EP0465766B1 - Infrared-surface irradiator - Google Patents

Infrared-surface irradiator Download PDF

Info

Publication number
EP0465766B1
EP0465766B1 EP91103910A EP91103910A EP0465766B1 EP 0465766 B1 EP0465766 B1 EP 0465766B1 EP 91103910 A EP91103910 A EP 91103910A EP 91103910 A EP91103910 A EP 91103910A EP 0465766 B1 EP0465766 B1 EP 0465766B1
Authority
EP
European Patent Office
Prior art keywords
housing
heating coils
interior
area
irradiator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103910A
Other languages
German (de)
French (fr)
Other versions
EP0465766A1 (en
Inventor
Rainer Küchler
Norbert Mittelstädt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Original Assignee
Heraeus Quarzglas GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Quarzglas GmbH and Co KG filed Critical Heraeus Quarzglas GmbH and Co KG
Priority to AT91103910T priority Critical patent/ATE85686T1/en
Publication of EP0465766A1 publication Critical patent/EP0465766A1/en
Application granted granted Critical
Publication of EP0465766B1 publication Critical patent/EP0465766B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a surface radiator for short-wave infrared radiation with high radiation power per unit area, with a housing and with one or more heating coils with at least two power connections, the heating coils being arranged behind the radiation surface of the housing in its interior largely evenly, the Heating coils are guided and held in receiving bodies by means of spacers, the parts of the receiving bodies being transparent to the radiation surface for the infrared radiation, the heating coils being assigned a reflector on their side opposite the radiation surface and the housing having at least one supply and one discharge connection for a cooling medium that cools the radiator in the flow.
  • Such short-wave high-power infrared radiators are generally known. They are characterized by high energy concentration in a narrow space and a large penetration depth of radiation into the heating material and are used in a wide variety of industrial production processes.
  • the heating coils are enclosed within a quartz glass envelope tube filled with inert gas.
  • the power supply to the heating coil takes place via metallic contact plates, which are led out at the melted quartz glass tube ends. Due to the high currents and the differences in the thermal expansion coefficients of glass and contact wafers, these melts are particularly exposed to changes in temperature and limit the possible uses of the radiator in terms of power, temperature and service life.
  • several heating coils, including their quartz glass cladding tubes are positioned in a lamp housing in such a way that the heating material can be irradiated over a large area.
  • the entire available radiation energy is to be emitted in one direction only, such radiators are positioned in front of a reflector body. Due to its mechanical and chemical stability as well as its good reflective properties in the infrared, a thin gold layer is used as the reflector surface. However, the relatively poor thermal stability of the gold layer at temperatures above 800 ° C necessitates cooling of the reflector. Therefore, the reflector body or the entire lamp housing is designed so large and massive that an effective water and air cooling of the reflector is possible. Since the temperatures that can be achieved with the high-performance infrared radiators are far above the temperature range at which quartz glass softens, the quartz glass cladding tubes and in particular the sensitive melts at the tube ends must also be cooled.
  • the quartz glass cladding tubes are cooled in an air stream which is guided behind a quartz glass screen so that the heating material is not cooled by convection.
  • the use of such high-performance infrared emitters under extreme external pressure conditions, for example under vacuum, is not possible or is possible only to a limited extent due to their construction.
  • the object of the invention is to increase the economy and operational safety of high-performance infrared radiators, in particular with regard to the heat development and the associated cooling measures, by a simple and compact structure and to expand their range of use with regard to the tolerable temperature and external pressure conditions.
  • the object is achieved in that the interior of the housing, which is delimited on one side by the radiating surface, is closed and has the at least one supply connection and the at least one discharge connection in that the cooling medium is an inert gas, which is the interior flows through and around the heating coils and that the at least two power connections are led through at least one bushing in a vacuum-tight manner through the wall delimiting the interior.
  • the heating coils in the interior of the housing are flushed with inert gas in the flow, on the one hand they are very well protected against oxidation, on the other hand it is not necessary to arrange the heating coils in separate, gas-tight tubes which are melted at the ends.
  • the power connections for several heating coils can be combined and led out through the wall of the housing at a point with low temperature stress.
  • the flushing of the heating coils with inert gas is carried out in such a way that at the same time the receptacles for the heating coils, the reflector and the walls of the housing, which are subjected to high temperatures, are cooled, so that additional coolants, for example on the outside of the housing, and the associated connections and devices are not required.
  • the space requirement of the radiator and its operating costs are thus reduced, while the operational reliability is increased.
  • High radiation powers can be achieved with a configuration of the receiving bodies in the form of tubes which are open at the ends and in which the heating coils run largely protected from the cooling medium.
  • several tubes are arranged in parallel.
  • the power connection to the heating coils takes place via one or more vacuum-tight electrical feedthroughs through a boundary wall of the interior.
  • the arrangement is particularly space-saving if the bushing or bushings are arranged on the same side of the interior as the supply connection and if the supply connection and the discharge connection are arranged on the side of the housing opposite the radiation surface.
  • the amount of gas supplied and removed is adapted to the cooling and pressure requirements. It is inexpensive to circulate the cooling medium and to supply the cooling medium discharged from the discharge connection to the supply connection after cooling.
  • the receptacle body, the carrier plate and at least the radiation surface delimiting the interior are made of quartz glass.
  • the high-performance surface radiator shown has a vacuum-tight housing 1 with a radiation surface 16 made of quartz glass that delimits the interior space 5, the housing 1 having a supply and a discharge connection 2, 3 for a cooling medium, the flow direction of which is represented by flow arrows 10 is, and has power connections 4.
  • a support plate 6 made of quartz glass, which is fastened on supports 15 approximately 12 mm long, on which seven quartz glass tubes 7, which are open on both sides, are melted.
  • Within the quartz glass tubes 7 are spacers 8 in the form of round, at a uniform distance from each other arranged support rings made of niobium wire, heating coils 9 made of tungsten wire.
  • the current connections 4 for the heating coils 9 are made via an electrical vacuum-tight feedthrough 14 through the same housing wall, on which the supply and discharge connections 2, 3 for the cooling medium are also arranged.
  • the arrangement of all connections for the cooling medium and for the power supply on the housing wall opposite the radiation surface 16 of the housing enables the use of the radiator as a module 13 of a radiator unit 15.
  • a reflector 11 is attached, which ensures that the radiation energy is radiated to the heating material and which protects the electrical connections from excessive temperature.
  • the reflector 11 consists of a thin gold layer which is applied to the side of the carrier plate 6 opposite the quartz glass tubes 7.
  • An argon gas stream is fed into the interior 5 of the housing 1 via the feed connection 2, led out again via the discharge connection 3, passed via a cooling unit (not shown) and fed back to the feed connection 2.
  • the gas flow cools the reflector 11, the receptacles for the heating filaments 9 and the inner walls of the housing 1 in the passage and at the same time rinses the heating filaments 9 and protects them from oxidation.
  • the color temperature that can be achieved with these embodiments of a high-performance infrared radiator is 3000 K.
  • the radiator unit (15) shown in FIG. 6 is composed of nine radiator modules (13), which are arranged according to a (3 ⁇ 3) matrix.
  • the simple inert gas cooling enables a compact construction of the emitter modules 13. Due to this compact design, when assembling several modules 13, only narrow gaps are formed that do not emit any radiation energy, which results in a high radiation output per unit area for the emitter unit (15) results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Resistance Heating (AREA)
  • Control Of Resistance Heating (AREA)
  • Radiation-Therapy Devices (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention relates to a surface irradiator for short infrared irradiations with high irradiation efficiency per surface unit, with a housing (1) and with one or more heating coils (9), with at least two current connections (4), the heating coils (9) being distributed to a very great extent uniformly behind the irradiation surface (16) of the housing (1) in its interior (5), the heating coils (9) being guided and held in receiving members by means of distance pieces (8), the parts of the receiving members being transparent towards the irradiation surface (16) for the infrared irradiation, the heating coils (9) being assigned on their side lying opposite the irradiation surface (16) a reflector (11) and the housing (1) having at least one supply and removal connection (2, 3) for a cooling medium which cools the irradiator as it passes through. In order, by means of a simple compact construction, to increase the economy and operational reliability of the high-performance infrared irradiator, in particular with regard to the heat generation occurring and the associated cooling measures, and to extend its area of application with regard to the tolerable temperature and external pressure conditions, the interior (5) of the housing (1), which is delimited by the irradiation surface (16) on one side, is closed off and has the supply connection (2) and the removal connection (3), and the cooling medium is an inert gas which flows through the interior (5) and flows around the heating coils (9), and the at least two current connections (4) are guided in a vacuum-tight manner through the wall delimiting the interior (5). <IMAGE>

Description

Gegenstand der Erfindung ist ein Flächenstrahler für kurzwellige Infrarotstrahlung mit hoher Strahlungsleistung pro Flächeneinheit, mit einem Gehäuse und mit einer oder mehreren Heizwendeln mit mindestens zwei Strom-Anschlüssen, wobei die Heizwendeln hinter der Abstrahlfläche des Gehäuses in dessen Innenraum weitgehendst gleichmäßig verteilt angeordnet sind, wobei die Heizwendeln in Aufnahmekörpern mittels Distanzteilen geführt und gehalten sind, wobei die Teile der Aufnahmekörper zur Abstrahlfläche hin für die Infrarotstrahlung transparent sind, wobei den Heizwendeln auf ihrer der Abstrahlfläche gegenüberliegenden Seite ein Reflektor zugeordnet ist und wobei das Gehäuse mindestens einen Zuführungs- und einen Abführungs-Anschluß für ein Kühlmedium aufweist, das im Durchfluß den Strahler kühlt.The invention relates to a surface radiator for short-wave infrared radiation with high radiation power per unit area, with a housing and with one or more heating coils with at least two power connections, the heating coils being arranged behind the radiation surface of the housing in its interior largely evenly, the Heating coils are guided and held in receiving bodies by means of spacers, the parts of the receiving bodies being transparent to the radiation surface for the infrared radiation, the heating coils being assigned a reflector on their side opposite the radiation surface and the housing having at least one supply and one discharge connection for a cooling medium that cools the radiator in the flow.

Nach der US-A-3 792 230 ist eine Strahler für Kurwellige Infrarotstrahlung bekannt, der ein inertes Gas als Kühlmedium benutzt.According to US-A-3 792 230 a radiator for Kurwell infrared radiation is known which uses an inert gas as a cooling medium.

Derartige kurzwellige Hochleistungs-Infrarotstrahler sind allgemein bekannt. Sie zeichnen sich durch hohe Energiekonzentration auf engem Raum und großer Eindringtiefe der Strahlung in das Heizgut aus und werden in den verschiedensten industriellen Produktionsprozessen eingesetzt.Such short-wave high-power infrared radiators are generally known. They are characterized by high energy concentration in a narrow space and a large penetration depth of radiation into the heating material and are used in a wide variety of industrial production processes.

Bei den bekannten Hochleistungs-Infrarotstrahlern sind die Heizwendeln innerhalb eines mit Inertgas gefüllten Quarzglashüllrohres eingeschlossen. Die Stromzufuhr zur Heizwendel erfolgt über metallische Kontaktplättchen, die an den zugeschmolzenen Quarzglashüllrohrenden herausgeführt sind. Aufgrund der hohen Ströme und den Unterschieden in den thermischen Ausdehnungskoeffizienten von Glas- und Kontaktplättchen sind diese Einschmelzungen bei Temperaturänderungen besonders stark belastet, und begrenzen die Einsatzmöglichkeiten des Strahlers hinsichtlich Leistung, Temperatur und Lebensdauer. Bei solchen Hochleistungs-Infrarotstrahlern werden mehrere Heizwendeln inklusive ihrer Quarzglashüllrohre in einem Lampengehäuse so positioniert, daß damit das Heizgut großflächig bestrahlt werden kann. Da hierbei die gesamte zur Verfügung stehende Strahlungsenergie nur in eine Richtung abgegeben werden soll, werden derartige Strahler vor einem Reflektorkörper positioniert. Aufgrund seiner mechanischen und chemischen Stabilität sowie seiner guten Reflektionseigenschaften im Infraroten wird eine dünne Goldschicht als Reflektoroberfläche verwendet. Allerdings macht die relativ schlechte thermische Stabilität der Goldschicht bei Temperaturen von mehr als 800°C eine Kühlung des Reflektors erforderlich. Deshalb ist der Reflektorkörper oder das ganze Lampengehäuse so groß und massiv ausgelegt, daß eine effektive Wasser- und Luftkühlung des Reflektors möglich ist. Da die mit den Hochleistungs-Infrarotstrahlern erreichbaren Temperaturen weit über dem Temperaturbereich liegen, bei dem Quarzglas erweicht, müssen auch die Quarzglashüllrohre und insbesondere die empfindlichen Einschmelzungen an den Rohrenden gekühlt werden. Bei unzureichender Kühlung besteht aufgrund unvermeidlicher Unterschiede zwischen den Gasdrücken von innerhalb und außerhalb der geschlossenen Quarzglashüllrohre die Gefahr der Hüllrohrverformung. Bei den bekannten Hochleistungs-Infrarotstrahlern werden die Quarzglashüllrohre in einem Luftstrom gekühlt, der hinter einem Quarzglasschirm so geführt wird, daß das Heizgut nicht durch Konvektion mitgekühlt wird. Ein Einsatz derartiger Hochleistungs-Infrarotstrahler unter extremen Außendruckbedingungen, beispielsweise unter Vakuum, ist aufgrund ihrer Bauweise nicht oder nur eingeschränkt möglich.In the known high-performance infrared radiators, the heating coils are enclosed within a quartz glass envelope tube filled with inert gas. The power supply to the heating coil takes place via metallic contact plates, which are led out at the melted quartz glass tube ends. Due to the high currents and the differences in the thermal expansion coefficients of glass and contact wafers, these melts are particularly exposed to changes in temperature and limit the possible uses of the radiator in terms of power, temperature and service life. In such high-performance infrared radiators, several heating coils, including their quartz glass cladding tubes, are positioned in a lamp housing in such a way that the heating material can be irradiated over a large area. Since the entire available radiation energy is to be emitted in one direction only, such radiators are positioned in front of a reflector body. Due to its mechanical and chemical stability as well as its good reflective properties in the infrared, a thin gold layer is used as the reflector surface. However, the relatively poor thermal stability of the gold layer at temperatures above 800 ° C necessitates cooling of the reflector. Therefore, the reflector body or the entire lamp housing is designed so large and massive that an effective water and air cooling of the reflector is possible. Since the temperatures that can be achieved with the high-performance infrared radiators are far above the temperature range at which quartz glass softens, the quartz glass cladding tubes and in particular the sensitive melts at the tube ends must also be cooled. If the cooling is inadequate, there is a risk of deformation of the cladding due to the inevitable differences between the gas pressures inside and outside the closed quartz glass cladding. In the known high-performance infrared radiators, the quartz glass cladding tubes are cooled in an air stream which is guided behind a quartz glass screen so that the heating material is not cooled by convection. The use of such high-performance infrared emitters under extreme external pressure conditions, for example under vacuum, is not possible or is possible only to a limited extent due to their construction.

Die Erfindung hat sich die Aufgabe gestellt, durch einen einfachen und kompakten Aufbau die Wirtschaftlichkeit und Betriebssicherheit von Hochleistungs-Infrarotstrahlern, insbesondere hinsichtlich der auftretenden Wärmentwicklung und den damit verbundenen Kühlmaßnahmen, zu erhöhen und deren Einsatzbereich hinsichtlich der tolerierbaren Temperatur- und Außendruckbedingungen zu erweitern.The object of the invention is to increase the economy and operational safety of high-performance infrared radiators, in particular with regard to the heat development and the associated cooling measures, by a simple and compact structure and to expand their range of use with regard to the tolerable temperature and external pressure conditions.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Innenraum des Gehäuses, der einseitig von der Abstrahlfäche begrenzt wird, abgeschlossen ist und den mindestens einen Zuführungs-Anschluß und den mindestens einen Abführungs-Anschluß aufweist, daß das Kühlmedium ein inertes Gas ist, das den Innenraum durchströmt und die Heizwendeln umspült und daß die mindestens zwei Strom-Anschlüsse durch mindestens eine Durchführung vakuumdicht durch die den Innenraum begrenzende Wandung hindurchgeführt sind. Dadurch daß die Heizwendeln im Innenraum des Gehäuses im Durchfluß mit Intertgas gespült werden, sind sie einerseits sehr gut vor Oxidation geschützt, andererseits ist eine Anordnung der Heizwendeln in separaten, gasdichten, an den Enden zugeschmolzenen Rohren nicht erforderlich. Dadurch entfällt sowohl die Gefahr des Strahler-Ausfalls durch die Verformung eines geschlossenen Rohres aufgrund der Unterschiede zwischen den Gasdrücken innerhalb und außerhalb des Rohres als auch die Notwendigkeit von bruchempfindlichen, hohen Temperaturbelastungen ausgesetzten Einschmelzungen für die Strom-Anschlüsse an den Rohrenden. Gegebenenfalls können die Strom-Anschlüsse für mehrere Heizwendeln zusammengefaßt und durch die Wandung des Gehäuses an einer Stelle mit geringer Temperaturbelastung herausgeführt werden. Die Spülung der Heizwendeln mit Inertgas wird so ausgeführt, daß gleichzeitig eine Kühlung der Aufnahmekörper für die Heizwendeln, des Reflektors und der stark temperaturbelasteten Wandungen des Gehäuses erfolgt, so daß zusätzliche Kühlmittel, beispielsweise auf der Außenseite des Gehäuses, und die damit verbundenen Anschlüsse und Einrichtungen nicht erforderlich sind. Durch diese Innenkühlung läßt sich das Gehäuse des Strahlers sehr kompakt und dünnwandig gestalten, so daß, abgesehen von den, die Abstrahlfläche seitlich begrenzenden, dünnen Gehäusewänden, die entsprechende Seite des Gehäuses vollständig als Abstrahlfläche zur Verfügung steht. Der Raumbedarf des Strahlers als auch dessen Betriebskosten werden somit vermindert, während die Betriebssicherheit erhöht wird.The object is achieved in that the interior of the housing, which is delimited on one side by the radiating surface, is closed and has the at least one supply connection and the at least one discharge connection in that the cooling medium is an inert gas, which is the interior flows through and around the heating coils and that the at least two power connections are led through at least one bushing in a vacuum-tight manner through the wall delimiting the interior. Because the heating coils in the interior of the housing are flushed with inert gas in the flow, on the one hand they are very well protected against oxidation, on the other hand it is not necessary to arrange the heating coils in separate, gas-tight tubes which are melted at the ends. This eliminates both the risk of lamp failure due to the deformation of a closed tube due to the differences between the gas pressures inside and outside the tube, and the need for melt-downs for the power connections at the tube ends that are exposed to high temperatures and are subject to breakage. If necessary, the power connections for several heating coils can be combined and led out through the wall of the housing at a point with low temperature stress. The flushing of the heating coils with inert gas is carried out in such a way that at the same time the receptacles for the heating coils, the reflector and the walls of the housing, which are subjected to high temperatures, are cooled, so that additional coolants, for example on the outside of the housing, and the associated connections and devices are not required. This internal cooling means that the housing of the radiator can be made very compact and thin-walled, so that, apart from the thin housing walls that laterally delimit the radiation surface, the corresponding side of the housing is completely available as a radiation surface. The space requirement of the radiator and its operating costs are thus reduced, while the operational reliability is increased.

Hohe Strahlungsleistungen sind mit einer Ausgestaltung der Aufnahmekörper in Form von an den Enden offenen Röhren in denen die Heizwendeln vor dem Kühlmedium weitgehendst geschützt verlaufen, zu erreichen.
Je nach Größe der Fläche die bestrahlt werden soll, werden mehrere Röhren parallel zueinander angeordnet. Um eine gleichmäßige Bestrahlung des Heizgutes zu gewährleisten und eine kompakte Bauweise des Strahlers zu erzielen, hat es sich als vorteilhaft erwiesen, die Röhren auf einer gemeinsamen Trägerplatte anzuordnen, die gleichzeitig als Reflektor ausgebildet ist. Dabei hat es sich bewährt die Trägerplatte im Innenraum so anzuordnen, daß sie bezüglich der Röhren der Abstrahlfläche des Gehäuses abgekehrt ist und daß sie mindestens von zwei Seiten gleichzeitig mit dem Kühlmedium umspült wird. Dies hat den Vorteil, daß eine separate Wasserkühlung des Reflektors und eine damit verbundene große und massive Auslegung von Reflektor und Gehäuse vermieden wird. Aufgrund der geringen Temperaturbelastung auf der den Röhren abgekehrten Seite der Trägerplatte, ist es zweckmäßig, die Reflektorschicht dort auszubilden. Der Stromanschluß zu den Heizwendeln erfolgt über eine oder mehrere vakuumdichte elektrische Durchführungen durch eine Begrenzungswand des Innenraums. Besonders raumsparend gestaltet sich die Anordnung, wenn die Durchführung oder die Durchführungen an derselben Seite des Innenraums angeordnet sind wie der Zuführungs-Anschluß und wenn der Zuführungs-Anschluß, und der Abführungs-Anschluß an der der Abstrahlfläche gegenüberliegenden Seite des Gehäuses angeordnet sind.
Die zu- und abgeführte Gasmenge wird den Kühl- und Druckerfordernissen angepaßt. Dabei ist es kostengünstig, das Kühlmedium im Kreislauf zu führen und das vom Abführungs-Anschluß abgeführte Kühlmedium dem Zuführungs-Anschluß abgekühlt wieder zuzuführen. Als Kühlmedium der im normalen Betrieb auftretenden Wärmemengen hat sich Argon bewährt, das gleichzeitig die Heizwendeln vor Oxidation schützt. Aufgrund der hohen Temperaturbelastung bestehen die Aufnahmekörper, die Trägerplatte sowie zumindest die den Innenraum begrenzende Abstrahlfläche aus Quarzglas.
High radiation powers can be achieved with a configuration of the receiving bodies in the form of tubes which are open at the ends and in which the heating coils run largely protected from the cooling medium.
Depending on the size of the area to be irradiated, several tubes are arranged in parallel. In order to ensure uniform irradiation of the heating material and to achieve a compact construction of the radiator, it has proven to be advantageous to arrange the tubes on a common carrier plate, which is simultaneously designed as a reflector. It has proven useful to arrange the carrier plate in the interior such that it is turned away from the tubes of the radiation surface of the housing and that it is washed around with the cooling medium from at least two sides at the same time. This has the advantage that a separate water cooling of the reflector and a large and massive design of the reflector and housing are avoided. Due to the low temperature load on the side of the carrier plate facing away from the tubes, it is expedient to form the reflector layer there. The power connection to the heating coils takes place via one or more vacuum-tight electrical feedthroughs through a boundary wall of the interior. The arrangement is particularly space-saving if the bushing or bushings are arranged on the same side of the interior as the supply connection and if the supply connection and the discharge connection are arranged on the side of the housing opposite the radiation surface.
The amount of gas supplied and removed is adapted to the cooling and pressure requirements. It is inexpensive to circulate the cooling medium and to supply the cooling medium discharged from the discharge connection to the supply connection after cooling. As a cooling medium in normal operation The amount of heat that occurs has proven itself, which at the same time protects the heating coils from oxidation. Due to the high temperature load, the receptacle body, the carrier plate and at least the radiation surface delimiting the interior are made of quartz glass.

Anhand der Zeichnung wird ein erfindungsgemäßer Flächenstrahler nachfolgend beschrieben. In der Zeichnung zeigt

  • Fig. 1 eine perspektivische Darstellung eines Flächenstrahlers, bei dem die Aufnahmekörper für die Heizwendeln als achsenparallele Rohre, in denen die Heizwendeln verlaufen, ausgebildet sind,
  • Fig. 2 einen vertikalen Schnitt durch den in Figur 1 dargestellten Flächenstrahler entlang der Schnittlinie II-II, mit Blick in Richtung entlang der Längsachsen der Rohre,
  • Fig. 3 einen horizontalen Schnitt durch den in Figur 2 dargestellten Flächenstrahler entlang der Linie III-III,
  • Fig. 4 einen horizontalen Schnitt duch eine Strahler-Einheit, wobei Schnitthöhe und Blickrichtung so wie in Fig. 3 für den Modul dargestellt, gelegt sind.
An area heater according to the invention is described below with reference to the drawing. In the drawing shows
  • 1 is a perspective view of a surface radiator, in which the receiving bodies for the heating coils are designed as axially parallel tubes in which the heating coils run,
  • 2 shows a vertical section through the surface radiator shown in FIG. 1 along the section line II-II, looking in the direction along the longitudinal axes of the tubes,
  • 3 shows a horizontal section through the surface radiator shown in FIG. 2 along the line III-III,
  • Fig. 4 is a horizontal section through a radiator unit, the cutting height and viewing direction as shown in Fig. 3 for the module, are placed.

Der dargestellte Hochleistungs-Flächenstrahler weist ein vakuumdichtes Gehäuse 1 mit einer, den Innenraum 5 begrenzenden Abstrahlfläche 16 aus Quarzglas auf, wobei das Gehäuse 1 einen Zuführungs- und einen Abführungs-Anschluß 2, 3 für ein Kühlmedium, dessen Strömungs-Richtung durch Strömungspfeile 10 dargestellt ist, sowie Strom-Anschlüsse 4 aufweist. Im Innenraum 5 des Gehäuses 1 ist eine auf ca. 15 mm langen Stützen 12 befestigte Trägerplatte 6 aus Quarzglas angeordnet, auf der sieben beidseitig offene Quarzglasrohre 7 angeschmolzen sind. Innerhalb der Quarzglasrohre 7 werden über Distanzteile 8 in Form von runden, in gleichmäßigem Abstand voneinander angeordneten Stützringen aus Niobdraht, Heizwendeln 9 aus Wolframdraht geführt. Die Strom-Anschlüsse 4 für die Heizwendeln 9 erfolgen über eine elektrische vakuumdichte Durchführung 14 durch dieselbe Gehäusewand, an der auch der Zuführungs- und der Abführungs-Anschluß 2, 3 für das Kühlmedium angeordnet sind. Die Anordnung aller Anschlüsse für das Kühlmedium und für die Stromversorgung auf der der Abstrahlfläche 16 des Gehäuses gegenüberliegenden Gehäusewand, ermöglicht den Einsatz des Strahlers als Modul 13 einer Strahler-Einheit 15.
Auf der den Quarzglasrohren 7 abgewandten Seite der Trägerplatte 6 ist ein Reflektor 11 angebracht, der gewährleistet, daß die Strahlungsenergie zum Heizgut hin abgestrahlt wird und der die elektrischen Anschlüsse vor zu hoher Temperatur schützt. Der Reflektor 11 besteht aus einer dünnen Goldschicht, die auf die den Quarzglasrohren 7 gegenüberliegenden Seite der Trägerplatte 6 aufgebracht ist.
Über den Zuführungs-Anschluß 2 wird ein Argon-Gasstrom in den Innenraum 5 des Gehäuses 1 geleitet, über den Abführungs-Anschluß 3 wieder herausgeführt, über ein Kühlaggregat geleitet (nicht dargestellt) und dem Zuführungs-Anschluß 2 wieder zugeführt. Der Gasstrom kühlt im Durchlauf den Reflektor 11, die Aufnahmekörper für die Heizwendeln 9 und die Innenwandungen des Gehäuses 1 und umspült gleichzeitig die Heizwendeln 9 und schützt sie vor Oxidation. Die mit dieser Ausführungsformen eines Hochleistungs-Infrarot-Strahlers erreichbare Farbtemperatur liegt bei 3000 K.
The high-performance surface radiator shown has a vacuum-tight housing 1 with a radiation surface 16 made of quartz glass that delimits the interior space 5, the housing 1 having a supply and a discharge connection 2, 3 for a cooling medium, the flow direction of which is represented by flow arrows 10 is, and has power connections 4. Arranged in the interior 5 of the housing 1 is a support plate 6 made of quartz glass, which is fastened on supports 15 approximately 12 mm long, on which seven quartz glass tubes 7, which are open on both sides, are melted. Within the quartz glass tubes 7 are spacers 8 in the form of round, at a uniform distance from each other arranged support rings made of niobium wire, heating coils 9 made of tungsten wire. The current connections 4 for the heating coils 9 are made via an electrical vacuum-tight feedthrough 14 through the same housing wall, on which the supply and discharge connections 2, 3 for the cooling medium are also arranged. The arrangement of all connections for the cooling medium and for the power supply on the housing wall opposite the radiation surface 16 of the housing enables the use of the radiator as a module 13 of a radiator unit 15.
On the side of the carrier plate 6 facing away from the quartz glass tubes 7, a reflector 11 is attached, which ensures that the radiation energy is radiated to the heating material and which protects the electrical connections from excessive temperature. The reflector 11 consists of a thin gold layer which is applied to the side of the carrier plate 6 opposite the quartz glass tubes 7.
An argon gas stream is fed into the interior 5 of the housing 1 via the feed connection 2, led out again via the discharge connection 3, passed via a cooling unit (not shown) and fed back to the feed connection 2. The gas flow cools the reflector 11, the receptacles for the heating filaments 9 and the inner walls of the housing 1 in the passage and at the same time rinses the heating filaments 9 and protects them from oxidation. The color temperature that can be achieved with these embodiments of a high-performance infrared radiator is 3000 K.

Die in Fig. 6 gezeigte Strahler-Einheit (15) setzt sich aus neun Strahler-Modulen (13) zusammen, die gemäß einer (3 x 3)-Matrix angeordnet sind. Die einfache Inertgas-Kühlung ermöglicht einen kompakten Aufbau der Strahler-Module 13. Augrund dieser kompakten Bauweise bilden sich beim Zusammenfügen mehrere Module 13 nur schmale Zwischenräume, die keine Strahlungsenergie abgeben, woraus sich eine hohe Strahlungsleistung pro Flächeneinheit für die Strahler-Einheit (15) ergibt.The radiator unit (15) shown in FIG. 6 is composed of nine radiator modules (13), which are arranged according to a (3 × 3) matrix. The simple inert gas cooling enables a compact construction of the emitter modules 13. Due to this compact design, when assembling several modules 13, only narrow gaps are formed that do not emit any radiation energy, which results in a high radiation output per unit area for the emitter unit (15) results.

Claims (12)

  1. An area irradiator for short-wave infrared radiation with a high radiated power per unit area, with a housing and with one or more heating coils with at least two current connections, in which the heating coils are arranged so as to be uniformly distributed as extensively as possible, behind the radiation surface of the housing in its interior, in which the heating coils are guided and held in receiving bodies by means of spacer parts, in which the parts of the receiving bodies are transparent for the infrared radiation towards the radiation surface, in which a reflector is associated with the heating coils on their side lying opposite the radiation surface, and in which the housing has at least one supply connection and one removal connection for a cooling medium, which cools the emitter on flowing through, characterised in that the interior (5) of the housing (1), which is delimited on one side by the radiation surface (16), is closed and has the at least one supply connection (2) and the at least one removal connection (3), that the cooling medium is an inert gas, which flows through the interior (5) and passes around the heating coils (9), and that the at least two current connections (4) are carried, vacuum tight, through at least one duct (14) through the wall delimiting the interior (5).
  2. An area irradiator according to Claim 1, characterised in that the receiving bodies are formed by a plurality of tubes (7), running parallel to each other and open at the ends, in which tubes the heating coils (9) run.
  3. An area irradiator according to Claim 2, characterised in that the tubes (7) are arranged on a common carrier plate (6) such that the carrier plate (6) with respect to the tubes (7) faces away from the radiation surface (16) of the housing (1).
  4. An area irradiator according to Claim 3, characterised in that a reflector (11) is arranged on the carrier plate (6).
  5. An area irradiator according to Claim 3 or 4, characterised in that the carrier plate (6) is arranged in the interior (5) such that it is cooled with the cooling medium at least from two sides simultaneously.
  6. An area irradiator according to Claim 5, characterised in that the reflector (11) is arranged on the side of the carrier plate (6) facing away from the tubes (7).
  7. An area irradiator according to Claim 6, characterised in that the duct (14) or the ducts (14) are arranged on the same side of the housing (1) as the supply connection (2).
  8. An area irradiator according to one of Claims 1 to 7, characterised in that the supply connection (2) and the removal connection (3) are arranged on the side of the housing (1) lying opposite the radiation surface (16).
  9. An area irradiator according to one of Claims 1 to 8, characterised in that the cooling medium, removed via the removal connection (3), is passed back to the supply connection (2) again, once it is cooled.
  10. An area irradiator according to one of Claims 1 to 9, characterised in that the cooling medium is argon.
  11. An area irradiator according to one of Claims 1 to 10, characterised in that the receiving bodies, the carrier plate (6) and at least the radiation surface (16) of the housing (1) consist of quartz glass.
  12. The use of an area irradiator according to one of Claims 1 to 11 as module (13) for an emitter unit (15) consisting of a plurality of irradiators,
EP91103910A 1990-07-11 1991-03-14 Infrared-surface irradiator Expired - Lifetime EP0465766B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91103910T ATE85686T1 (en) 1990-07-11 1991-03-14 INFRARED FLAT RADIATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022100A DE4022100C1 (en) 1990-07-11 1990-07-11
DE4022100 1990-07-11

Publications (2)

Publication Number Publication Date
EP0465766A1 EP0465766A1 (en) 1992-01-15
EP0465766B1 true EP0465766B1 (en) 1993-02-10

Family

ID=6410091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103910A Expired - Lifetime EP0465766B1 (en) 1990-07-11 1991-03-14 Infrared-surface irradiator

Country Status (4)

Country Link
EP (1) EP0465766B1 (en)
AT (1) ATE85686T1 (en)
DE (2) DE4022100C1 (en)
ES (1) ES2038523T3 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210519C1 (en) * 1992-03-31 1993-09-09 Heraeus Noblelight Gmbh, 6450 Hanau, De
GB9214380D0 (en) * 1992-07-07 1992-08-19 Sev Furnaces Ltd Radiation transmitting apparatus
GB2278722A (en) * 1993-05-21 1994-12-07 Ea Tech Ltd Improvements relating to infra-red radiation sources
EP0985768A1 (en) * 1998-09-07 2000-03-15 Talbot Technology Limited Rothamsted Research Station Process and apparatus for recycling asphalt
DE10002648B4 (en) * 2000-01-21 2005-10-06 Heraeus Noblelight Gmbh heating element
BR0204969A (en) * 2002-11-08 2004-06-15 Paulo Gerais De Camargo Rangel Modular flue gas infrared radiator and its performance and function monitoring devices
DE10257432B4 (en) * 2002-12-09 2006-10-26 Advanced Photonics Technologies Ag Air-cooled irradiation arrangement
US7563512B2 (en) 2004-08-23 2009-07-21 Heraeus Quarzglas Gmbh & Co. Kg Component with a reflector layer and method for producing the same
DE102004051846B4 (en) * 2004-08-23 2009-11-05 Heraeus Quarzglas Gmbh & Co. Kg Component with a reflector layer and method for its production
DE102005058819B4 (en) * 2005-10-13 2009-04-30 Heraeus Quarzglas Gmbh & Co. Kg Process for coating a component made of glass containing siliceous silica, with a component containing SiO 2, glassy layer, and use of the component
DE102006055397B3 (en) * 2006-11-22 2008-05-15 Heraeus Quarzglas Gmbh & Co. Kg Method and device for the production of a cylindrical profile element made of quartz glass and use thereof
CN100445678C (en) * 2007-02-14 2008-12-24 哈尔滨工业大学 Gas directional radiating device
CN101846344A (en) * 2009-03-24 2010-09-29 苏州中龙光电科技有限公司 Infrared optical wave stove
DE102016111234B4 (en) * 2016-06-20 2018-01-25 Heraeus Noblelight Gmbh Device for the thermal treatment of a substrate as well as carrier horde and substrate carrier element therefor
DE102020128337A1 (en) 2020-10-28 2022-04-28 Heraeus Noblelight Gmbh Radiator component with a reflector layer and method for its manufacture
DE102020131324A1 (en) * 2020-11-26 2022-06-02 Heraeus Noblelight Gmbh Infrared radiator and infrared radiation emitting component
CN114126101B (en) * 2021-11-02 2024-01-26 Tcl华星光电技术有限公司 Quartz infrared heating device and method for heating substrate by same
DE102022111985A1 (en) 2022-05-12 2023-11-16 Heraeus Noblelight Gmbh Infrared emitter with an emissive layer applied to a metal reflector layer and use of the emissive layer
CN114885450B (en) * 2022-07-11 2022-09-20 中国飞机强度研究所 Extremely high temperature extremely low warm heat intensity cycle test system that aerospace plane test was used

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792230A (en) * 1972-03-30 1974-02-12 Industrial Innovations Inc Gas-cooled torch lamp
DE2809131C2 (en) * 1978-03-03 1982-05-19 Ako-Werke Gmbh & Co., 7988 Wangen Electric hotplate
DE3007806C2 (en) * 1980-02-29 1982-09-02 Elpag AG Chur, 7001 Chur Electric heating devices for stoves and hotplates
US4511788A (en) * 1983-02-09 1985-04-16 Ushio Denki Kabushiki Kaisha Light-radiant heating furnace
GB8318457D0 (en) * 1983-07-07 1983-08-10 Thorn Emi Domestic Appliances Heating apparatus
FR2556547B1 (en) * 1983-12-12 1986-09-05 Acir IMPROVED ELECTRICAL GENERATOR OF INFRARED RAYS CONSTITUTING ATMOSPHERE PURIFIER
DE3804704A1 (en) * 1987-02-17 1988-08-25 Senju Metal Industry Co INFRARED HEATING DEVICE

Also Published As

Publication number Publication date
DE59100039D1 (en) 1993-03-25
ATE85686T1 (en) 1993-02-15
EP0465766A1 (en) 1992-01-15
ES2038523T3 (en) 1993-07-16
DE4022100C1 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
EP0465766B1 (en) Infrared-surface irradiator
DE2026622C2 (en) Corona reactor core for ozone generation
DE102011081749B4 (en) Substrate treatment plant
DE2622993A1 (en) UV LAMP ARRANGEMENT
DE1589773A1 (en) Support for electron window
EP1721684A2 (en) Utility enclosure with in situ disinfection device
DE2305761B2 (en) Photochemical reactor
WO1986003065A1 (en) A gas laser, especially an ion laser
EP1228668B1 (en) A radiant heating system with a high infrared radiant heating capacity, for treatment chambers
DE4100462A1 (en) MICROWAVE DISCHARGE LIGHT SOURCE DEVICE
DE2359004C3 (en) Device for heating substrates made of monocrystalline material
DE2943358A1 (en) LASER ARRANGEMENT
DE2923724C2 (en) Coolable deuterium lamp
DE1245917B (en) Method and device for carrying out photochemical reactions
DE2532990C3 (en) Traveling wave pipes
DE19753505B4 (en) UV module, equipped on both sides with a locking assembly, for use in a housing or a reactor
DE10051904B4 (en) Halogen lamp for infra-red radiation of wide materials, includes heat conducting contacts at ends to produce steep temperature gradient in glass envelope
DE2338807C3 (en) Method and apparatus for making small electric incandescent lamps
EP2000003B1 (en) Infrared irradiation unit
DE4031322C2 (en) Oven for test specimens
DE862090C (en) High-performance flash lamp
DE69928647T2 (en) ELECTRIC LAMP
DE1514510C (en) Electron beam generation system for high-performance tubes
DE758671C (en) Device with an electric gas discharge tube
WO1999048344A1 (en) Gas target window

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930210

Ref country code: NL

Effective date: 19930210

Ref country code: DK

Effective date: 19930210

Ref country code: BE

Effective date: 19930210

REF Corresponds to:

Ref document number: 85686

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930314

REF Corresponds to:

Ref document number: 59100039

Country of ref document: DE

Date of ref document: 19930325

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930609

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 711H

REG Reference to a national code

Ref country code: GB

Ref legal event code: 817A

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: HERAEUS NOBLELIGHT GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960306

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960313

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960315

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960327

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050314