Opposed to the magnetic pole formed by the magnetic core 3 is an armature 10, which extends partially over the pole plate 9 and forms a working air gap 11 to the pole face.
- the arrangement of the permanent magnet 8 and the flooding of the excitation coil 2 is such that the magnetic fluxes of the permanent magnet 8 and the electromagnet 1 in the working air gap 11 are opposite to each other.
- the armature 10, which is firmly connected to the valve member of the solenoid valve, is of free-floating design. When the electromagnet 1 is not excited, it is held by the permanent magnet 8 against the hydraulic pressure acting on the valve member in the valve chamber on the magnetic core 3.
- the magnetic flux of the permanent magnet 8 in the working air gap 11 is weakened, so that its holding force acting on the armature 10 decreases until the armature 10 lifts off from the magnetic core 3 due to the hydraulic counterforce and thereby opens the valve.
- the magnetic flux generated by the excitation coil 2 is denoted in FIG. 1 by ⁇ E and the magnetic flux generated by the permanent magnet 8 by ⁇ P.
- the magnetic flux ⁇ E is formed via armature 10, working air gap 11, magnetic core 3, yoke 5, magnet housing 4, permanent magnet 8 and pole plate 9 in two magnetic circuits symmetrical to the axis of the magnet system. Since the permanent magnet 8 has a permeability like that of air, it generates a relatively high magnetic resistance in the magnetic circuit of the electromagnet 1, which is increased by Driving power of the excitation coil must be compensated.
- the cross-sectional area of the permanent magnet 8 is therefore made relatively large, while the thickness of the permanent magnet 8, which is thereby small, results from the required magnetic voltage and the greatest possible coercive field strength. Because of its larger area, the eddy current losses in the permanent magnet 8 also increase. Thin, large permanent magnets 8 are exposed to a considerable risk of breakage during their processing, which increases the manufacturing costs considerably. To reduce the eddy current losses, the permanent magnet 8 is made of cobalt samarium, which has a relatively low resistance, but is very brittle, so that the risk of breakage during magnet processing is further increased.
- the free-flying armature 10 is lifted from the magnetic pole exclusively by the hydraulic back pressure acting on the valve member of the solenoid valve.
- the hydraulic back pressure decreases strongly during the opening phase of the solenoid valve and sometimes even becomes negative.
- a polarity reversing magnetic force would therefore be desirable to keep the valve open.
- the magnet system according to the invention with the characterizing features of claim 1 has the advantage that the magnetic circuit of the electromagnet now closes via the opposite pole, the second working air gap, the armature, the first working air gap, the magnetic core, the yoke and the magnet housing, and thus the permanent magnet its great magnetic resistance no longer in Magnetic circuit of the electromagnet is.
- the permanent magnet no longer needs to be dimensioned from the point of view of the minimized magnetic resistance.
- the permanent magnet can thus be made thicker, so that its breaking strength is increased.
- iron neodymium can now be used as a magnetic material, which is about twice as high-resistance with comparable magnetic energy and has not been considered so far because of its high temperature coefficient of remanence. Iron neodymium is not as brittle as cobalt samarium and is easier to process. Overall, the permanent magnet can be manufactured much more cost-effectively in the magnet system according to the invention.
- a lifting force is exerted on the armature when the electromagnet is excited, which counteracts the attraction force of the permanent magnet.
- the force acting on the armature of the permanent magnet and electromagnet decreases with increasing excitation of the electromagnet and finally becomes negative, so that the armature is not only removed from the magnetic pole by the hydraulic pressure in the solenoid valve, but additionally by an electromagnetically generated lifting force.
- This negative magnetic force is desirable when using the magnet system in hydraulic valves, in particular fuel injection valves, because in these the valve member acts on the valve member Hydraulic pressure acting on the armature becomes very small during the opening stroke of the magnet system and is no longer sufficient to hold the armature in a defined end position in which the solenoid valve is open in a defined manner.
- This "negative attraction force" on the armature is generated without reversal of current in the excitation coil of the electromagnet, so that an intervention in the control electronics is not necessary.
- F max acts on the armature.
- the dotted curve in FIG. 3 for the falling anchor can also be shifted along the flow.
- the switchover points w ⁇ I on , w ⁇ I off at which the tightening force F is equal to the hydraulic force F hydr acting on the armature (when using the magnet system in a hydraulic solenoid valve) can be set in this way. Without magnetic tension at the stray air gap, they would be outside the desired range.
- the hysteresis I an - I from the electrical excitation of the electromagnet, ie the excitation of the electromagnet required to move the armature from the two stop positions, is smaller by a factor of ⁇ 2 than in the known magnet system with otherwise identical data. This reduces the power required to control the hysteresis by half. This enables either a reduction in current and thus a reduction in eddy current losses or a reduction in the number of turns of the excitation coil and thus a reduction in its inductance.
- the magnet system according to the invention is further characterized by a sufficiently large rate of change of the magnetic force acting on the armature via the excitation current. In order to the influence of variable forces F hydr is reduced. at the anchor stops on the switching time.
- the end face of the magnet housing facing away from the yoke is connected to the magnet core near the pole face thereof via an annular web, preferably integral therewith.
- the permanent magnet rests on the ring web and is held on it only by its magnetic force.
- a magnetic constriction acting in the radial direction is introduced into the ring web.
- the opposite pole with flux guide element is realized by a pole plate which is fastened to the magnet housing by means of a holder.
- the holder is made of non-magnetic material or of soft magnetic material, eg nickel iron, with a Curie temperature of approx. 80 ° C.
- the soft magnetic material is used when the permanent magnet is made of iron neodymium in order to exactly compensate for the high temperature response of the permanent magnet made of iron neodymium with the large temperature response of the low-lying saturation induction of the nickel-iron.
- FIG. 2 schematically shows a longitudinal section of a magnet system for solenoid valves for controlling liquids, which illustrates the basic structure of the magnet system.
- the magnet system consists of an electromagnet 20 and a permanent magnet 21.
- the electromagnet 20 has an excitation coil 38 which surrounds a magnetic core 24 which forms a magnetic pole 22 with a pole face 23 and is in turn enclosed by a magnet housing 25.
- the magnet housing 25 is close on the one hand via a yoke 26 with the end face of the magnetic core 24 facing away from the pole face 23 and on the other hand via an annular web 27 the pole face 23 connected to the magnetic core 24.
- Magnetic core 24, magnetic housing 25, yoke 26 and ring web 27 are made of the same ferromagnetic material.
- the ring-shaped permanent magnet 21 lies on the ring web 27 and surrounds the magnetic core 24. It is held on the ring web 27 exclusively by its magnetic force and covers only part of the surface of the ring web 27.
- the permanent magnet can be made of iron neodymium.
- a magnetic armature 28 is exposed to the magnetic pole 22 with the formation of a first working air gap 31 and covers a partial area of the permanent magnet 21 with the formation of a larger ring air gap 33
- Armature 28 forms a second working air gap 32.
- the opposite pole 29 with its annular pole face 30 is formed on a pole plate 35 which surrounds the permanent magnet 21 with an edge web 36 and is coupled to the ring web 27 and thus to the magnet housing 25 via an annular stray air gap 34.
- the pole plate 35 is fastened to the magnet housing 25 with a holding element 37 and has a circular recess for the passage of a valve member to be connected to the armature 28.
- the holding element 37 consists either of non-magnetic material or of soft magnetic material with a Curie temperature of approximately 80 ° C.
- a soft magnetic material is nickel iron.
- the latter is preferably used when the permanent magnet 21 is made of iron neodymium. With the large temperature response of the low-lying saturation induction of nickel iron, the high temperature response of the permanent magnet 21 made of iron neodymium can be exactly compensated for.
- the flooding of the Excitation coil 38 of the electromagnet 20 and the arrangement of the permanent magnet 21 magnetized in the axial direction is such that the magnetic fluxes ⁇ E and ⁇ P from the electromagnet 20 and the permanent magnet 21 in the working air gap 31 are directed in opposite directions.
- the two magnetic fluxes are formed symmetrically to the axis of the magnet system. For the sake of clarity, the respective magnetic flux is shown in FIG. 2 only in one half of the symmetry.
- the magnetic flux ⁇ P of the permanent magnet 21 is divided into two partial fluxes ⁇ P1 and ⁇ P2 .
- a leakage flux ⁇ P3 forms over the leakage air gap 34.
- ⁇ p2 does not pass over armature 21 in region 67 of permanent magnet 21 projecting armature 28 and serves to bias the stray air gap 34 magnetically.
- a magnetic constriction 40 is formed in the annular web 27 by introducing an annular groove 39.
- This constriction 40 reduces the partial flux ⁇ P2 to a value which is optimal for controlling the flux in the magnetic core 24 in both directions.
- the constriction 40 can be specifically saturated, so that a leakage flux of ⁇ E is prevented from flowing along this path.
- the movement of the armature 28 is limited by stops, not shown here, so that a residual air gap remains between the pole faces 23 and 30 and the armature lying against the stop.
- the ring air gap 33 is dimensioned approximately twice as large as the maximum working air gap 31 or the maximum working air gap 32, which corresponds to the maximum stroke of the armature 28.
- the annular cross-sectional area of the permanent magnet 21 is made about 1.5 times larger than the sum of the pole areas 23, 30 of the magnetic pole 22 and the opposite pole 29.
- a fuel injection valve is shown in longitudinal section, in which the described magnet system is used. As far as components correspond to those in Fig. 2, they are provided with the same reference numerals.
- the magnet system is inserted in a screen housing 41 in which a fuel inflow 42 and a fuel outflow 43 are provided. Fuel inflow 42 and fuel outflow 43 are separated by an injected filter or strainer 44 from axial axial channels 45, 66, which extend to the pole plate 35 of the magnet system. A plurality of fuel guide pieces 55 are inserted between the axial channels 45, 66 (FIG. 5).
- the pole plate 35 closes the screen housing 41 on the end face and is welded to the magnet housing 25 with non-magnetic or temperature-dependent magnetically saturated connecting pieces 46, which correspond to the holding element 37 in FIG. 2.
- a valve body 48 passes through the circular recess 47 of the pole plate 35 and is fixedly connected to the armature 28. Concentric to the recess 47, the pole plate 35 carries on the side facing away from the armature 28 a recess 49, on which a valve seat 50 is formed, with which the valve body 48 cooperates to close and open the fuel injection valve.
- the valve body 48 carries a circumferential groove 51, which is connected via radial slots 52 arranged in the pole plate 35 in the region of the passage opening 47 to a flow gap 53 which surrounds the armature 28 in a circular manner and which in turn is connected to the axial channels 66 via channels 56.
- the fuel flow in channels 54 between the axial channels 45 and 66 should preferably cool the pole plate 35.
- the fuel flow in the flow gap 53 cools the front area of the valve. In the event of a hot start, the liquid part of the fuel can collect below the channels 54 in the space 56 (FIG. 4) and separate from the gaseous components in such a way that only liquid fuel is injected.
- the areas 57 of the screen housing 41 are resilient, so that the screen housing 41 presses against a stop 59 on the pole plate 35 regardless of the size of an O-ring 58.
- the excitation winding 38 of the electromagnet 20 is carried by a coil former 60 and is connected to connection pins 61. These in turn are welded to connector pins 62 in a connector housing 63.
- the connector housing 63 is firmly connected to the magnet housing 25 by a flange 64.
- the magnetic core 24 with an integrally attached yoke 26 and excitation coil 38 are encapsulated in the magnet housing 25 by a potting compound 65.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4024054A DE4024054A1 (de) | 1990-07-28 | 1990-07-28 | Magnetsystem |
| DE4024054 | 1990-07-28 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0469385A1 EP0469385A1 (de) | 1992-02-05 |
| EP0469385B1 true EP0469385B1 (de) | 1994-10-05 |
Family
ID=6411229
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP91111897A Expired - Lifetime EP0469385B1 (de) | 1990-07-28 | 1991-07-17 | Magnetsystem |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US5161779A (cs) |
| EP (1) | EP0469385B1 (cs) |
| JP (1) | JP3107855B2 (cs) |
| BR (1) | BR9103216A (cs) |
| CZ (1) | CZ279794B6 (cs) |
| DE (2) | DE4024054A1 (cs) |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5488340A (en) * | 1994-05-20 | 1996-01-30 | Caterpillar Inc. | Hard magnetic valve actuator adapted for a fuel injector |
| US5449119A (en) * | 1994-05-25 | 1995-09-12 | Caterpillar Inc. | Magnetically adjustable valve adapted for a fuel injector |
| US6161770A (en) | 1994-06-06 | 2000-12-19 | Sturman; Oded E. | Hydraulically driven springless fuel injector |
| US6257499B1 (en) | 1994-06-06 | 2001-07-10 | Oded E. Sturman | High speed fuel injector |
| US5479901A (en) * | 1994-06-27 | 1996-01-02 | Caterpillar Inc. | Electro-hydraulic spool control valve assembly adapted for a fuel injector |
| US5494220A (en) * | 1994-08-08 | 1996-02-27 | Caterpillar Inc. | Fuel injector assembly with pressure-equalized valve seat |
| US5605289A (en) * | 1994-12-02 | 1997-02-25 | Caterpillar Inc. | Fuel injector with spring-biased control valve |
| US6148778A (en) | 1995-05-17 | 2000-11-21 | Sturman Industries, Inc. | Air-fuel module adapted for an internal combustion engine |
| US5720318A (en) * | 1995-05-26 | 1998-02-24 | Caterpillar Inc. | Solenoid actuated miniservo spool valve |
| US5597118A (en) * | 1995-05-26 | 1997-01-28 | Caterpillar Inc. | Direct-operated spool valve for a fuel injector |
| DE29722781U1 (de) * | 1997-12-23 | 1999-04-22 | Bürkert Werke GmbH & Co., 74653 Ingelfingen | Elektromagnetantrieb |
| US6085991A (en) | 1998-05-14 | 2000-07-11 | Sturman; Oded E. | Intensified fuel injector having a lateral drain passage |
| US6966760B1 (en) * | 2000-03-17 | 2005-11-22 | Brp Us Inc. | Reciprocating fluid pump employing reversing polarity motor |
| DE10131201A1 (de) * | 2001-06-28 | 2003-01-16 | Bosch Gmbh Robert | Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine |
| DE10146899A1 (de) * | 2001-09-24 | 2003-04-10 | Abb Patent Gmbh | Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät |
| DE10161002A1 (de) * | 2001-12-12 | 2003-07-03 | Bosch Gmbh Robert | Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine |
| FR2851291B1 (fr) * | 2003-02-18 | 2006-12-08 | Peugeot Citroen Automobiles Sa | Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur |
| JP4064934B2 (ja) * | 2004-02-27 | 2008-03-19 | 三菱重工業株式会社 | 電磁弁装置 |
| US7314208B1 (en) * | 2004-09-30 | 2008-01-01 | Sandia Corporation | Apparatus and method for selectively channeling a fluid |
| WO2006083977A1 (en) * | 2005-02-02 | 2006-08-10 | Brp Us Inc. | Method of controlling a pumping assembly |
| EP1748238B1 (de) * | 2005-07-26 | 2008-01-02 | Festo Ag & Co. | Elektromagnetventil |
| DE102006022561A1 (de) * | 2006-05-15 | 2007-11-22 | Nass Magnet Gmbh | Magnetventil |
| US8597505B2 (en) | 2007-09-13 | 2013-12-03 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine |
| US8105487B2 (en) | 2007-09-25 | 2012-01-31 | Fresenius Medical Care Holdings, Inc. | Manifolds for use in conducting dialysis |
| US9308307B2 (en) | 2007-09-13 | 2016-04-12 | Fresenius Medical Care Holdings, Inc. | Manifold diaphragms |
| US8240636B2 (en) * | 2009-01-12 | 2012-08-14 | Fresenius Medical Care Holdings, Inc. | Valve system |
| US9358331B2 (en) | 2007-09-13 | 2016-06-07 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine with improved reservoir heating system |
| CA3057807C (en) | 2007-11-29 | 2021-04-20 | Thomas P. Robinson | System and method for conducting hemodialysis and hemofiltration |
| JP5096898B2 (ja) * | 2007-12-12 | 2012-12-12 | ティアック株式会社 | メカニカルバルブ |
| EP3586946B1 (en) | 2008-10-07 | 2023-03-29 | Fresenius Medical Care Holdings, Inc. | Priming system and method for dialysis systems |
| EA024555B1 (ru) | 2008-10-30 | 2016-09-30 | Фрезениус Медикал Кеа Холдингс, Инк. | Модульная портативная система диализа |
| CN201363474Y (zh) * | 2009-02-20 | 2009-12-16 | 厦门科际精密器材有限公司 | 一种结构改进的电磁线性阀 |
| WO2010114932A1 (en) | 2009-03-31 | 2010-10-07 | Xcorporeal, Inc. | Modular reservoir assembly for a hemodialysis and hemofiltration system |
| DE102010029595A1 (de) * | 2010-06-01 | 2011-12-01 | Robert Bosch Gmbh | Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe |
| CN103021689B (zh) | 2011-09-26 | 2016-12-28 | 德昌电机(深圳)有限公司 | 电磁驱动器 |
| US9201036B2 (en) | 2012-12-21 | 2015-12-01 | Fresenius Medical Care Holdings, Inc. | Method and system of monitoring electrolyte levels and composition using capacitance or induction |
| US9157786B2 (en) | 2012-12-24 | 2015-10-13 | Fresenius Medical Care Holdings, Inc. | Load suspension and weighing system for a dialysis machine reservoir |
| US9354640B2 (en) | 2013-11-11 | 2016-05-31 | Fresenius Medical Care Holdings, Inc. | Smart actuator for valve |
| EP3166116B1 (en) * | 2015-11-09 | 2020-10-28 | HUSCO Automotive Holdings LLC | Systems and methods for an electromagnetic actuator |
| JP2017169433A (ja) | 2016-03-17 | 2017-09-21 | フスコ オートモーティブ ホールディングス エル・エル・シーHUSCO Automotive Holdings LLC | 電磁アクチュエータのためのシステムおよび方法 |
| CN106122563A (zh) * | 2016-08-25 | 2016-11-16 | 吴忠仪表有限责任公司 | 高精度阀门定位器用反馈装置 |
| US11626771B2 (en) * | 2019-01-14 | 2023-04-11 | Ricky Harman VENEMAN | Rotational motor |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4403765A (en) * | 1979-11-23 | 1983-09-13 | John F. Taplin | Magnetic flux-shifting fluid valve |
| DE3230162C2 (de) * | 1982-08-13 | 1985-03-14 | Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen | Elektromagnetisches Zweistoffventil |
| DE3237532A1 (de) * | 1982-10-09 | 1984-04-12 | Robert Bosch Gmbh, 7000 Stuttgart | Schaltventil |
| DE3239153A1 (de) * | 1982-10-22 | 1984-04-26 | Bosch Gmbh Robert | Hubmagnet |
| DE3921151A1 (de) * | 1989-06-28 | 1991-01-10 | Bosch Gmbh Robert | Magnetsystem |
-
1990
- 1990-07-28 DE DE4024054A patent/DE4024054A1/de not_active Withdrawn
-
1991
- 1991-05-20 US US07/702,539 patent/US5161779A/en not_active Expired - Fee Related
- 1991-07-17 EP EP91111897A patent/EP0469385B1/de not_active Expired - Lifetime
- 1991-07-17 DE DE59103162T patent/DE59103162D1/de not_active Expired - Fee Related
- 1991-07-23 JP JP03182217A patent/JP3107855B2/ja not_active Expired - Fee Related
- 1991-07-23 CZ CS912297A patent/CZ279794B6/cs unknown
- 1991-07-26 BR BR919103216A patent/BR9103216A/pt not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| US5161779A (en) | 1992-11-10 |
| EP0469385A1 (de) | 1992-02-05 |
| JP3107855B2 (ja) | 2000-11-13 |
| CS229791A3 (en) | 1992-02-19 |
| BR9103216A (pt) | 1992-02-18 |
| JPH04254306A (ja) | 1992-09-09 |
| CZ279794B6 (cs) | 1995-06-14 |
| DE4024054A1 (de) | 1992-01-30 |
| DE59103162D1 (de) | 1994-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0469385B1 (de) | Magnetsystem | |
| EP0136594B1 (de) | Elektromagnet | |
| DE69004845T2 (de) | Elektromagnetisches Ventil mit Verwendung eines permanenten Magneten. | |
| US4928028A (en) | Proportional permanent magnet force actuator | |
| EP2365239B1 (de) | Vorrichtung zur Durchflussregelung eines flüssigen oder gasförmigen Mediums | |
| DE2739085A1 (de) | Magnetventil | |
| EP0177944A2 (de) | Bistabiles Magnetventil | |
| DE602004010561T2 (de) | Elektromagnetischer Ventilaktuator mit einem Dauermagnet für eine Brennkraftmaschine | |
| EP0794540B1 (de) | Bistabiler Kleinmagnet | |
| DE10207828A1 (de) | Elektromagnetischer Hubmagnet mit Permanentmagnet | |
| DE202004006156U1 (de) | Magnetantrieb für ein Ventil | |
| DE10004961B4 (de) | Brennstoffeinspritzventil und Verfahren zu dessen Betrieb | |
| WO2020178155A1 (de) | Elektromagnetische antriebseinrichtung und damit ausgestattetes proportional-magnetventil | |
| DE4009535A1 (de) | Magnetventil | |
| EP0235318B1 (de) | Betätigungsmagnet | |
| EP0075219A1 (de) | Magnetventil | |
| DE4415068C2 (de) | Bistabiles Magnetventil | |
| DE10360713A1 (de) | Elektromagnetischer Linearaktuator | |
| DE102013111079B4 (de) | Impulsmagnetventil | |
| DE3332822A1 (de) | Magnetventil mit unelastischer ventildichtung | |
| DE102012018566A1 (de) | Ventileinrichtung | |
| DE3132896A1 (de) | Elektromagnetrischer antrieb, beispielsweise fuer ein ventil, eine foerderpumpe oder dergleichen | |
| DE102017211257A1 (de) | Elektromagnetischer Antrieb und damit ausgestattetes Ventil | |
| DE10202628A1 (de) | Multistabile Stellvorrichtung | |
| EP2135264B1 (de) | Magnetkreis für magnetventil |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
| RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
| 17P | Request for examination filed |
Effective date: 19920707 |
|
| 17Q | First examination report despatched |
Effective date: 19940107 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
| ET | Fr: translation filed | ||
| REF | Corresponds to: |
Ref document number: 59103162 Country of ref document: DE Date of ref document: 19941110 |
|
| ITF | It: translation for a ep patent filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19941214 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980703 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980720 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990717 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990731 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990717 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020826 Year of fee payment: 12 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040203 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050717 |