EP0461003B1 - Concurrent cyclone separator and its applications - Google Patents

Concurrent cyclone separator and its applications Download PDF

Info

Publication number
EP0461003B1
EP0461003B1 EP91401388A EP91401388A EP0461003B1 EP 0461003 B1 EP0461003 B1 EP 0461003B1 EP 91401388 A EP91401388 A EP 91401388A EP 91401388 A EP91401388 A EP 91401388A EP 0461003 B1 EP0461003 B1 EP 0461003B1
Authority
EP
European Patent Office
Prior art keywords
phase
enclosure
inlet
cyclone separator
light phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91401388A
Other languages
German (de)
French (fr)
Other versions
EP0461003A1 (en
Inventor
Thierry Gauthier
Maurice Bergougnou
Cédric Briens
Pierre Galtier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0461003A1 publication Critical patent/EP0461003A1/en
Application granted granted Critical
Publication of EP0461003B1 publication Critical patent/EP0461003B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber

Definitions

  • the present invention relates to a cyclonic co-current separator.
  • This chemical engineering equipment is an apparatus allowing the separation of a dense phase D1 contained in a mixture M1 containing said dense phase D1 and a light phase L1, as known from document US-A-3,955,948 and which shows the characteristics of the preamble of claim 1.
  • the present invention also relates to the use of this improved cyclonic separator for the rapid separation of a dense phase D1 and a diluted phase L1 from their mixture M1.
  • cyclone Several types of cyclone are known according to the prior art, the performance of which is usually evaluated on the basis of the collection efficiency of the dense phase D1 and the pressure drop of the light phase L1 in the cyclonic separator (hereinafter referred to as after the appliance).
  • devices of this type are designed with the aim of obtaining the greatest possible efficiency for collecting the dense phase D1 while minimizing the pressure drop of the light phase L1 as much as possible.
  • a first type of cyclone is the reverse cyclone in which the mixture M1, containing the phases D1 and L1, enters tangentially into the enclosure of the cyclone, in the immediate vicinity of its summit, which induces, at least for the light phase L1 , a vortex and the centrifugal force which results from it makes it possible to migrate the dense phase D1 to the wall of the enclosure where it progresses in a spiral (in a helical movement) towards the bottom of the separator where it is usually collected or evacuated by a collector cone at which the vortex of the light phase turns over.
  • the light phase L1 having changed direction leaves against the current of the dense phase D1 towards the end of the separator where the inlet of the mixture M1 is placed.
  • a second type of cyclone is the cocurrent cyclone in which the mixture M1, containing the phases D1 and L1, penetrates axially or tangentially. In the case of a axial entry, the vortex is usually initiated using propeller-shaped blades.
  • the outlet of the light phase L1 and the outlet of the dense phase D1 are located near the same end of the cyclone which is the end opposite to that by which the mixture M1 is introduced into the apparatus. There will therefore be an outlet called internal or internal outlet through which the light phase L1 is discharged and an outlet called external or external outlet through which the dense phase D1 is discharged.
  • the length (Lc) of the device is in fact imposed by the natural length of the vortex (Lv) as is for example described by RM Alexander in Fundamentals of cyclone design and operation, Proc. Aus. IMM, 1949, pages 203-228, or by S. Bryant et al, Hydrocarbon processing, 1983, pages 87-90.
  • This length (Lv) is usually of the order of 3 to 4 times the diameter (Dc) of the device.
  • the vortex will rest on the cone of exit from the dense phase D1 causing the light phase to be re-entrained by the dense phase circulating in a spiral towards its exit. If the speed of entry of the mixture M1 is increased, the erosion at the tangential entry is simultaneously increased, which is not desirable industrially.
  • the dense and light phases circulate in the same direction.
  • the dense phase is evacuated through an external conduit and the light phase through an internal conduit, the inlet of which, called the internal inlet, is located at a distance (Ls) which can be much less than the length (Lc) of the reverse cyclone.
  • This internal inlet may be very close to the inlet of the mixture M1, but the closer it is the more the light phase will tend to circulate in the external outlet, around the internal duct, before coming out under the influence of the helical movement of the phases making up the mixture.
  • the flow of the phases in the entry is altered by interference and turbulence which projects part of the dense phase into the central part of the device, which causes a decrease all the more noticeable, in the collection efficiency of the dense phase D1, as the internal entry of the light phase L1 is close to the tangential entry of the mixture M1.
  • the present invention relates to a cyclonic co-current separator making it possible to very quickly separate a dense phase D1 and a light phase L1 from their mixture M1, with very good collection efficiency for the dense phase D1 and a distribution of the residence times of the light phase L1 in the apparatus narrower than in the cyclones of the prior art.
  • the volume useful for separation may be, in the apparatus of the invention, lower than in the cyclones of the prior art, and therefore the separation at constant light phase flow rate may be faster.
  • FIGS. 1A, 1B, 2, 3, 4 and 5 on which similar bodies are designated by the same reference numbers and letters.
  • Figure 1A is a perspective view of an apparatus according to the invention.
  • FIG. 1B is a perspective view of an apparatus according to the invention which differs from that shown in FIG. 1A only by the means for recovering the dense phase D1 and the light phase L1.
  • These means allow in the case of the device shown diagrammatically in FIG. 1A recovery by a lateral duct of the dense phase D1 and a recovery by an axial duct of the light phase L1 and in that shown diagrammatically in FIG. 1B by an axial duct of the dense phase D1 and recovery by a lateral duct of the light phase L1.
  • Figure 2 is a sectional view of an apparatus according to the invention practically identical to that shown in Figure 1A but comprising means (6), limiting the progression of the light phase L1 outside the inner enclosure , the dimension of which in the direction perpendicular to the axis of the external enclosure is less than the dimension of the external outlet (5).
  • the devices according to the invention shown diagrammatically in FIGS. 1A and 2, of elongated, substantially regular shapes, comprise an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially vertical, of diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1.
  • the mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure.
  • This tangential entry preferably has a rectangular or square section whose side parallel to the axis of the outer enclosure has a dimension (Lk) usually about 0.25 to about 1 times the diameter (Dc), and the side perpendicular to the axis of the outer enclosure has a dimension (hk) usually about 0.05 to about 0.5 times the diameter (Dc).
  • These devices comprise an inner enclosure of elongated shape along an axis, of substantially vertical and circular section, arranged coaxially with respect to said outer enclosure, comprising at a distance (Ls), less than (L), from the extreme level of the external input (1), an input (3) called the internal input, of diameter (Di) less than (Dc).
  • the diameter of this internal inlet (3) is usually about 0.2 to about 0.9 times the diameter (Dc), the more often from about 0.4 to about 0.8 times the diameter (Dc) and preferably from about 0.4 to about 0.6 times the diameter (Dc).
  • This distance (Ls) is usually about 0.2 to about 9.5 times the diameter (Dc) and most often about 0.5 to about 2 times the diameter (Dc).
  • a relatively short distance of between 0.5 and 2 times the diameter (Dc) usually allows very rapid separation while retaining good separation efficiency.
  • the devices also comprise downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1 in the space located between the wall internal of the external enclosure and the external wall of the internal enclosure or external outlet (5).
  • These means (6) are usually positioned inside the outer enclosure and the outside of the inner enclosure (between the outer wall of the inner enclosure and the inner wall of the outer enclosure), between the level of the internal input (3) and the means (7) for recovering the dense phase D1.
  • These means (6) are preferably substantially planar blades, the plane of which passes through a substantially vertical axis and are usually fixed on at least one wall of one of the interior or exterior enclosures.
  • These means are preferably fixed to the wall of the internal enclosure so that the distance (Lp) between the internal inlet and the point of said blades closest to this internal inlet is from about 0 to about 5 times the diameter (Dc) and preferably from about 0.1 to about 1 time this diameter (Dc).
  • the number of blades is variable according to the distribution of the residence time which is accepted for phase L1 and also according to the diameter (Dc) of the external enclosure.
  • the number of blades is usually at least 2 and for example from 2 to 50 and most often from 3 to 50.
  • the blades allow a limitation of the continuation of the vortex over the entire section of the cyclone, in the external outlet (5 ), around the duct forming the inner enclosure and connecting the internal input (3) to the internal output (4) of the light phase, and therefore a reduction and control of the distribution of the residence times of this phase in the device.
  • the residence time of the light phase L1 is limited. and the distribution of these residence times and consequently the degradation of the products contained in the light phase circulating around the internal input is thus limited.
  • Each of these blades usually has a dimension or width (ep) measured in the direction perpendicular to the axis of the inner enclosure (that is to say horizontally, from its edge closest to the axis of the outer enclosure) and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the inner enclosure of about 0.01 to 1 times the value [ ((Dc) - (D'e)) / 2 ] of the half difference of these diameters (Dc) and (D'e), preferably from approximately 0.5 to approximately 1 time this value and more often from approximately 0.9 to approximately 1 time this value.
  • ep dimension or width measured in the direction perpendicular to the axis of the inner enclosure (that is to say horizontally, from its edge closest to the axis of the outer enclosure) and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the inner enclosure of about 0.01 to 1 times the value [ ((Dc) - (D'e)
  • this dimension (ep) may be from approximately 0.01 to approximately 1 time the value (Dc) / 2 of the half diameter of the external enclosure.
  • These blades each have on their edge, the closest to the axis of the inner enclosure, in the direction parallel to the substantially vertical axis through which the plane of the blade passes, an internal dimension or height (hpi) and a external dimension or height (hpe) measured in the direction parallel to the substantially vertical axis through which the plane of the blade passes, on the edge of said blade closest to the inner wall of the outer enclosure.
  • These dimensions (hpi) and (hpe) are usually greater than 0.1 times the diameter (Dc) and for example approximately 0.1 times to approximately 10 times the diameter (Dc) and most often approximately 1 to about 4 times this diameter (Dc).
  • these blades each have a dimension (hpi) greater than or equal to their dimension (hpe).
  • the apparatus comprises, downstream, in the direction of flow of the various phases, from the internal inlet (3), at least one means (8) allowing possible introduction a light phase L2 at at least one point located between the internal inlet (3) of the interior enclosure and the end of the conduit (9) for recovering the dense phase D1; this or these points are preferably at a distance (Lz) from the inlet (3) of the interior enclosure.
  • Said distance (Lz) preferably has a value at least equal to the sum of the values of (Lp) and (hpi) and at most equal to the distance between the inlet (3) of the inner enclosure and the outlet means (7) of the dense phase D1.
  • This light phase L2 can be introduced for example in the case where it is desirable to carry out a stripping of the dense phase D1.
  • This light phase 12 is preferably introduced at several points which are usually distributed symmetrically, in a plane at the level of which the introduction is carried out, around the outer enclosure.
  • the point of introduction of this light phase L2 is usually located at a distance at least equal to 0.1 times the diameter (Dc) of the point of said means (6) closest to the means (7) for leaving the dense phase D1.
  • the point of introduction of this light phase L2 is preferably located near the conduit (9) for recovering the dense phase D1 and most often near the outlet means (7) of the dense phase D1.
  • the dimension (p ') between the level of the internal input (3) and the means (7) for outputting the dense phase D1 is determined from the other dimensions of the various means forming the device and the length (L ) of the external enclosure measured between the extreme level of the tangential input (1) and the means (7) for outputting the dense phase D1.
  • This dimension (L) is usually about 1 to about 35 times the diameter (Dc) of the outer enclosure and most often about 1 to 25 times this diameter (Dc).
  • the means (6) limit the progression of the vortex of the light phase L1 in the external output (5).
  • the position of these means (6) and their number therefore influence the performance of the separation of the phases D1 and L1 contained in the mixture M1 (pressure drop and efficiency of the collection of the phases) and also on the penetration of the vortex of the light phase L1 in the outlet (5).
  • These parameters will therefore be carefully chosen by those skilled in the art, in particular as a function of the desired results and of the tolerated pressure drop.
  • D1 is a solid the number of blades, their shape and their position will be chosen with care taking into account their influence on the flow of the solid in connection with the desired limitation of the progression of the vortex in the external output (5 ).
  • FIG. 4 is a sectional view of an apparatus according to the invention of elongated, substantially regular shape, comprising an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially horizontal in diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1.
  • the mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure.
  • This device also comprises downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1, outside of the inner enclosure, in the space between the inner wall of the outer enclosure and the outer wall of the inner enclosure or external outlet (5).
  • These means (6) are usually positioned, downstream, in the direction of circulation of the dense phase D1, of the means for recovering (7) the dense phase D1, in the conduit (9), for recovering the dense phase D1, of diameter (Ds).
  • These means (6) are usually substantially planar blades, the plane of which passes through a substantially vertical axis.
  • the dimension (ep) of each of these blades is usually about 0.01 to about 1 times the diameter (Ds) of the conduit (9).
  • the blades are usually positioned so that the inner edge, that is to say the edge of the blade closest to the axis of the duct (9), of each of them is coincident with the axis of said conduit (9).
  • These blades are positioned at a distance (Lp) from the means (7) of about 0 to about 5x (Dc).
  • the means (8) for possibly introducing a light phase L2 are usually positioned downstream, in the direction of circulation of the dense phase D1, from the level of the internal inlet (3), and preferably between the means (7 ) recovering the dense phase D1 and the end of the conduit (9) recovering the dense phase D1.
  • the introduction of a light phase L2 is provided at 2 different levels by a first means (8) at the level of the means (7) and by a second means (8) in below the means (6).
  • the means (8) are positioned at a distance (Lz) from the means for recovering the dense phase D1, measured from said means (7).
  • This device shown diagrammatically in FIG. 4 comprises a conduit (9), for recovering the dense phase D1, of diameter (Ds) usually equal to approximately 0.1 to approximately 1 times the diameter (Dc) and most often of approximately 0.2 to about 0.7 times this diameter.
  • FIGS. 1A, 1B, 2, 3 and 4 it is possible, and usually desirable, in the case of high flow rates of the various phases at the level of the inputs of the device, to use means to promote the formation of the vortex.
  • Such means (10) are for example shown in FIG. 5 which represents, according to a preferred embodiment of the invention, the part close to the tangential inlet (1) of the mixture M1.
  • the device comprises a roof (10), for example helical, descending from the extreme level of the tangential entry (1).
  • These means (10) can also consist of an internal or external volute.
  • the pitch of the propeller is approximately 0.01 to approximately 3 times the value of (Lk) and most often approximately 0.5 to approximately 1 , 5 times this value.
  • the apparatus also comprises, between the external input and the internal input, means for stabilizing the helical flow of at least the light phase L1 and limiting the useful volume at separation. These means are preferably centered on the axis of the interior enclosure.
  • These means can be a cone whose tip is directed towards the internal inlet and whose base is located at the extreme level of the tangential inlet (1). They can also be formed, as shown diagrammatically in FIG. 5, by a cylinder (11) extended by a cone (12).
  • the diameter of the base of the cone is identical to that of the cylinder and is strictly less than the diameter (Dc). This diameter is usually about 0.01 to about 1.5 times the diameter (Di) of the internal inlet (3) and preferably about 0.75 to about 1.25 times the diameter (Di).
  • the axial size or dimension between the extreme level of these means closest to the tangential entry and the opposite end of said means is usually about 0.01 to about 3 times the value (Ls) of the distance between the extreme level of the tangential input (1) and the level of the internal input (3) and preferably from approximately 0.75 to approximately 1.25 times this value (Ls).
  • the output means (7) of the dense phase D1 usually make it possible to collect and channel this dense phase D1 to the external output (9). These means are most often an inclined bottom or a cone oriented or not on the internal outlet (4).
  • the devices according to the present invention thus allow rapid separation, from a mixture M1, comprising a dense phase and a light phase, of said dense phase and of said light phase. They can advantageously be used in the case where the mixture to be separated is a mixture obtained at the end of a chemical reaction and comprising at least one phase which contributes to this reaction.
  • the phases are, as regards the light phases of the liquid, gaseous phases or of phases containing both liquid and gas, and as regards the dense phase a solid phase (in the form of particles ), liquid or a phase containing both solid and liquid.
  • the dense phase is a solid phase and the light phases of gases and the second in which there is a liquid phase which can be the dense phase or the light phase.
  • the diameter (Dc) of the device measured at the tangential entry (1) on the side of its end closest to the internal entry (3) is usually about 0.01 to about 10 m (meters ) and most often about 0.05 to about 2 m. It is usually preferable to keep a constant diameter over the entire length of the device between the end of the tangential entry closest to the internal entry (3) and said internal entry (3) or even from the level from the injection of the mixture M1 to the level of the means (7) for outputting the dense phase D1; however, it would not be departing from the scope of the invention in the case of an apparatus comprising enlargements or narrowing of sections between said levels.
  • phase L1 contained in a mixture M1 also comprising at least one phase D1 it is preferable to have a high surface velocity of entry of this phase L1 and for example of approximately 5 to approximately 150 mxs ⁇ 1 (meter per second) and preferably from about 10 to about 75 mxs ⁇ 1.
  • the weight ratio of the flow from phase D1 to the flow from phase L1 is usually from about 0.0001: 1 to about 50: 1 and most often from about 0.1: 1 to about 15: 1.
  • the device will comprise at least one means allowing the withdrawal, by the external output (5), of at least part of the light phase L1 in admixture with the dense phase D1.
  • US-A-4,746,340 which relates to an air purifier and not the separation of two phases (light and heavy) of a solid / gas mixture obtained in particular after a chemical reaction.
  • US-A-3,955,948 which differs from the invention by the use of helical valves instead of flat blades.
  • the following example is given by way of illustration and shows the efficiency of the separation of a light (gas) phase L1 contained in a mixture M1 also containing a dense (solid) phase D1 and also the efficiency of the blades on the penetration of the vortex of the gas phase L1 into the external outlet.
  • FIGS. 1A and 2 Two apparatuses are produced, with vertical axes, in accordance with those shown diagrammatically in FIGS. 1A and 2 comprising a tangential entry with a roof descending on 3/4 of a turn continuously over a height equal to the value of Lk.
  • These devices have the geometrical characteristics mentioned in Table I below. They have a dead volume having the shape of that shown diagrammatically in FIG. 5 and composed of a cylinder extended by a cone, the point of which is directed towards the internal inlet (3).
  • the diameter of the cylinder is equal to 0.5 times the diameter (Dc) of the outer enclosure, its height is 0.5x (Dc) and the cone has a circular base of diameter 0.5x (Dc) and a height of 1x (Dc).
  • ED1 separation efficiency of D1 in the device (ratio of the mass flow of D1 measured in the conduit (9) for recovering the dense phase D1 to the flow mass of D1 introduced into the tangential inlet (1)) with a withdrawal of phase L1 in the conduit (9) for recovery of the dense phase D1 by 2% by weight relative to the weight of L1 introduced into the tangential inlet (1).
  • Pvortex distance between the end of the vortex of L1 in the external output (5) and the top of the internal input (3). This distance is measured using thermal probes allowing highlight the disappearance of the tangential velocity component and therefore of the vortex in the flow of phase L1 in the external output (5). TABLE II Performances Device A Device B ED1 99.9% 99.9% Pvortex 4 cm 18 cm

Landscapes

  • Cyclones (AREA)

Description

La présente invention concerne un séparateur cyclonique à co-courant. Cet équipement de génie chimique est un appareil permettant la séparation d'une phase dense D1 contenue dans un mélange M1 contenant ladite phase dense D1 et une phase légère L1, tel que connu par le document US-A-3,955,948 et qui montre les caractéristiques du préambule de la revendication 1.The present invention relates to a cyclonic co-current separator. This chemical engineering equipment is an apparatus allowing the separation of a dense phase D1 contained in a mixture M1 containing said dense phase D1 and a light phase L1, as known from document US-A-3,955,948 and which shows the characteristics of the preamble of claim 1.

La présente invention concerne également l'utilisation de ce séparateur cyclonique amélioré à la séparation rapide d'une phase dense D1 et d'une phase diluée L1 à partir de leur mélange M1.The present invention also relates to the use of this improved cyclonic separator for the rapid separation of a dense phase D1 and a diluted phase L1 from their mixture M1.

On connait selon l'art antérieur plusieurs types de cyclone dont les performances sont habituellement évaluées à partir de l'efficacité de la collecte de la phase dense D1 et de la perte de charge de la phase légère L1 dans le séparateur cyclonique (dénommé ci-après l'appareil). Dans la plus grande majorité des cas les appareils de ce type sont conçus en cherchant à obtenir la plus grande efficacité possible pour la collecte de la phase dense D1 tout en limitant le plus possible la perte de charge de la phase légère L1.Several types of cyclone are known according to the prior art, the performance of which is usually evaluated on the basis of the collection efficiency of the dense phase D1 and the pressure drop of the light phase L1 in the cyclonic separator (hereinafter referred to as after the appliance). In the vast majority of cases, devices of this type are designed with the aim of obtaining the greatest possible efficiency for collecting the dense phase D1 while minimizing the pressure drop of the light phase L1 as much as possible.

Un premier type de cyclone est le cyclone à rebours dans lequel le mélange M1, contenant les phases D1 et L1, pénètre tangentiellement dans l'enceinte du cyclone, à proximité immédiate de son sommet, ce qui induit, au moins pour la phase légère L1, un vortex et la force centrifuge qui en découle permet de faire migrer la phase dense D1 à la paroi de l'enceinte où elle progresse en spirale (selon un mouvement hélicoïdal) vers le fond du séparateur où elle est habituellement recueillie ou évacuée par un cône collecteur au niveau duquel le vortex de la phase légère se retourne. La phase légère L1 ayant changé de direction sort à contre courant de la phase dense D1 vers l'extrémité du séparateur où est placée l'entrée du mélange M1.A first type of cyclone is the reverse cyclone in which the mixture M1, containing the phases D1 and L1, enters tangentially into the enclosure of the cyclone, in the immediate vicinity of its summit, which induces, at least for the light phase L1 , a vortex and the centrifugal force which results from it makes it possible to migrate the dense phase D1 to the wall of the enclosure where it progresses in a spiral (in a helical movement) towards the bottom of the separator where it is usually collected or evacuated by a collector cone at which the vortex of the light phase turns over. The light phase L1 having changed direction leaves against the current of the dense phase D1 towards the end of the separator where the inlet of the mixture M1 is placed.

Un deuxième type de cyclone est le cyclone à co-courant dans lequel le mélange M1, contenant les phases D1 et L1, pénètre axialement ou tangentiellement. Dans le cas d'une entrée axiale, le vortex est habituellement initié à l'aide de pales en forme d'hélice. Dans ce type de cyclone la sortie de la phase légère L1 et la sortie de la phase dense D1 sont situées à proximité de la même extrémité du cyclone qui est l'extrémité opposée à celle par laquelle le mélange M1 est introduit dans l'appareil. On aura donc une sortie dite sortie interne ou intérieure par laquelle on évacue la phase légère L1 et une sortie dite sortie externe ou extérieure par laquelle on évacue la phase dense D1.A second type of cyclone is the cocurrent cyclone in which the mixture M1, containing the phases D1 and L1, penetrates axially or tangentially. In the case of a axial entry, the vortex is usually initiated using propeller-shaped blades. In this type of cyclone, the outlet of the light phase L1 and the outlet of the dense phase D1 are located near the same end of the cyclone which is the end opposite to that by which the mixture M1 is introduced into the apparatus. There will therefore be an outlet called internal or internal outlet through which the light phase L1 is discharged and an outlet called external or external outlet through which the dense phase D1 is discharged.

Pour certaines applications, comme par exemple dans le cas du procédé dénommé ultrapyrolyse, décrit par exemple par Graham et al, World Fluidisation Conference, Mai 1986, Elsinore Danemark, qui est un procédé de craquage à haute température, a l'état fluidisé et avec des temps de séjour du gaz dans le réacteur inférieur à la seconde, il est nécessaire d'utiliser un séparateur très rapide. Dans ce procédé la réaction chimique de craquage thermique est initiée par des solides caloporteurs et a lieu dans un réacteur à écoulement piston. Le temps de la réaction est très court, habituellement d'environ 100 à environ 900 millisecondes (ms), et il est important, pour avoir une bonne efficacité thermique dans le procédé, de séparer très rapidement les solides et les gaz avant d'effectuer une trempe rapide des produits gazeux. Le temps de séjour dans le séparateur doit être aussi court que possible et de plus la distribution des temps de séjour doit être la plus étroite possible afin de limiter au maximum les réactions de craquage secondaires conduisant à la dégradation de produits valorisables.For certain applications, such as in the case of the process called ultrapyrolysis, described for example by Graham et al, World Fluidization Conference, May 1986, Elsinore Denmark, which is a high temperature cracking process, in the fluidized state and with residence times of the gas in the reactor less than a second, it is necessary to use a very fast separator. In this process the chemical thermal cracking reaction is initiated by heat transfer solids and takes place in a piston flow reactor. The reaction time is very short, usually about 100 to about 900 milliseconds (ms), and it is important, in order to have good thermal efficiency in the process, to separate the solids and gases very quickly before performing rapid quenching of gaseous products. The residence time in the separator must be as short as possible and, moreover, the distribution of the residence times must be as narrow as possible in order to limit as much as possible the secondary cracking reactions leading to the degradation of recoverable products.

Du fait de son principe même, basé sur le retournement de la phase gazeuse, il n'est guère possible de modifier la géométrie d'un cyclone à rebours afin de limiter le temps de séjour de la phase légère L1 dans l'appareil. La longueur (Lc) de l'appareil est en effet imposée par la longueur naturelle du vortex (Lv) comme cela est par exemple décrit par R. M. Alexander dans Fundamentals of cyclone design and operation, Proc. Aus. I.M.M., 1949, pages 203-228, ou par S. Bryant et al, Hydrocarbon processing, 1983, pages 87-90. Cette longueur (Lv) est habituellement de l'ordre de 3 à 4 fois le diamètre (Dc) de l'appareil. Si on réduit la longueur de l'appareil alors le vortex va s'appuyer sur le cône de sortie de la phase dense D1 provoquant le réentraînement de la phase légère par la phase dense circulant en spirale vers sa sortie. Si on augmente la vitesse d'entrée du mélange M1 on augmente simultanément l'érosion au niveau de l'entrée tangentielle ce qui n'est pas souhaitable industriellement.Because of its very principle, based on the reversal of the gas phase, it is hardly possible to modify the geometry of a reverse cyclone in order to limit the residence time of the light phase L1 in the apparatus. The length (Lc) of the device is in fact imposed by the natural length of the vortex (Lv) as is for example described by RM Alexander in Fundamentals of cyclone design and operation, Proc. Aus. IMM, 1949, pages 203-228, or by S. Bryant et al, Hydrocarbon processing, 1983, pages 87-90. This length (Lv) is usually of the order of 3 to 4 times the diameter (Dc) of the device. If the length of the device is reduced then the vortex will rest on the cone of exit from the dense phase D1 causing the light phase to be re-entrained by the dense phase circulating in a spiral towards its exit. If the speed of entry of the mixture M1 is increased, the erosion at the tangential entry is simultaneously increased, which is not desirable industrially.

Dans un cyclone à co-courant les phases denses et légères circulent dans la même direction. La phase dense est évacuée à travers un conduit externe et la phase légère à travers un conduit interne dont l'entrée dite entrée interne est située a une distance (Ls) qui peut être très inférieure à la longueur (Lc) du cylone à rebours. Cette entrée interne peut être très proche de l'entrée du mélange M1, mais plus elle sera proche plus la phase légère aura tendance à circuler dans la sortie externe, autour du conduit interne, avant de ressortir sous l'influence du mouvement hélicoïdal des phases composant le mélange. Par ailleurs, plus l'entrée interne est proche de l'entrée du mélange M1, plus la collecte de la phase dense D1 sera soumise à l'influence des turbulences existantes au niveau de l'entrée de ce mélange. Par exemple, dans le cas d'une entrée tangentielle classique à toit plat, l'écoulement des phases dans l'entrée est altéré par des interférences et des turbulences qui projettent une partie de la phase dense dans la partie centrale de l'appareil, ce qui provoque une diminution d'autant plus sensible, de l'efficacité de la collecte de la phase dense D1, que l'entrée interne de la phase légère L1 est proche de l'entrée tangentielle du mélange M1.In a co-current cyclone the dense and light phases circulate in the same direction. The dense phase is evacuated through an external conduit and the light phase through an internal conduit, the inlet of which, called the internal inlet, is located at a distance (Ls) which can be much less than the length (Lc) of the reverse cyclone. This internal inlet may be very close to the inlet of the mixture M1, but the closer it is the more the light phase will tend to circulate in the external outlet, around the internal duct, before coming out under the influence of the helical movement of the phases making up the mixture. Furthermore, the closer the internal inlet is to the inlet of the mixture M1, the more the collection of the dense phase D1 will be subject to the influence of the existing turbulence at the inlet of this mixture. For example, in the case of a conventional tangential entry with a flat roof, the flow of the phases in the entry is altered by interference and turbulence which projects part of the dense phase into the central part of the device, which causes a decrease all the more noticeable, in the collection efficiency of the dense phase D1, as the internal entry of the light phase L1 is close to the tangential entry of the mixture M1.

Dans ce type de cyclone à co-courant on peut, contrairement au cas des cyclones à rebours, en plaçant l'entrée interne de la phase légère assez près de l'entrée (à une distance inférieure à la longueur (Lc) du cyclone à rebours) du mélange M1, et en contrôlant la circulation de la phase légère dans l'entrée interne et l'écoulement dans l'entrée du mélange M1, obtenir une séparation rapide des phases tout en conservant une bonne efficacité de la collecte de la phase dense D1 et en ayant une distribution de temps de séjour de la phase légère acceptable.In this type of co-current cyclone it is possible, unlike reverse cyclones, by placing the internal entry of the light phase fairly close to the entry (at a distance less than the length (Lc) of the cyclone to reverse) of the M1 mixture, and by controlling the circulation of the light phase in the internal inlet and the flow in the inlet of the M1 mixture, obtain a rapid separation of the phases while retaining good efficiency in collecting the dense phase D1 and having an acceptable distribution of residence time of the light phase.

La présente invention concerne un séparateur cyclonique à co-courant permettant d'effectuer très rapidement la séparation d'une phase dense D1 et d'une phase légère L1 à partir de leur mélange M1, avec une très bonne efficacité de collecte de la phase dense D1 et une distribution des temps de séjour de la phase légère L1 dans l'appareil plus étroite que dans les cyclones de l'art antérieur. Le volume utile à la séparation pourra être, dans l'appareil de l'invention, plus faible que dans les cyclones de l'art antérieur, et par conséquent la séparation à débit de phase légère constant pourra être plus rapide.The present invention relates to a cyclonic co-current separator making it possible to very quickly separate a dense phase D1 and a light phase L1 from their mixture M1, with very good collection efficiency for the dense phase D1 and a distribution of the residence times of the light phase L1 in the apparatus narrower than in the cyclones of the prior art. The volume useful for separation may be, in the apparatus of the invention, lower than in the cyclones of the prior art, and therefore the separation at constant light phase flow rate may be faster.

De façon plus précise la présente invention concerne un séparateur cyclonique à co-courant comportant en combinaison :

  • au moins une enceinte extérieure, de forme allongée le long d'un axe, de section sensiblement circulaire de diamètre (Dc), comprenant à une première extrémité des moyens d'introduction permettant d'introduire, par une entrée dite entrée externe, un mélange M1 contenant au moins une phase dense D1 et une phase légère L1, lesdits moyens étant adaptés à conférer au moins à la phase légère L1 un mouvement hélicoïdal dans la direction de l'écoulement dudit mélange M1 dans ladite enceinte extérieure, comprenant également des moyens de séparation des phases D1 et L1 et à l'extrémité opposée à ladite première extrémité des moyens de récupération permettant de récupérer, par une sortie comportant un conduit latéral ou axial, dite sortie externe, au moins une partie de la phase dense D1, et ayant entre lesdites extrémités opposées une longueur L,
  • au moins une enceinte intérieure de forme allongée le long d'un axe, de section sensiblement circulaire, disposée coaxialement par rapport à ladite enceinte extérieure, comprenant à une distance Ls, inférieure à L, du niveau extrême de l'entrée externe, une entrée dite entrée interne, de diamètre (Di) inférieur à (Dc), dans laquelle pénètre au moins une partie de la phase légère L1 et à son extrémité opposée des moyens de récupération permettant de récupérer, par un conduit dit conduit interne, respectivement axial si le conduit de la sortie externe est latéral, ou latéral si le conduit de la sortie externe est axial, ladite partie de la phase légère L1,
  • et comportant en aval, dans le sens de circulation de la phase dense D1, du niveau de l'entrée interne de l'enceinte intérieure, des moyens limitant la progression de la phase légère L1 à l'extérieur de ladite enceinte intérieure, lesdits moyens étant des pales sensiblement planes dont le plan passe par un axe sensiblement vertical;
  • ledit séparateur comportant en outre au moins un moyen pour l'introduction d'une phase légère L2 en au moins un point situé entre l'entrée interne de l'enceinte intérieure et l'extrémité du conduit de récupération de la phase dense, et que l'entrée externe par laquelle entre le mélange M1 est une entrée tangentielle permettant d'introduire M1 dans une direction sensiblement perpendiculaire à l'axe de l'enceinte extérieure.
More specifically, the present invention relates to a cyclonic co-current separator comprising in combination:
  • at least one external enclosure, of elongated shape along an axis, of substantially circular cross section of diameter (Dc), comprising at a first end introduction means making it possible to introduce, by an entry called external entry, a mixture M1 containing at least one dense phase D1 and a light phase L1, said means being adapted to impart at least to the light phase L1 a helical movement in the direction of flow of said mixture M1 in said outer enclosure, also comprising means for separation of the phases D1 and L1 and at the end opposite to said first end of the recovery means making it possible to recover, by an outlet comprising a lateral or axial duct, called the external outlet, at least part of the dense phase D1, and having between said opposite ends a length L,
  • at least one inner enclosure of elongated shape along an axis, of substantially circular section, arranged coaxially with respect to said outer enclosure, comprising at a distance Ls, less than L, from the extreme level of the external input, an input said internal inlet, of diameter (Di) less than (Dc), into which at least part of the light phase L1 penetrates and at its opposite end recovery means making it possible to recover, by a conduit called internal conduit, respectively axial if the duct of the external outlet is lateral, or lateral if the duct of the external outlet is axial, said part of the light phase L1,
  • and comprising downstream, in the direction of circulation of the dense phase D1, from the level of the internal entrance to the interior enclosure, means limiting the progression of the light phase L1 outside of said interior enclosure, said means being substantially planar blades whose plane passes through a substantially vertical axis;
  • said separator further comprising at least one means for introducing a light phase L2 at at least one point located between the internal inlet of the interior enclosure and the end of the dense phase recovery duct, and that the external entry by which between the mixture M1 is a tangential entry making it possible to introduce M1 in a direction substantially perpendicular to the axis of the external enclosure.

L'invention sera mieux comprise par la description de quelques modes de réalisation, donnés à titre purement illustratif mais nullement limitatif, qui en sera faite ci-après à l'aide des figures 1A, 1B, 2, 3, 4 et 5 annexées, sur lesquelles les organes similaires sont désignés par les mêmes chiffres et lettres de référence.The invention will be better understood by the description of some embodiments, given purely by way of illustration but in no way limiting, which will be made of it below with the aid of the appended FIGS. 1A, 1B, 2, 3, 4 and 5, on which similar bodies are designated by the same reference numbers and letters.

La figure 1A est une vue en perspective d'un appareil selon l'invention.Figure 1A is a perspective view of an apparatus according to the invention.

La figure 1B est une vue en perspective d'un appareil selon l'invention qui ne diffère de celui représenté sur la figure 1A que par les moyens de récupération de la phase dense D1 et de la phase légère L1. Ces moyens permettent dans le cas de l'appareil schématisé sur la figure 1A une récupération par un conduit latéral de la phase dense D1 et une récupération par un conduit axial de la phase légère L1 et dans celui schématisé sur la figure 1B une récupération par un conduit axial de la phase dense D1 et une récupération par un conduit latéral de la phase légère L1.FIG. 1B is a perspective view of an apparatus according to the invention which differs from that shown in FIG. 1A only by the means for recovering the dense phase D1 and the light phase L1. These means allow in the case of the device shown diagrammatically in FIG. 1A recovery by a lateral duct of the dense phase D1 and a recovery by an axial duct of the light phase L1 and in that shown diagrammatically in FIG. 1B by an axial duct of the dense phase D1 and recovery by a lateral duct of the light phase L1.

La figure 2 est une vue en coupe d'un appareil selon l'invention pratiquement identique à celui représenté sur la figure 1A mais comportant des moyens (6), limitant la progression de la phase légère L1 à l'extérieur de l'enceinte intérieure, dont la dimension dans la direction perpendiculaire à l'axe de l'enceinte extérieure est inférieure à la dimension de la sortie externe (5).Figure 2 is a sectional view of an apparatus according to the invention practically identical to that shown in Figure 1A but comprising means (6), limiting the progression of the light phase L1 outside the inner enclosure , the dimension of which in the direction perpendicular to the axis of the external enclosure is less than the dimension of the external outlet (5).

Les appareils selon l'invention, schématisés sur les figures 1A et 2, de formes allongées, sensiblement régulières, comportent une enceinte extérieure, ayant un axe (AA') qui est un axe de symétrie, sensiblement verticale, de diamètre (Dc) et de longueur (L) entre le niveau extrême de l'entrée tangentielle (1), dite entrée externe, et les moyens (7) de sortie de la phase dense D1. Le mélange M1 contenant au moins une phase dense D1 et au moins une phase légère L1 est introduit par l'entrée tangentielle (1) suivant une direction sensiblement perpendiculaire à l'axe de l'enceinte extérieure. Cette entrée tangentielle a de préférence une section rectangulaire ou carrée dont le côté parallèle à l'axe de l'enceinte extérieure a une dimension (Lk) habituellement d'environ 0,25 à environ 1 fois le diamètre (Dc), et le côté perpendiculaire à l'axe de l'enceinte extérieure a une dimension (hk) habituellement d'environ 0,05 à environ 0,5 fois le diamètre (Dc).The devices according to the invention, shown diagrammatically in FIGS. 1A and 2, of elongated, substantially regular shapes, comprise an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially vertical, of diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1. The mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure. This tangential entry preferably has a rectangular or square section whose side parallel to the axis of the outer enclosure has a dimension (Lk) usually about 0.25 to about 1 times the diameter (Dc), and the side perpendicular to the axis of the outer enclosure has a dimension (hk) usually about 0.05 to about 0.5 times the diameter (Dc).

Ces appareils comportent une enceinte intérieure de forme allongée le long d'un axe, de section sensiblement verticale et circulaire, disposée coaxialement par rapport à ladite enceinte extérieure, comprenant à une distance (Ls), inférieure à (L), du niveau extrême de l'entrée externe (1), une entrée (3) dite entrée interne, de diamètre (Di) inférieur à (Dc). Le diamètre de cette entrée interne (3) est habituellement d'environ 0,2 à environ 0,9 fois le diamètre (Dc), le plus souvent d'environ 0,4 à environ 0,8 fois le diamètre (Dc) et de préférence d'environ 0,4 à environ 0,6 fois le diamètre (Dc). Cette distance (Ls) est habituellement d'environ 0,2 à environ 9,5 fois le diamètre (Dc) et le plus souvent d'environ 0,5 à environ 2 fois le diamètre (Dc). Une distance relativement courte comprise entre 0,5 et 2 fois le diamètre (Dc) permet habituellement une séparation très rapide tout en conservant une bonne efficacité de séparation.These devices comprise an inner enclosure of elongated shape along an axis, of substantially vertical and circular section, arranged coaxially with respect to said outer enclosure, comprising at a distance (Ls), less than (L), from the extreme level of the external input (1), an input (3) called the internal input, of diameter (Di) less than (Dc). The diameter of this internal inlet (3) is usually about 0.2 to about 0.9 times the diameter (Dc), the more often from about 0.4 to about 0.8 times the diameter (Dc) and preferably from about 0.4 to about 0.6 times the diameter (Dc). This distance (Ls) is usually about 0.2 to about 9.5 times the diameter (Dc) and most often about 0.5 to about 2 times the diameter (Dc). A relatively short distance of between 0.5 and 2 times the diameter (Dc) usually allows very rapid separation while retaining good separation efficiency.

Les appareils comportent également en aval, dans le sens de circulation de la phase dense D1, du niveau de l'entrée interne (3), des moyens (6) limitant la progression de la phase légère L1 dans l'espace situé entre la paroi interne de l'enceinte extérieure et la paroi externe de l'enceinte intérieure ou sortie externe (5). Ces moyens (6) sont habituellement positionnés à l'intérieur de l'enceinte extérieure et l'extérieur de l'enceinte intérieure (entre la paroi externe de l'enceinte intérieure et la paroi interne de l'enceinte extérieure), entre le niveau de l'entrée interne (3) et les moyens (7) de récupérations de la phase dense D1. Ces moyens (6) sont de préférence des pales sensiblement planes dont le plan passe par un axe sensiblement vertical et sont habituellement fixées sur au moins une paroi de l'une des enceintes intérieure ou extérieure. Ces moyens sont de préférence fixés à la paroi de l'enceinte intérieure de sorte que la distance (Lp) entre l'entrée interne et le point desdites pales le plus proche de cette entrée interne soit d'environ 0 à environ 5 fois le diamètre (Dc) et de préférence d'environ 0,1 à environ 1 fois ce diamètre (Dc).The devices also comprise downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1 in the space located between the wall internal of the external enclosure and the external wall of the internal enclosure or external outlet (5). These means (6) are usually positioned inside the outer enclosure and the outside of the inner enclosure (between the outer wall of the inner enclosure and the inner wall of the outer enclosure), between the level of the internal input (3) and the means (7) for recovering the dense phase D1. These means (6) are preferably substantially planar blades, the plane of which passes through a substantially vertical axis and are usually fixed on at least one wall of one of the interior or exterior enclosures. These means are preferably fixed to the wall of the internal enclosure so that the distance (Lp) between the internal inlet and the point of said blades closest to this internal inlet is from about 0 to about 5 times the diameter (Dc) and preferably from about 0.1 to about 1 time this diameter (Dc).

Le nombre de pales est variable suivant la distribution du temps de séjour que l'on accepte pour la phase L1 et également en fonction du diamètre (Dc) de l'enceinte extérieure. Le nombre de pale est habituellement d'au moins 2 et par exemple de 2 à 50 et le plus souvent de 3 à 50. Les pales permettent une limitation de la continuation du vortex sur toute la section du cyclone, dans la sortie externe (5), autour du conduit formant l'enceinte intérieure et reliant l'entrée interne (3) à la sortie interne (4) de la phase légère, et donc une diminution et un contrôle de la distribution des temps de séjour de cette phase dans l'appareil.The number of blades is variable according to the distribution of the residence time which is accepted for phase L1 and also according to the diameter (Dc) of the external enclosure. The number of blades is usually at least 2 and for example from 2 to 50 and most often from 3 to 50. The blades allow a limitation of the continuation of the vortex over the entire section of the cyclone, in the external outlet (5 ), around the duct forming the inner enclosure and connecting the internal input (3) to the internal output (4) of the light phase, and therefore a reduction and control of the distribution of the residence times of this phase in the device.

Ainsi dans le cas de l'utilisation d'un appareil selon l'invention dans la mise en oeuvre de réactions ultra-rapides, par exemple dans le cas de l'ultra-pyrolyse, on limite le temps de séjour de la phase légère L1 et la distribution de ces temps de séjour et en conséquence on limite ainsi la dégradation des produits contenus dans la phase légère circulant autour de l'entrée interne.Thus, in the case of the use of an apparatus according to the invention in the implementation of ultra-rapid reactions, for example in the case of ultra-pyrolysis, the residence time of the light phase L1 is limited. and the distribution of these residence times and consequently the degradation of the products contained in the light phase circulating around the internal input is thus limited.

Chacune de ces pales a habituellement une dimension ou largeur (ep) mesurée dans la direction perpendiculaire à l'axe de l'enceinte intérieure (c'est-à-dire horizontalement, à partir de son arête la plus proche de l'axe de l'enceinte extérieure) et définie par rapport au diamètre intérieur (Dc) de l'enceinte extérieure et au diamètre extérieur (D'e) de l'enceinte intérieure d'environ 0,01 à 1 fois la valeur [ ((Dc)-(D'e))/2

Figure imgb0001
]
Figure imgb0002
de la demi différence de ces diamètres (Dc) et (D'e), de préférence d'environ 0,5 à environ 1 fois cette valeur et le plus souvent d'environ 0,9 à environ 1 fois cette valeur.Each of these blades usually has a dimension or width (ep) measured in the direction perpendicular to the axis of the inner enclosure (that is to say horizontally, from its edge closest to the axis of the outer enclosure) and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the inner enclosure of about 0.01 to 1 times the value [ ((Dc) - (D'e)) / 2
Figure imgb0001
]
Figure imgb0002
of the half difference of these diameters (Dc) and (D'e), preferably from approximately 0.5 to approximately 1 time this value and more often from approximately 0.9 to approximately 1 time this value.

Dans le cas d'un appareil vertical, selon l'invention, tel que par exemple celui schématisé sur la figure 1B, ayant une sortie interne (4) latérale, et lorsque les pales sont positionnées après cette sortie interne, cette dimension (ep) peut être d'environ 0,01 à environ 1 fois la valeur (Dc)/2 du demi diamètre de l'enceinte extérieure.In the case of a vertical device, according to the invention, such as for example that shown diagrammatically in FIG. 1B, having a lateral internal outlet (4), and when the blades are positioned after this internal outlet, this dimension (ep) may be from approximately 0.01 to approximately 1 time the value (Dc) / 2 of the half diameter of the external enclosure.

Ces pales ont chacune sur leur arête, la plus proche de l'axe de l'enceinte intérieure, dans la direction parallèle à l'axe sensiblement vertical par lequel passe le plan de la pale, une dimension ou hauteur interne (hpi) et une dimension ou hauteur externe (hpe) mesurée dans la direction parallèle à l'axe sensiblement vertical par lequel passe le plan de la pale, sur l'arête de ladite pale la plus proche de la paroi interne de l'enceinte extérieure. Ces dimensions (hpi) et (hpe) sont habituellement supérieures à 0,1 fois le diamètre (Dc) et par exemple d'environ 0,1 fois à environ 10 fois le diamètre (Dc) et le plus souvent d'environ 1 à environ 4 fois ce diamètre (Dc). De préférence ces pales ont chacune une dimension (hpi) supérieure ou égale à leur dimension (hpe).These blades each have on their edge, the closest to the axis of the inner enclosure, in the direction parallel to the substantially vertical axis through which the plane of the blade passes, an internal dimension or height (hpi) and a external dimension or height (hpe) measured in the direction parallel to the substantially vertical axis through which the plane of the blade passes, on the edge of said blade closest to the inner wall of the outer enclosure. These dimensions (hpi) and (hpe) are usually greater than 0.1 times the diameter (Dc) and for example approximately 0.1 times to approximately 10 times the diameter (Dc) and most often approximately 1 to about 4 times this diameter (Dc). Preferably, these blades each have a dimension (hpi) greater than or equal to their dimension (hpe).

Selon la réalisation schématisée sur les figures 1A et 2 l'appareil comporte, en aval, dans le sens de l'écoulement des diverses phases, de l'entrée interne (3), au moins un moyen (8) permettant l'introduction éventuelle d'une phase légère L2 en au moins un point situé entre l'entrée interne (3) de l'enceinte intérieure et l'extrémité du conduit (9) de récupération de la phase dense D1 ; ce ou ces points sont de préférence à une distance (Lz) de l'entrée (3) de l'enceinte intérieure. Ladite distance (Lz) a de préférence une valeur au moins égale à la somme des valeurs de (Lp) et (hpi) et au plus égale à la distance entre l'entrée (3) de l'enceinte intérieure et les moyens de sortie (7) de la phase dense D1. Cette phase légère L2 peut être introduite par exemple dans le cas où il est souhaitable d'effectuer un strippage de la phase dense D1.According to the embodiment shown diagrammatically in FIGS. 1A and 2, the apparatus comprises, downstream, in the direction of flow of the various phases, from the internal inlet (3), at least one means (8) allowing possible introduction a light phase L2 at at least one point located between the internal inlet (3) of the interior enclosure and the end of the conduit (9) for recovering the dense phase D1; this or these points are preferably at a distance (Lz) from the inlet (3) of the interior enclosure. Said distance (Lz) preferably has a value at least equal to the sum of the values of (Lp) and (hpi) and at most equal to the distance between the inlet (3) of the inner enclosure and the outlet means (7) of the dense phase D1. This light phase L2 can be introduced for example in the case where it is desirable to carry out a stripping of the dense phase D1.

Cette phase légère 12, est de préférence introduite en plusieurs points qui sont habituellement répartis symétriquement, dans un plan au niveau duquel l'introduction est effectuée, autour de l'enceinte extérieure.This light phase 12 is preferably introduced at several points which are usually distributed symmetrically, in a plane at the level of which the introduction is carried out, around the outer enclosure.

Le point d'introduction de cette phase légère L2 est habituellement situé à une distance au moins égale à 0,1 fois le diamètre (Dc) du point desdits moyens (6) le plus proche des moyens (7) de sortie de la phase dense D1. Le point d'introduction de cette phase légère L2 est de préférence situé à proximité du conduit (9) de récupération de la phase dense D1 et le plus souvent à proximité des moyens de sortie (7) de la phase dense D1.The point of introduction of this light phase L2 is usually located at a distance at least equal to 0.1 times the diameter (Dc) of the point of said means (6) closest to the means (7) for leaving the dense phase D1. The point of introduction of this light phase L2 is preferably located near the conduit (9) for recovering the dense phase D1 and most often near the outlet means (7) of the dense phase D1.

La dimension (p') entre le niveau de l'entrée interne (3) et les moyens (7) de sortie de la phase dense D1 est déterminée à partir des autres dimensions des divers moyens formant l'appareil et de la longueur (L) de l'enceinte extérieure mesurée entre le niveau extrême de l'entrée tangentielle (1) et les moyens (7) de sortie de la phase dense D1. Cette dimension (L) est habituellement d'environ 1 à environ 35 fois le diamètre (Dc) de l'enceinte extérieure et le plus souvent d'environ 1 à 25 fois ce diamètre (Dc). On peut de même calculer la dimension (P), entre le point des moyens (6) le plus proche des moyens (7) de sortie de la phase dense D1 et lesdits moyens (7), à partir des autres dimensions des divers moyens formant l'appareil et de la longueur (L).The dimension (p ') between the level of the internal input (3) and the means (7) for outputting the dense phase D1 is determined from the other dimensions of the various means forming the device and the length (L ) of the external enclosure measured between the extreme level of the tangential input (1) and the means (7) for outputting the dense phase D1. This dimension (L) is usually about 1 to about 35 times the diameter (Dc) of the outer enclosure and most often about 1 to 25 times this diameter (Dc). We can likewise calculate the dimension (P), between the point of the means (6) closest to the means (7) for leaving the dense phase D1 and said means (7), from the other dimensions of the various means forming device and length (L).

Les moyens (6) limitent la progression du vortex de la phase légère L1 dans la sortie externe (5). La position de ces moyens (6) et leur nombre influent donc sur les performances de la séparation des phases D1 et L1 contenues dans le mélange M1 (perte de charge et efficacité de la collecte des phases) et également sur la pénétration du vortex de la phase légère L1 dans la sortie (5). Ces paramètres seront donc choisis avec soin par l'homme du métier en particulier en fonction des résultats souhaités et de la perte de charge tolérée. En particulier lorsque D1 est un solide le nombre de pales, leur forme et leur position seront choisis avec soins en tenant compte de leur influence sur l'écoulement du solide en liaison avec la limitation recherchée de la progression du vortex dans la sortie externe (5).The means (6) limit the progression of the vortex of the light phase L1 in the external output (5). The position of these means (6) and their number therefore influence the performance of the separation of the phases D1 and L1 contained in the mixture M1 (pressure drop and efficiency of the collection of the phases) and also on the penetration of the vortex of the light phase L1 in the outlet (5). These parameters will therefore be carefully chosen by those skilled in the art, in particular as a function of the desired results and of the tolerated pressure drop. In particular when D1 is a solid the number of blades, their shape and their position will be chosen with care taking into account their influence on the flow of the solid in connection with the desired limitation of the progression of the vortex in the external output (5 ).

La figure 4 est une vue en coupe d'un appareil selon l'invention de forme allongée, sensiblement régulière, comportant une enceinte extérieure, ayant un axe (AA') qui est un axe de symétrie, sensiblement horizontal de diamètre (Dc) et de longueur (L) entre le niveau extrême de l'entrée tangentielle (1), dite entrée externe, et les moyens (7) de sortie de la phase dense D1. Le mélange M1 contenant au moins une phase dense D1 et au moins une phase légère L1 est introduit par l'entrée tangentielle (1) suivant une direction sensiblement perpendiculaire à l'axe de l'enceinte extérieure.FIG. 4 is a sectional view of an apparatus according to the invention of elongated, substantially regular shape, comprising an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially horizontal in diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1. The mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure.

Cet appareil comporte également en aval, dans le sens de circulation de la phase dense D1, du niveau de l'entrée interne (3), des moyens (6) limitant la progression de la phase légère L1, à l'extérieur de l'enceinte intérieure, dans l'espace situé entre la paroi interne de l'enceinte extérieure et la paroi externe de l'enceinte intérieure ou sortie externe (5). Ces moyens (6) sont habituellement positionnés, en aval, dans le sens de circulation de la phase dense D1, des moyens de récupération (7) de la phase dense D1, dans le conduit (9), de récupération de la phase dense D1, de diamètre (Ds).This device also comprises downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1, outside of the inner enclosure, in the space between the inner wall of the outer enclosure and the outer wall of the inner enclosure or external outlet (5). These means (6) are usually positioned, downstream, in the direction of circulation of the dense phase D1, of the means for recovering (7) the dense phase D1, in the conduit (9), for recovering the dense phase D1, of diameter (Ds).

Ces moyens (6) sont habituellement des pales sensiblement planes dont le plan passe par un axe sensiblement vertical. La dimension (ep) de chacune de ces pales est habituellement d'environ 0,01 à environ 1 fois le diamètre (Ds) du conduit (9). Les pales sont habituellement positionnées de manière à ce que l'arête intérieure, c'est-à-dire l'arête de la pale la plus proche de l'axe du conduit (9), de chacune d'elles soit confondue avec l'axe dudit conduit (9). Ces pales sont positionnées à une distance (Lp) par rapport aux moyens (7) d'environ 0 à environ 5x(Dc).These means (6) are usually substantially planar blades, the plane of which passes through a substantially vertical axis. The dimension (ep) of each of these blades is usually about 0.01 to about 1 times the diameter (Ds) of the conduit (9). The blades are usually positioned so that the inner edge, that is to say the edge of the blade closest to the axis of the duct (9), of each of them is coincident with the axis of said conduit (9). These blades are positioned at a distance (Lp) from the means (7) of about 0 to about 5x (Dc).

Les moyens (8) permettant d'introduire éventuellement une phase légère L2 sont habituellement positionnés en aval, dans le sens de circulation de la phase dense D1, du niveau de l'entrée interne (3), et de préférence entre les moyens (7) de récupération de la phase dense D1 et l'extrémité du conduit (9) de récupération de la phase dense D1. Dans le cas de l'appareil schématisé sur la figure 4 l'introduction d'une phase légère L2 est prévue à 2 niveaux différents par un premier moyen (8) au niveau des moyens (7) et par un deuxième moyen (8) en dessous des moyens (6). Les moyens (8) sont positionnés à une distance (Lz), des moyens de récupération de la phase dense D1, mesurée à partir desdits moyens (7).The means (8) for possibly introducing a light phase L2 are usually positioned downstream, in the direction of circulation of the dense phase D1, from the level of the internal inlet (3), and preferably between the means (7 ) recovering the dense phase D1 and the end of the conduit (9) recovering the dense phase D1. In the case of the device shown diagrammatically in FIG. 4, the introduction of a light phase L2 is provided at 2 different levels by a first means (8) at the level of the means (7) and by a second means (8) in below the means (6). The means (8) are positioned at a distance (Lz) from the means for recovering the dense phase D1, measured from said means (7).

Cet appareil schématisé sur la figure 4 comporte un conduit (9), de récupération de la phase dense D1, de diamètre (Ds) habituellement égal à environ 0,1 à environ 1 fois le diamètre (Dc) et le plus souvent d'environ 0,2 à environ 0,7 fois ce diamètre.This device shown diagrammatically in FIG. 4 comprises a conduit (9), for recovering the dense phase D1, of diameter (Ds) usually equal to approximately 0.1 to approximately 1 times the diameter (Dc) and most often of approximately 0.2 to about 0.7 times this diameter.

Toutes les autres caractéristiques de ce séparateur cyclonique horizontal sont identiques à celles décrites en liaison avec les appareils représentés sur les figures 1A et 2, en particulier les diverses dimensions sont celles mentionnées dans la description de ces appareils.All the other characteristics of this horizontal cyclonic separator are identical to those described in connection with the devices shown in FIGS. 1A and 2, in particular the various dimensions are those mentioned in the description of these devices.

Bien que cela ne soit pas représenté sur les figures 1A, 1B, 2, 3 et 4 il est possible, et habituellement souhaitable, dans le cas de débits importants des diverses phases au niveau des entrées de l'appareil, d'utiliser des moyens permettant de favoriser la formation du vortex. De tel moyens (10) sont par exemple représentés sur la figure 5 qui représente selon une réalisation préférée de l'invention la partie voisine de l'entrée tangentielle (1) du mélange M1. Selon cette réalisation l'appareil comporte un toit (10), par exemple hélicoïdal, descendant à partir du niveau extrême de l'entrée tangentielle (1). Ces moyens (10) peuvent également consister en une volute interne ou externe. Ces moyens permettent en outre de limiter les interférences entre le flux du mélange M1 et les flux des phases déjà présentes dans le séparateur et de limiter également la turbulence au niveau de l'entrée tangentielle (1). Habituellement, en particulier dans le cas d'un toit hélicoïdal descendant, le pas de l'hélice est d'environ 0,01 à environ 3 fois la valeur de (Lk) et le plus souvent d'environ 0,5 à environ 1,5 fois cette valeur.Although this is not shown in FIGS. 1A, 1B, 2, 3 and 4 it is possible, and usually desirable, in the case of high flow rates of the various phases at the level of the inputs of the device, to use means to promote the formation of the vortex. Such means (10) are for example shown in FIG. 5 which represents, according to a preferred embodiment of the invention, the part close to the tangential inlet (1) of the mixture M1. According to this embodiment the device comprises a roof (10), for example helical, descending from the extreme level of the tangential entry (1). These means (10) can also consist of an internal or external volute. These means also make it possible to limit the interference between the flow of the mixture M1 and the flow of the phases already present in the separator and also to limit the turbulence at the level of the tangential inlet (1). Usually, in particular in the case of a descending helical roof, the pitch of the propeller is approximately 0.01 to approximately 3 times the value of (Lk) and most often approximately 0.5 to approximately 1 , 5 times this value.

Dans cette forme préférée, de réalisation de l'invention, l'appareil comporte également entre l'entrée externe et l'entrée interne des moyens de stabilisations de l'écoulement hélicoïdal d'au moins la phase légère L1 et de limitation du volume utile à la séparation. Ces moyens sont de préférence centrés sur l'axe de l'enceinte intérieure.In this preferred embodiment of the invention, the apparatus also comprises, between the external input and the internal input, means for stabilizing the helical flow of at least the light phase L1 and limiting the useful volume at separation. These means are preferably centered on the axis of the interior enclosure.

Ces moyens peuvent être un cône dont la pointe est dirigée vers l'entrée interne et dont la base est située au niveau extrême de l'entrée tangentielle (1). Ils peuvent aussi être formés, comme cela est schématisé sur la figure 5, par un cylindre (11) prolongé par un cône (12). Le diamètre de la base du cône est identique à celui du cylindre et est strictement inférieur au diamètre (Dc). Ce diamètre est habituellement d'environ 0,01 à environ 1,5 fois le diamètre (Di) de l'entrée interne (3) et de préférence d'environ 0,75 à environ 1,25 fois le diamètre (Di). L'encombrement axial ou dimension entre le niveau extrême de ces moyens le plus proche de l'entrée tangentielle et l'extrémité opposée desdits moyens est habituellement d'environ 0,01 à environ 3 fois la valeur (Ls) de la distance entre le niveau extrême de l'entrée tangentielle (1) et le niveau de l'entrée interne (3) et de préférence d'environ 0,75 à environ 1,25 fois cette valeur (Ls).These means can be a cone whose tip is directed towards the internal inlet and whose base is located at the extreme level of the tangential inlet (1). They can also be formed, as shown diagrammatically in FIG. 5, by a cylinder (11) extended by a cone (12). The diameter of the base of the cone is identical to that of the cylinder and is strictly less than the diameter (Dc). This diameter is usually about 0.01 to about 1.5 times the diameter (Di) of the internal inlet (3) and preferably about 0.75 to about 1.25 times the diameter (Di). The axial size or dimension between the extreme level of these means closest to the tangential entry and the opposite end of said means is usually about 0.01 to about 3 times the value (Ls) of the distance between the extreme level of the tangential input (1) and the level of the internal input (3) and preferably from approximately 0.75 to approximately 1.25 times this value (Ls).

Les moyens de sortie (7) de la phase dense D1 permettent habituellement de collecter et de canaliser cette phase dense D1 jusqu'à la sortie externe (9). Ces moyens sont le plus souvent un fond incliné ou un cône axé ou non sur la sortie interne (4).The output means (7) of the dense phase D1 usually make it possible to collect and channel this dense phase D1 to the external output (9). These means are most often an inclined bottom or a cone oriented or not on the internal outlet (4).

Les appareils selon la présente invention permettent ainsi la séparation rapide, à partir d'un mélange M1, comprenant une phase dense et une phase légère, de ladite phase dense et de ladite phase légère. Ils peuvent être avantageusement utilisés dans le cas où le mélange à séparer est un mélange obtenu à l'issue d'une réaction chimique et comprenant au moins une phase qui contribue à cette réaction.The devices according to the present invention thus allow rapid separation, from a mixture M1, comprising a dense phase and a light phase, of said dense phase and of said light phase. They can advantageously be used in the case where the mixture to be separated is a mixture obtained at the end of a chemical reaction and comprising at least one phase which contributes to this reaction.

Dans la présente description les phases sont, pour ce qui est des phases légères des phases liquides, gazeuses ou des phases contenant à la fois du liquide et du gaz, et pour ce qui est de la phase dense une phase solide (sous forme de particules), liquide ou une phase contenant à la fois du solide et du liquide. Deux cas sont fréquemment rencontrés : le premier dans lequel la phase dense est une phase solide et les phases légères des gaz et le second dans lequel il y a une phase liquide qui peut être la phase dense ou la phase légère.In the present description, the phases are, as regards the light phases of the liquid, gaseous phases or of phases containing both liquid and gas, and as regards the dense phase a solid phase (in the form of particles ), liquid or a phase containing both solid and liquid. Two cases are frequently encountered: the first in which the dense phase is a solid phase and the light phases of gases and the second in which there is a liquid phase which can be the dense phase or the light phase.

Le diamètre (Dc) de l'appareil mesuré au niveau de l'entrée tangentielle (1) du côté de son extrémité la plus proche de l'entrée interne (3) est habituellement d'environ 0,01 à environ 10 m (mètres) et le plus souvent d'environ 0,05 à environ 2 m. Il est habituellement préférable de garder un diamètre constant sur toute la longueur de l'appareil comprise entre l'extrémité de l'entrée tangentielle la plus proche de l'entrée interne (3) et ladite entrée interne (3) ou même depuis le niveau de l'injection du mélange M1 jusqu'au niveau des moyens (7) de sortie de la phase dense D1 ; cependant on ne sortirait pas du cadre de l'invention dans le cas d'un appareil comportant des élargissements ou des rétrécissements de section entre lesdits niveaux.The diameter (Dc) of the device measured at the tangential entry (1) on the side of its end closest to the internal entry (3) is usually about 0.01 to about 10 m (meters ) and most often about 0.05 to about 2 m. It is usually preferable to keep a constant diameter over the entire length of the device between the end of the tangential entry closest to the internal entry (3) and said internal entry (3) or even from the level from the injection of the mixture M1 to the level of the means (7) for outputting the dense phase D1; however, it would not be departing from the scope of the invention in the case of an apparatus comprising enlargements or narrowing of sections between said levels.

Pour obtenir une bonne séparation d'une phase L1 contenu dans un mélange M1 comprenant également au moins une phase D1 il est préférable d'avoir une vitesse superficielle d'entrée de cette phase L1 élevée et par exemple d'environ 5 à environ 150 mxs⁻¹ (mètre par seconde) et de préférence d'environ 10 à environ 75 mxs⁻¹. Le rapport en poids du débit de la phase D1 au débit de la phase L1 est habituellement d'environ 0,0001 : 1 à environ 50 : 1 et le plus souvent d'environ 0,1 : 1 à environ 15 : 1.To obtain a good separation of a phase L1 contained in a mixture M1 also comprising at least one phase D1 it is preferable to have a high surface velocity of entry of this phase L1 and for example of approximately 5 to approximately 150 mxs ⁻¹ (meter per second) and preferably from about 10 to about 75 mxs⁻¹. The weight ratio of the flow from phase D1 to the flow from phase L1 is usually from about 0.0001: 1 to about 50: 1 and most often from about 0.1: 1 to about 15: 1.

Il est possible en augmentant la différence de pression entre l'entrée (3) et les moyens (7), ce qui peut être obtenu par exemple en augmentant la pression en aval, dans le sens de la circulation de la phase dense D1, de l'entrée interne (3) ou en diminuant la pression en aval, dans le sens de la circulation de la phase dense D1, des moyens (7) de sortie de cette phase, de soutirer une partie plus ou moins importante de la phase L1 avec la phase D1 et simultanément d'obtenir au niveau de la sortie (4) un mélange pratiquement complètement exempt de phase D1. On peut ainsi soutirer jusqu'à 90 % de la phase L1 avec D1, mais le plus souvent on soutire environ 1 à environ 10 % de cette phase L1 avec la phase D1. Les variations de pression permettant de jouer sur la quantité de phase L1 soutirée avec la phase D1 sont assurées par des moyens bien connus de l'homme du métier et par exemple en modifiant le débit de la phase L3, ou en modifiant les conditions d'opérations en aval de la sortie (9). Ainsi dans une forme avantageuse de réalisation de l'invention l'appareil comprendra au moins un moyen permettant le soutirage, par la sortie externe (5), d'au moins une partie de la phase légère L1 en mélange avec la phase dense D1.It is possible by increasing the pressure difference between the inlet (3) and the means (7), which can be obtained for example by increasing the pressure downstream, in the direction of circulation of the dense phase D1, of the internal inlet (3) or by reducing the pressure downstream, in the direction of circulation of the dense phase D1, means (7) for exiting this phase, to withdraw a more or less significant part of the phase L1 with phase D1 and simultaneously obtaining at the outlet (4) a mixture practically completely free of phase D1. It is thus possible to withdraw up to 90% of the L1 phase with D1, but most often one withdraws approximately 1 to approximately 10% of this L1 phase with the D1 phase. The pressure variations allowing to play on the quantity of phase L1 withdrawn with phase D1 are provided by means well known to those skilled in the art and for example by modifying the flow rate of phase L3, or by modifying the operating conditions downstream of the outlet (9). Thus, in an advantageous embodiment of the invention, the device will comprise at least one means allowing the withdrawal, by the external output (5), of at least part of the light phase L1 in admixture with the dense phase D1.

Dans les divers appareils selon l'invention et dans les différents modes d'injection du mélange M1 un tel soutirage peut permettre d'améliorer l'efficacité de récupération de la phase dense D1.
Le choix entre un appareil comportant une entrée tangentielle, pour le mélange M1, et un appareil comportant une entrée axiale, pour ce mélange M1, est habituellement guidé par le rapport en poids des débits des phases L1 et D1. Dans le cas où ce rapport est inférieur à 2 : 1 il peut être avantageux de choisir un appareil à entrée axiale.
In the various devices according to the invention and in the different modes of injection of the mixture M1, such withdrawal can make it possible to improve the efficiency of recovery of the dense phase D1.
The choice between a device comprising a tangential inlet, for the mixture M1, and a device comprising an axial inlet, for this mixture M1, is usually guided by the weight ratio of the flow rates of the phases L1 and D1. If this ratio is less than 2: 1, it may be advantageous to choose an axial input device.

Dans l'art antérieur on note US-A-4,746,340 qui concerne un purificateur d'air et non la séparation de deux phases (légère et lourde) d'un mélange solide/gaz obtenu notamment après une réaction chimique. On note également US-A-3,955,948 qui se diffère de l'invention par l'emploi de vannes hélicoïdales au lieu de pales planes.In the prior art, US-A-4,746,340 is noted, which relates to an air purifier and not the separation of two phases (light and heavy) of a solid / gas mixture obtained in particular after a chemical reaction. We also note US-A-3,955,948 which differs from the invention by the use of helical valves instead of flat blades.

L'exemple qui suit est donné à titre illustratif et montre l'efficacité de la séparation d'une phase légère (gazeuse) L1 contenue dans un mélange M1 contenant également une phase dense (solide) D1 et également l'efficacité des pales sur la pénétration du vortex de la phase gazeuse L1 dans la sortie externe.The following example is given by way of illustration and shows the efficiency of the separation of a light (gas) phase L1 contained in a mixture M1 also containing a dense (solid) phase D1 and also the efficiency of the blades on the penetration of the vortex of the gas phase L1 into the external outlet.

ExempleExample

On réalise deux appareils, d'axes verticaux, conformes à ceux représentés schématiquement sur les figures 1A et 2 comportant une entrée tangentielle à toit descendant sur 3/4 de tour continuellement sur une hauteur égale à la valeur de Lk. Ces appareils ont les caractéristiques géométriques mentionnées dans le tableau I ci-après. Ils comportent un volume mort ayant la forme de celui schématisé sur la figure 5 et composé d'un cylindre prolongé d'un cône dont la pointe est dirigée vers l'entrée interne (3). Le diamètre du cylindre est égal à 0,5 fois le diamètre (Dc) de l'enceinte extérieure, sa hauteur est de 0,5x(Dc) et le cône a une base circulaire de diamètre 0,5x(Dc) et une hauteur de 1x(Dc). TABLEAU I Dimensions en cm Appareil avec pales A Appareil B sans pales Dc 5,1 5,1 De 2,5 2,5 Ls 7,6 7,6 Lk 2,5 2,5 Lp 2,5 - hpe 5,1 - hpi 5,1 - hk 1,3 1,3 ep 1,2 - Np*(nombre) 8 0 p' 25 25 * Np représente le nombre de pales. Les autres symboles sont définis dans la description. Two apparatuses are produced, with vertical axes, in accordance with those shown diagrammatically in FIGS. 1A and 2 comprising a tangential entry with a roof descending on 3/4 of a turn continuously over a height equal to the value of Lk. These devices have the geometrical characteristics mentioned in Table I below. They have a dead volume having the shape of that shown diagrammatically in FIG. 5 and composed of a cylinder extended by a cone, the point of which is directed towards the internal inlet (3). The diameter of the cylinder is equal to 0.5 times the diameter (Dc) of the outer enclosure, its height is 0.5x (Dc) and the cone has a circular base of diameter 0.5x (Dc) and a height of 1x (Dc). TABLE I Dimensions in cm Device with blades A Device B without blades Dc 5.1 5.1 Of 2.5 2.5 Ls 7.6 7.6 Lk 2.5 2.5 Lp 2.5 - hpe 5.1 - hpi 5.1 - hk 1.3 1.3 ep 1.2 - Np * (number) 8 0 p ' 25 25 * Np represents the number of blades. The other symbols are defined in the description.

Les flux des phases introduites sont caractérisés à l'aide des notations suivantes :
température d'entrée : T
débit massique : F
débit volumique : Q
masse volumique : R
vitesse superficielle : V
diamètre de sauter des particules : ds
La phase L1 est de l'air ayant les caractéristiques suivantes :
TL1=25°C, FL1=7,4x10⁻³Kg/s,QL1=6,2x10⁻³m³/s, VL1=V=18m/s.
Il n'y a pas d'injection de phase L2.
The flows of the phases introduced are characterized using the following notations:
inlet temperature: T
mass flow: F
volume flow: Q
density: R
surface speed: V
diameter of jumping particles: ds
Phase L1 is air having the following characteristics:
TL1 = 25 ° C, FL1 = 7.4x10⁻³Kg / s, QL1 = 6.2x10⁻³m³ / s, VL1 = V = 18m / s.
There is no L2 phase injection.

La phase D1 est constituée de bille de verre ayant les caractéristiques suivantes : TD1=25°C, FD1=14x10⁻³Kg/s,RD1=2500Kg/m³, dsD1=29x10⁻⁶m.Phase D1 consists of glass beads having the following characteristics: TD1 = 25 ° C, FD1 = 14x10⁻³Kg / s, RD1 = 2500Kg / m³, dsD1 = 29x10⁻⁶m.

Les performances des appareils, mentionnées dans le tableau II, sont exprimées comme suit : ED1= efficacité de séparation de D1 dans l'appareil (rapport du débit massique de D1 mesuré dans le conduit (9) de récupération de la phase dense D1 au débit massique de D1 introduit dans l'entrée tangentielle (1)) avec un soutirage de la phase L1 dans le conduit (9) de récupération de la phase dense D1 de 2 % en poids par rapport au poids de L1 introduit dans l'entrée tangentielle (1).The performance of the devices, mentioned in Table II, is expressed as follows: ED1 = separation efficiency of D1 in the device (ratio of the mass flow of D1 measured in the conduit (9) for recovering the dense phase D1 to the flow mass of D1 introduced into the tangential inlet (1)) with a withdrawal of phase L1 in the conduit (9) for recovery of the dense phase D1 by 2% by weight relative to the weight of L1 introduced into the tangential inlet (1).

Pvortex = distance entre la fin du vortex de L1 dans la sortie externe (5) et le sommet de l'entrée interne (3). Cette distance est mesurée à l'aide de sondes thermiques permettant de mettre en évidence la disparition de la composante vitesse tangentielle et donc du vortex dans l'écoulement de la phase L1 dans la sortie externe (5). TABLEAU II Performances Appareil A Appareil B ED1 99,9 % 99,9 % Pvortex 4 cm 18 cm Pvortex = distance between the end of the vortex of L1 in the external output (5) and the top of the internal input (3). This distance is measured using thermal probes allowing highlight the disappearance of the tangential velocity component and therefore of the vortex in the flow of phase L1 in the external output (5). TABLE II Performances Device A Device B ED1 99.9% 99.9% Pvortex 4 cm 18 cm

Claims (10)

  1. A co-current cyclone separator comprising, in combination:
    - at least one outer enclosure, of elongated form extending along an axis, of substantially circular cross-section of diameter (Dc), comprising at a first end introduction means which make it possible through an inlet referred to as an outer inlet (1) to introduce a mixture M1 containing at least one dense phase D1 and a light phase L1, said means being adapted to impart at least to the light phase L1 a helical movement in the direction of flow of said mixture M1 in said outer enclosure, also comprising means for separating phases D1 and L1 and at the opposite end to said first end recovery means (7) which make it possible, via an outlet comprising a lateral or axial pipe (9), referred to as the outer outlet (5), to recover at least a part of the dense phase D1, and having between said opposite ends a length L,
    - at least one inner enclosure of elongated form extending along an axis, of substantially circular cross-section, disposed coaxially in relation to said outer enclosure, comprising at a distance Ls, which is less than L, from the extreme level of the outer inlet, an inlet referred to as the inner inlet (3) of diameter (Di) which is less than (Dc) into which penetrates at least a part of the light phase L1, and, at its opposite end, recovery means which make it possible via a pipe referred to as the inner pipe, respectively axial if the pipe of the outer outlet is lateral, or lateral if the pipe of the outer outlet is axial, to recover said part of the light phase L1,
    - and comprising on the downstream side in the direction of travel of the dense phase D1, from the level of the inner inlet of the inner enclosure, means (6) limiting the progress of the light phase L1 to the outside of said inner enclosure, said means being substantially flat blades, the plane of which passes through a substantially vertical axis;
    - said separator being characterised in that it further comprises at least one means (8) for introducing a light phase L2 at at least one location disposed between the inner inlet of the inner enclosure and the end of the pipe for recovery of the dense phase, and that the outer inlet through which the mixture M1 enters is a tangential inlet (1) which makes it possible for M1 to be introduced in a direction which is substantially perpendicular to the axis of the outer enclosure.
  2. A cyclone separator according to Claim 1, in which the outer enclosure is substantially vertical and the means (6) limiting progress of the light phase L1 to the exterior of the inner enclosure are positioned inside the outer enclosure and on the outside of the inner enclosure, between the level of the inner inlet (3) and the means (7) for recovery of the dense phase D1.
  3. A cyclone separator according to Claim 1, in which the outer enclosure is substantially horizontal and the means (6) limiting progression of the light phase L1 to the outside of the inner enclosure are positioned downstream, in the direction of travel of the dense phase D1, of the means (7) for recovering the dense phase D1, in the pipe (9) of the outer outlet (5).
  4. A cyclone separator according to one of Claims 1 - 3, comprising at least one means permitting, via the outer outlet, the drawing off of at least a part of the light phase L1 mixed with the dense phase D1.
  5. A cyclone separator according to one of Claims 1 - 4, comprising 2 to 50 blades, each having a dimension (ep) measured horizontally from its edge closest to the axis of the outer enclosure of approx. 0.01 to approx. 1 times the value [ ((Dc)- (D'e))/2
    Figure imgb0004
    ] when these blades are, in the case of a vertical cyclone separator, positioned between the outer wall of the inner enclosure of outside diameter (D'e) and the inner wall of the outer enclosure of inside diameter (Dc), of approx. 0.01 to approx. 1 times the value (Dc)/2 in the case of a vertical cyclone separator with a lateral inner outlet (4) when they are positioned after this inner outlet and of approx. 0.01 to 1 times the diameter (Ds) of the pipe (9) of the outer outlet (5) in the case of a horizontal cyclone separator, a dimension (hpe) measured in the direction parallel with the substantially vertical axis through which passes the plane of the blade, on the edge of the blade closest to the inside wall of the outer enclosure or of the inner wall of the outer outlet and a dimension (hpi) measured on the edge of the blade closest to the axis of the inner enclosure or the axis of the outer outlet in the direction parallel with the substantially vertical axis through which the plane of the blade passes, said dimensions (hpe) and (hpi) being approx. 0.1 x (Dc) to approx. 10 x (Dc) and said blades each being situated at a distance in relation to the inner inlet in the case of a vertical cyclone separator or in relation to the separation means in the case of a horizontal cyclone separator, of approx. 0 to approx. 5 x (Dc).
  6. A cyclone separator according to Claim 5, in which the blades each have a dimension (hpi) which is greater than or equal to (hpe).
  7. A cyclone separator according to one of Claims 1 - 6, comprising between the outer inlet (1) and the inner inlet (3) means of stabilising the helical flow of at least the light phase L1 and of limiting the volume which can be used for separation.
  8. A cyclone separator according to one of Claims 1 - 7, comprising means of limiting interference between the flow of mixture M1 introduced and the flows of the phases already present in the separator, chosen from a descending roof, an outer spiral and an inner spiral.
  9. Use of a cyclone separator according to one of Claims 1 - 8 for the rapid separation from a mixture M1 comprising a dense phase and a light phase, of said dense phase and said light phase.
  10. Use according to Claim 9, in which the mixture to be separated is a mixture obtained at the exit from a chemical reaction and which comprises at least one phase which contributes to this reaction.
EP91401388A 1990-06-05 1991-05-29 Concurrent cyclone separator and its applications Expired - Lifetime EP0461003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9006937A FR2662618B1 (en) 1990-06-05 1990-06-05 CO-CURRENT CYCLONIC SEPARATOR AND ITS APPLICATIONS.
FR9006937 1990-06-05

Publications (2)

Publication Number Publication Date
EP0461003A1 EP0461003A1 (en) 1991-12-11
EP0461003B1 true EP0461003B1 (en) 1995-08-23

Family

ID=9397260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401388A Expired - Lifetime EP0461003B1 (en) 1990-06-05 1991-05-29 Concurrent cyclone separator and its applications

Country Status (7)

Country Link
US (1) US5129930A (en)
EP (1) EP0461003B1 (en)
JP (1) JP3435515B2 (en)
CA (1) CA2043947C (en)
DE (1) DE69112286T2 (en)
ES (1) ES2079045T3 (en)
FR (1) FR2662618B1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672590B1 (en) * 1991-02-07 1993-04-23 Inst Francais Du Petrole PROCESS AND DEVICE FOR CATALYTIC CONVERSION INTO A DRIVEN BED OF A LOAD CONTAINING AN OXYGEN COMPOUND.
FR2684566B1 (en) * 1991-12-05 1994-02-25 Institut Francais Petrole CO-CURRENT CYCLONIC EXTRACTOR SEPARATOR.
DE4222593A1 (en) * 1992-07-09 1994-01-13 Krupp Polysius Ag Heat exchanger with cyclones with immersion tube led downwards
US5215553A (en) * 1992-09-08 1993-06-01 Blowhard Pneumatic Services Inc. Apparatus for separating particles from a gaseous medium
FR2706136B1 (en) * 1993-06-07 1995-07-28 Inst Francais Du Petrole Charge conversion device comprising a cyclonic co-current extractor separator.
US5637124A (en) * 1995-03-23 1997-06-10 Helical Dynamics, Inc. Modular air cleaning system
US5622538A (en) * 1995-03-28 1997-04-22 Helical Dynamics, Inc. Source capture sytem for an air cleaning system
US5613990A (en) * 1995-03-28 1997-03-25 Helical Dynamics, Inc. Air cleaning system for mechanical industrial processes
JPH11171340A (en) * 1997-12-12 1999-06-29 Mitsui High Tec Inc Non-contact type conveying device for spherical article
US6238579B1 (en) * 1998-05-12 2001-05-29 Mba Polymers, Inc. Device for separating solid particles in a fluid stream
JP2000005641A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Method for separation or thickening of solid in solid- liquid mixed phase fluid
JP2000005640A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Separation and concentration of solid in solid liquid mixed phase fluid
US6203249B1 (en) 1998-09-29 2001-03-20 Mitsui High-Tec Inc. Particulate objects conveying apparatus for conveying particles of a predetermined size
US6090175A (en) * 1999-02-02 2000-07-18 Richard; Kenneth L. Air inlet for a dust collector
US6846463B1 (en) * 1999-02-23 2005-01-25 Shell Oil Company Gas-solid separation process
US6540917B1 (en) 2000-11-10 2003-04-01 Purolator Facet Inc. Cyclonic inertial fluid cleaning apparatus
US6482245B2 (en) 2001-03-30 2002-11-19 Armstrong International Centrifugal particulate matter gas separator
DE102006038700B4 (en) 2006-08-18 2021-11-11 Polytec Plastics Germany Gmbh & Co. Kg Device for separating liquids from gases
CA2663868C (en) * 2006-09-26 2015-11-10 William C. Maier Improved static fluid separator device
US20080175094A1 (en) * 2007-01-19 2008-07-24 Bryan Henry Solid Charging System
US7637699B2 (en) * 2007-07-05 2009-12-29 Babcock & Wilcox Power Generation Group, Inc. Steam/water conical cyclone separator
WO2010083427A1 (en) 2009-01-15 2010-07-22 Dresser-Rand Company Shaft sealing with convergent nozzle
US8545215B2 (en) 2010-05-17 2013-10-01 General Electric Company Late lean injection injector
DE112012001826B4 (en) * 2011-05-19 2023-08-17 Koganei Corporation filter
US9528407B2 (en) * 2013-12-12 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. High efficiency cyclone oil separator device
JP6634594B2 (en) * 2016-02-17 2020-01-22 パナソニックIpマネジメント株式会社 Dust collector
CN112774321A (en) * 2019-11-11 2021-05-11 中国石油天然气集团有限公司 Gas-liquid separator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957755A (en) * 1940-10-04 1950-02-25
US2471178A (en) * 1947-09-03 1949-05-24 Gen Electric Air cleaning axial flow blower
DE1619920B1 (en) * 1967-09-27 1970-10-01 Siemens Ag Swirl device for pre-cleaning the raw gas flow of a three-phase vortex
GB1310792A (en) * 1970-04-24 1973-03-21 Pall Corp Vortex separator
US3885935A (en) * 1971-09-02 1975-05-27 Heat Fluid Engineering Corp Centrifugal apparatus for separating entrained liquids from a gaseous stream
US3930816A (en) * 1973-04-23 1976-01-06 Gerhard Miczek Structure for a gas and liquid contacting chamber in a gas effluent processing system
US4162906A (en) * 1977-05-05 1979-07-31 Donaldson Company, Inc. Side outlet tube
US4311494A (en) * 1977-09-26 1982-01-19 Facet Enterprises, Inc. Axial flow gas cleaning device
US4206174A (en) * 1978-02-01 1980-06-03 Mobil Oil Corporation Means for separating suspensions of gasiform material and fluidizable particles
CS206478B1 (en) * 1979-12-12 1981-06-30 Rudolf Kmeco Vertical turbulent sorter for sorting paper stock,especially for sorting foamed polystyrene granules
US4746340A (en) * 1986-10-28 1988-05-24 Donaldson Company, Inc. Air cleaner apparatus

Also Published As

Publication number Publication date
EP0461003A1 (en) 1991-12-11
DE69112286T2 (en) 1996-02-08
DE69112286D1 (en) 1995-09-28
JPH04227867A (en) 1992-08-17
CA2043947A1 (en) 1991-12-06
FR2662618B1 (en) 1993-01-29
CA2043947C (en) 2001-12-18
ES2079045T3 (en) 1996-01-01
FR2662618A1 (en) 1991-12-06
JP3435515B2 (en) 2003-08-11
US5129930A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
EP0461003B1 (en) Concurrent cyclone separator and its applications
EP0461004B1 (en) Concurrent cyclone mixer-separator and its applications
US6596046B2 (en) Cyclone separator having a variable longitudinal profile
EP1032473A1 (en) Device and method for separating a heterogeneous mixture
FR2484287A1 (en) CYCLONE SEPARATOR COMPRISING AN INFLUENT GUIDE WAFER
EP1800728B1 (en) New system for gas-solid separation and for stripping for fluidised bed catalytic cracking units
WO2013030490A1 (en) Regenerator for catalytic cracking unit with external cyclones
FR2758277A1 (en) SEPARATOR WITH DIRECT WINDING OF PARTICLES OF A GASEOUS MIXTURE AND ITS USE IN THERMAL OR CATALYTIC CRACKING IN A FLUIDIZED BED
FR2666031A1 (en) Process for the centrifugal separation of the phases of a mixture, and centrifugal separator having longitudinal blades implementing this process
EP0502767B1 (en) Process and apparatus for the catalytic conversion of an oxygenated compound into olefins
EP0763384B1 (en) Centrifugal separator, in particular for a circulating fluidized bed boiler
EP0545771B1 (en) Concurrent cyclone extractor
WO2016198654A1 (en) Apparatus and process for thermal denitration, use of such an apparatus and product obtained by means of such a process
EP0498726B1 (en) Process and apparatus for the catalytic conversion of an oxygenated compound into olefins
FR2613956A1 (en) METHOD AND DEVICE FOR CENTRIFUGAL SEPARATION OF A MIXTURE OF SEVERAL PHASES
FR2771028A1 (en) Device for separating components of a heterogeneous mixture
FR2678280A1 (en) Process and device for the catalytic cracking of a hydrocarbon feedstock employing a concurrent cyclone separator
WO1997043032A1 (en) Incineration fume cleaning plant with internal recycling
FR2706136A1 (en) Device for converting a feedstock including a countercurrent cyclone extractor separator
FR2795345A1 (en) Cyclone separator comprises concentric guide piece to increase air speed
EP3240621A1 (en) Dewatering of sulphur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19920506

17Q First examination report despatched

Effective date: 19930820

R17P Request for examination filed (corrected)

Effective date: 19920506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69112286

Country of ref document: DE

Date of ref document: 19950928

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079045

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030509

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030610

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040531