EP0461004B1 - Concurrent cyclone mixer-separator and its applications - Google Patents

Concurrent cyclone mixer-separator and its applications

Info

Publication number
EP0461004B1
EP0461004B1 EP91401389A EP91401389A EP0461004B1 EP 0461004 B1 EP0461004 B1 EP 0461004B1 EP 91401389 A EP91401389 A EP 91401389A EP 91401389 A EP91401389 A EP 91401389A EP 0461004 B1 EP0461004 B1 EP 0461004B1
Authority
EP
European Patent Office
Prior art keywords
phase
enclosure
mixer
mixture
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91401389A
Other languages
German (de)
French (fr)
Other versions
EP0461004A1 (en
Inventor
Thierry Gauthier
Maurice Bergougnou
Cédric Briens
Pierre Galtier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0461004A1 publication Critical patent/EP0461004A1/en
Application granted granted Critical
Publication of EP0461004B1 publication Critical patent/EP0461004B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/02Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct with heating or cooling, e.g. quenching, means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C2003/003Shapes or dimensions of vortex chambers

Definitions

  • the present invention relates to a co-current cyclonic mixer-separator.
  • This chemical engineering equipment is an apparatus allowing the separation of a dense phase D1 contained in a first mixture M1 containing said dense phase D1 and a light phase L1, and the mixing of said light phase L1 with a dense phase D2 or with a second M2 mixture containing a dense phase D2 and a light phase L2.
  • the present invention also relates to the use of this mixer-separator (hereinafter referred to as the apparatus) for the rapid exchange of heat between a light phase L1 and a dense phase D2 or a mixture M2 containing at least one dense phase D2 and at least one light phase L2 (for example the ultra-rapid quenching of a gas by injection of a cold solid). It also relates to the use of this device for the rapid exchange or replacement of a dense phase D1 by another dense phase D2 different from D1 (for example from one solid to another) in a mixture containing a dense phase and a light phase (for example a reaction phase comprising a catalyst which is replaced very quickly by another catalyst or by the same less used catalyst).
  • this mixer-separator hereinafter referred to as the apparatus for the rapid exchange of heat between a light phase L1 and a dense phase D2 or a mixture M2 containing at least one dense phase D2 and at least one light phase L2 (for example the ultra-rapid quenching of
  • the apparatus of the present invention can thus be used in the process, called ultra-pyrolysis, described for example by Graham et al, World Fluidization Conference, May 1986, Elsinore Denmark, which is a high temperature cracking process, at l 'fluidized state and with gas residence times in the reactor less than a second.
  • the heat of reaction is usually supplied by a solid coolant mixed with the charge at the inlet to the reactor, which causes a thermomechanical shock thereon.
  • separation and quenching should be as close together as possible.
  • the apparatus of the present invention allows an improvement in the efficiency of the quenching and a simplification of the apparatus by grouping, within the same device, the two functions of separation of gaseous products and hot solids and of ultra-rapid quenching of the gaseous products by cold solids.
  • the apparatus makes it possible to separate the gaseous products of the reaction from the hot solids, and to inject very efficiently cold solids into the gaseous products of the reaction, using a modified cyclone.
  • the vortex induced to separate the hot solids from the gaseous products thanks to the centrifugal force and to the differences in density of the two phases, is also used to efficiently mix the cold solids injected above the gas outlet and obtain very good heat transfer.
  • the separation of the hot gas-solid mixture and the cold gas-solid mixture thus take place in the same equipment and practically simultaneously.
  • the quenching of the gaseous products is therefore practically instantaneous, which allows the reaction to be stopped at the separator without significantly affecting the thermal efficiency of the hot part of the process, the hot solids not undergoing quenching.
  • US Pat. No. 2,650,675 describes an apparatus comprising an external enclosure with a tangential clean light phase inlet and a first interior enclosure with a first internal inlet for a mixture M.
  • the contaminants of M are separated and entrained by the secondary air flow flowing near the walls.
  • a second interior enclosure evacuates the purified gas.
  • FIGS. 1A, 1B, 2 and 3 in which the members similar are designated by the same reference numbers and letters.
  • Figure 1A is a perspective view of an apparatus according to the invention.
  • FIG. 1B is a perspective view of an apparatus according to the invention which differs from that shown in FIG. 1A only by the means of output (7) from the dense phase D1 introduced by the conduit (1), said means ( 7) allowing in the embodiment shown diagrammatically in FIG. 1A a lateral outlet (10) from the dense phase D1 and in that shown schematically in FIG. 1B an axial outlet (10) from this phase.
  • FIG. 2 is a sectional view of an apparatus according to the invention practically identical to that shown in FIG. 1A but comprising means (6) whose dimension in the direction perpendicular to the axis of the apparatus is less than the dimension of the external output (5).
  • the devices according to the invention shown diagrammatically in FIGS. 1A and 2, of elongated shapes, substantially regular, along an axis (AA ′) which is an axis of symmetry, comprise an outer enclosure, of diameter (Dc) and of length (L) having a tangential inlet (1) called external inlet, into which is introduced, in a direction substantially perpendicular to the axis of the apparatus, the mixture M1 containing at least one dense phase D1 and at least one phase slight L1.
  • This tangential entry preferably has a rectangular or square section whose side parallel to the axis of the device has a dimension (Lk) usually about 0.25 to about 1 time the diameter (Dc), and the perpendicular side the axis of the device has a dimension (hk) usually from about 0.05 to about 0.5 times the diameter (Dc).
  • the mixture M1 thus introduced is wound around a first internal enclosure, arranged coaxially with respect to the external enclosure, having an axial inlet (3), called the first internal inlet, allowing the introduction of at least one dense phase D2 or preferably at least one mixture M2 containing a dense phase D2 and a light phase L2.
  • This dense phase D2 or this mixture M2 circulates parallel to the axis (AA ') of the device up to the first internal outlet (3') of diameter (Di) less than the diameter (Dc) of the outer enclosure of the apparatus and usually from about 0.05 to about 0.9 times this diameter (Dc) and preferably from about 0.4 to about 0.8 times this diameter (Dc).
  • the length (Li), between the extreme level of the tangential inlet (1) and the first internal outlet, is less than (L) and is usually about 0.2 to about 9.5 times the diameter (Dc) and preferably from about 1 to about 3 times this diameter (Dc).
  • the dense phase D2 or the mixture M2 then penetrates at least partially into the second interior enclosure, arranged coaxially with respect to the first interior enclosure, by the second internal inlet (4) located at a distance (Le) from the first internal outlet. (3 '), this distance preferably being approximately 0.2 to approximately 2 times the diameter (Dc).
  • This second enclosure also penetrates at least part of the light phase L1.
  • This second internal inlet (4) has an internal diameter (De) greater than or equal to (Di) and less than (Dc) and usually from about 0.2 to about 0.9 times the diameter (Dc).
  • This diameter (Di) is preferably about 0.4 to about 0.8 times the diameter (Dc).
  • a mixture comprising at least part of the light phase L1 and at least part of the dense phase D2 or of the mixture M2 comprising a dense phase D2 and a light phase is recovered by the second internal outlet (4 ′) of the apparatus. L2.
  • the device comprises, downstream, in the direction of flow of the various phases, from the second internal input, means (6) limiting the progression of the light phase L1 in the space located between the internal wall of the external enclosure and the external wall of the second internal enclosure or external outlet (5).
  • These means (6) are preferably substantially planar blades whose plane includes the axis of the device.
  • These means (6) are usually fixed on at least one wall of one of the interior or exterior enclosures.
  • These means (6) are preferably fixed to the external wall of the second internal enclosure so that the distance (Lp) between the second internal inlet and the point of said blades closest to this second internal inlet is approximately 0 to about 5 times the diameter (Dc) and preferably about 0.1 to about 1 time this diameter (Dc).
  • the number of blades is variable according to the distribution of the residence time which is accepted for phase L1 and also according to the diameter (Dc) of the external enclosure. If the residence time of phase L1 can have a wide distribution then it will not be essential to have blades.
  • the number of blades is usually between 0 and about 50, most often, when blades are present, at least 2 and for example from 2 to about 50 and preferably from 3 to about 50.
  • the blades will allow, by limiting the continuation of the vortex over the entire section of the cyclone, around the internal outlet (4) of the light phase, a reduction and a control of the distribution of the residence times and consequently the degradation of the products contained in the light phase circulating around the internal outlet will be limited.
  • Each of these blades usually has a dimension or width (ep) measured in the direction perpendicular to the axis of the device and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the second inner enclosure, approximately 0.01 to 1 times the value [ ((Dc) - (D'e)) / 2 ] of the half difference of these diameters (Dc) and (D'e), preferably about 0.5 to 1 times this value and most often about 0.9 to 1 times this value.
  • These blades each have on their edge, the closest to the axis of the interior enclosures, in the direction parallel to this axis, an internal dimension or height (hpi) and an external dimension or height (hpe) measured in the direction of l 'axis of the device on the edge of said blade closest to the inner wall of the outer enclosure.
  • These dimensions (hpi) and (hpe) are usually greater than 0.1 times the diameter (Dc) and for example approximately 0.1 times to approximately 10 times the diameter (Dc) and most often approximately 1 to about 4 times this diameter (Dc).
  • these blades each have a dimension (hpi) greater than or equal to their dimension (hpe).
  • the device comprises, downstream, in the direction of flow of the various phases, from the second internal inlet, means (8) allowing the possible introduction of a light phase L3 at at least one point located between the second internal input (4) of the second internal enclosure and the external output (10) of the dense phase D1; this or these points are preferably at a distance (Lz) from the inlet (4) of the second interior enclosure.
  • Said distance (Lz) preferably has a value at least equal to the sum of the values of (Lp) and (hpi) and at most equal to the distance between the input (4) of the second inner enclosure and the output means (7) of the dense phase D1.
  • This phase light L3 can be introduced for example in the case where it is desirable to carry out a stripping of the dense phase D1.
  • the light phase L3 is preferably introduced at several points which are usually distributed symmetrically, in a plane at the level of which the introduction is carried out, around the external enclosure.
  • the point or points of introduction of this light phase L3 are usually located at a distance at least equal to 0.1 times the diameter (Dc) of the inlet (4) of the second interior enclosure when the device does not have means (6) or the point of said means (6) closest to the means (7) for outputting the dense phase D1 when the apparatus includes means (6).
  • the point or points of introduction of this light phase L3 are preferably located near the external outlet (10) and most often near the outlet means (7) of the dense phase D1.
  • the dimension (p ') between the level of the second internal inlet (4) and the means (7) for outputting the dense phase D1 is determined from the other dimensions of the various means forming the apparatus and the length (L ) of the external enclosure measured between the extreme level of the tangential input (1) and the means (7) for outputting the dense phase D1.
  • This dimension (L) is usually about 1 to about 35 times the diameter (Dc) of the outer enclosure and most often about 1 to 25 times this diameter (Dc).
  • the means (6) limit the progression of the vortex of the light phase L1 in the external output (5).
  • the position of these means (6) and their number therefore influence the performance of the separation of phases D1 and L1 contained in the mixture M1 (pressure drop and efficiency of collection of the dense phase D1) and also on the penetration of the vortex of the light phase L1 in the outlet (5).
  • These parameters will therefore be carefully chosen by those skilled in the art, in particular as a function of the desired results and of the tolerated pressure drop.
  • D1 is a solid
  • the number of blades, their shape and their position will be chosen with care taking into account their influence on the flow of the solid in connection with the desired limitation of the progression of the vortex in the external output ( 5).
  • FIG 3 is a perspective view of an apparatus according to the invention comprising an outer enclosure, of diameter (Dc) having an inlet (1) called axial external inlet, into which is introduced in a direction substantially parallel to the axis (AA ') of the apparatus, the mixture M1 containing a dense phase D1 and a light phase L1.
  • This device also comprises means (2) placed inside the entrance (1) in the space located between the internal wall of the external enclosure and the external wall of the first internal enclosure making it possible to confer downstream , in the direction of circulation of said mixture M1, a helical or swirling movement at least in phase L1 of said mixture M1.
  • These means are usually inclined blades.
  • the length L of the device is counted between these means making it possible to create a vortex, at least on the phase L1, and the means (7) for outputting the dense phase D1.
  • This device does not include means (6) for limiting the penetration of the vortex into the external outlet (5). All the other characteristics are identical to those described in connection with the devices shown in FIGS. 1A and 2, in particular the various dimensions are those mentioned in the description of these devices.
  • the variants described in connection with the devices shown in FIGS. 1A and 2 are also possible in the case of the device according to the present invention shown diagrammatically in FIG. 3.
  • the output means (7) of the dense phase D1 usually make it possible to collect and channel this dense phase D1 up to the external output (10). These means are most often an inclined bottom or a cone oriented or not on the internal outlet (4 ').
  • the devices according to the present invention thus allow the transfer of heat and / or material between the various phases present.
  • These phases are, for the light phases L1, L2 and L3 of the liquid, gaseous phases or phases containing both liquid and gas, and for the dense phases D1 and D2 of the solid phases (under particle form), liquids or phases containing both solid and liquid.
  • Two cases are frequently encountered: the first in which the dense phases are solids and the light phases of gases and the second in which there is a liquid phase which can be the dense phase or the light phase.
  • the apparatuses of the present invention shown diagrammatically in the appended figures have a single axis (AA ′) but it would not go beyond the scope of the present invention in the case where an apparatus comprising several axes, for example making an angle between them, is produced.
  • the axis (AA ') mentioned above would be the axis of the part of the device located between the first internal inlet (3) and the first internal outlet (3') and the value of the diameter (Dc ) would be that measured at this internal output (3 '), this axis (AA') also remaining in this case the axis of the second interior enclosure, the two interior enclosures remaining arranged coaxially (such a case is for example that of a device comprising an angled external enclosure).
  • the diameter (Dc) of the device measured at the first internal outlet (3 ') is usually about 0.01 to about 10 m (meters) and most often about 0.05 to about 2 m . It is usually preferable to keep a constant diameter over the entire length (L) of the apparatus or even from the level of injection of the mixture M1 to the level of the means (7) for outputting the dense phase D1; however, it would not be departing from the scope of the invention in the case of an apparatus comprising enlargements or narrowing of sections between said levels.
  • phase L1 contained in a mixture M1 also comprising at least one phase D1 and an effective mixture of this phase L1 with at least one phase D2 it is preferable to have a surface velocity of entry of this phase L1 high and for example from approximately 5 to approximately 150 mxs ⁇ 1 (meter per second) and preferably from approximately 10 to approximately 75 mxs ⁇ 1.
  • the weight ratio of the flow from phase D1 to the flow from phase L1 is usually from about 0.0001: 1 to about 50: 1 and most often from about 0.1: 1 to about 15: 1.
  • flow rate of phase D2 usually represents by weight of approximately 0.1 to approximately 1000% of the flow rate of phase D1 and most often approximately 10 to approximately 300% of the flow of phase D1.
  • the surface speed V2 will preferably be from about 5 to about 150% of the speed V1.
  • phase L1 withdrawn with phase D1 The pressure variations allowing to play on the quantity of phase L1 withdrawn with phase D1 are ensured by means well known to those skilled in the art and for example by varying the quenching temperature by modifying the flow rates of phases L2 and / or D2, or by modifying the flow rate of phase L3, or by modifying the operating conditions downstream of the output (10).
  • the apparatus will include at least one means allowing the withdrawal, by the external output, of at least part of the light phase L1 in admixture with the dense phase D1.
  • ED1 separation efficiency of D1 in the device (ratio of the mass flow of D1 measured in the external output (10) to the mass flow of D1 introduced into l 'tangential input (1)) with a withdrawal of phase L1 in the external output (10) of 2% by weight relative to the weight of L1 introduced into the tangential input (1).
  • Pvortex distance between the end of the vortex of L1 in the external output (5) and the top of the second internal input (4).
  • Tempering temperature of the gas mixture formed by L1 and L2 measured at a distance of 1 m from the top of the second internal inlet (4). TABLE II Performances Device A Device B ED1 98.4% 98.1% Pvortex 4cm 23cm Tempering 295 ° C 310 ° C

Landscapes

  • Cyclones (AREA)

Description

La présente invention concerne un mélangeur-séparateur cyclonique a co-courant. Cet équipement de génie chimique est un appareil permettant la séparation d'une phase dense D1 contenue dans un premier mélange M1 contenant ladite phase dense D1 et une phase légère L1, et le mélange de ladite phase légère L1 à une phase dense D2 ou à un second mélange M2 contenant une phase dense D2 et une phase légère L2.The present invention relates to a co-current cyclonic mixer-separator. This chemical engineering equipment is an apparatus allowing the separation of a dense phase D1 contained in a first mixture M1 containing said dense phase D1 and a light phase L1, and the mixing of said light phase L1 with a dense phase D2 or with a second M2 mixture containing a dense phase D2 and a light phase L2.

La présente invention concerne également l'utilisation de ce mélangeur-séparateur (dénommé ci-après l'appareil) pour l'échange rapide de chaleur entre une phase légère L1 et une phase dense D2 ou un mélange M2 contenant au moins une phase dense D2 et au moins une phase légère L2 (par exemple la trempe ultra-rapide d'un gaz par injection d'un solide froid). Elle concerne également l'utilisation de cet appareil pour l'échange ou le remplacement rapide d'une phase dense D1 par une autre phase dense D2 différente de D1 (par exemple d'un solide par un autre) dans un mélange contenant une phase dense et une phase légère (par exemple une phase réactionnelle comprenant un catalyseur que l'on remplace très rapidement par un autre catalyseur ou par le même catalyseur moins usagé).The present invention also relates to the use of this mixer-separator (hereinafter referred to as the apparatus) for the rapid exchange of heat between a light phase L1 and a dense phase D2 or a mixture M2 containing at least one dense phase D2 and at least one light phase L2 (for example the ultra-rapid quenching of a gas by injection of a cold solid). It also relates to the use of this device for the rapid exchange or replacement of a dense phase D1 by another dense phase D2 different from D1 (for example from one solid to another) in a mixture containing a dense phase and a light phase (for example a reaction phase comprising a catalyst which is replaced very quickly by another catalyst or by the same less used catalyst).

L'appareil de la présente invention peut ainsi être utilisé dans le procédé, dénommé ultra-pyrolyse, décrit par exemple par Graham et al, World Fluidisation Conference, Mai 1986, Elsinore Danemark, qui est un procédé de craquage à haute température, à l'état fluidisé et avec des temps de séjour du gaz dans le réacteur inférieur à la seconde. Dans ce procédé la chaleur de réaction est habituellement fournie par un solide caloporteur mélangé avec la charge à l'entrée du réacteur, ce qui provoque un choc thermomécanique sur celle-ci. Pour contrôler le temps de réaction et obtenir une bonne efficacité thermique, il est nécessaire de séparer les solides caloporteurs, qui sont ensuite recyclés, des produits gazeux de la réaction, puis de refroidir très rapidement, c'est à dire d'effectuer la trempe, des produits gazeux de la réaction dans un équipement approprié. Pour des réactions ultra-rapides, la séparation et la trempe doivent être aussi rapprochées que possible.The apparatus of the present invention can thus be used in the process, called ultra-pyrolysis, described for example by Graham et al, World Fluidization Conference, May 1986, Elsinore Denmark, which is a high temperature cracking process, at l 'fluidized state and with gas residence times in the reactor less than a second. In this process, the heat of reaction is usually supplied by a solid coolant mixed with the charge at the inlet to the reactor, which causes a thermomechanical shock thereon. To control the reaction time and obtain good thermal efficiency, it is necessary to separate the heat-transfer solids, which are then recycled, from the gaseous products of the reaction, then to cool very quickly, i.e. to carry out the quenching. , gaseous products of the reaction in suitable equipment. For ultra-fast reactions, separation and quenching should be as close together as possible.

Pour effectuer simplement la trempe, on peut injecter des solides froids. Pour que cette trempe soit efficace, il est nécessaire d'avoir un système permettant d'obtenir un mélange aussi efficace que possible entre les produits gazeux de la réaction et les solides froids. Un système de séparateur combiné en série à un mélangeur, par exemple un mélangeur par et à impaction, peut être envisagé. Cependant, un tel système nécessitera deux équipements distincts, et le gaz séparé des solides chauds devra encore rester quelques instants à un niveau thermique élevé ce qui a pour conséquence la poursuite des réactions pendant encore un certain temps après la séparation des solides chauds jusqu'à l'arrêt de ces réactions par abaissement brutal de la température au moment où les gaz entrent en contact avec les solides froids.To simply quench, cold solids can be injected. For this quenching to be effective, it is necessary to have a system making it possible to obtain a mixture as effective as possible between the gaseous products of the reaction and the cold solids. A separator system combined in series with a mixer, for example a par and impaction mixer, can be envisaged. However, such a system will require two separate pieces of equipment, and the gas separated from the hot solids will have to remain for a few moments at a high thermal level, which results in the continuation of the reactions for another a certain time after the separation of the hot solids until the stopping of these reactions by abrupt lowering of the temperature when the gases come into contact with the cold solids.

L'appareil de la présente invention permet une amélioration de l'efficacité de la trempe et une simplification de l'appareillage en regroupant au sein du même dispositif les deux fonctions de séparation des produits gazeux et des solides chauds et de trempe ultra-rapide des produits gazeux par des solides froids.The apparatus of the present invention allows an improvement in the efficiency of the quenching and a simplification of the apparatus by grouping, within the same device, the two functions of separation of gaseous products and hot solids and of ultra-rapid quenching of the gaseous products by cold solids.

Dans l'application envisagée ci-avant l'appareil permet, de séparer les produits gazeux de la réaction des solides chauds, et d'injecter très efficacement des solides froids dans les produits gazeux de la réaction, en utilisant un cyclone modifié. Dans cet appareil le vortex, induit pour séparer les solides chauds des produits gazeux grâce à la force centrifuge et aux différences de masse volumique des deux phases, est également utilisé pour mélanger efficacement les solides froids injectés au-dessus de la sortie du gaz et obtenir un très bon transfert de chaleur. La séparation du mélange gaz-solides chauds et le mélange gaz-solides froids ont ainsi lieu dans le même équipement et de façon pratiquement simultanée. La trempe des produits gazeux est donc pratiquement instantanée, ce qui permet un arrêt de la réaction au niveau du séparateur sans pour autant affecter significativement le rendement thermique de la partie chaude du procédé, les solides chauds ne subissant pas la trempe.In the application envisaged above, the apparatus makes it possible to separate the gaseous products of the reaction from the hot solids, and to inject very efficiently cold solids into the gaseous products of the reaction, using a modified cyclone. In this apparatus the vortex, induced to separate the hot solids from the gaseous products thanks to the centrifugal force and to the differences in density of the two phases, is also used to efficiently mix the cold solids injected above the gas outlet and obtain very good heat transfer. The separation of the hot gas-solid mixture and the cold gas-solid mixture thus take place in the same equipment and practically simultaneously. The quenching of the gaseous products is therefore practically instantaneous, which allows the reaction to be stopped at the separator without significantly affecting the thermal efficiency of the hot part of the process, the hot solids not undergoing quenching.

Le brevet US-2,650,675 décrit un appareil comportant une enceinte extérieure avec une entrée tangentielle de phase légère propre et une première enceinte intérieure avec une première entrée interne pour un mélange M. Les contaminants de M sont séparés et entraînés par le flux d'air secondaire s'écoulant à proximité des parois. Une seconde enceinte intérieure évacue le gaz purifié.US Pat. No. 2,650,675 describes an apparatus comprising an external enclosure with a tangential clean light phase inlet and a first interior enclosure with a first internal inlet for a mixture M. The contaminants of M are separated and entrained by the secondary air flow flowing near the walls. A second interior enclosure evacuates the purified gas.

De façon plus précise la présente invention concerne un mélangeur-séparateur cyclonique à co-courant, de forme allongée le long d'au moins un axe, de section sensiblement circulaire comportant :

  • au moins une enceinte extérieure, de section sensiblement circulaire de diamètre (Dc) et de longueur (L), comprenant à une première extrémité des moyens d'introduction permettant d'introduire, par une entrée dite entrée externe, au moins une phase légère L1, lesdits moyens étant adaptés à conférer au moins à la phase légère L1 un mouvement hélicoïdal dans la direction de l'écoulement dans ladite enceinte extérieure et comprenant également à l'extrémité opposée à ladite première extrémité une sortie dite sortie externe,
  • au moins une première enceinte intérieure, de section sensiblement circulaire, de longueur (Li) inférieure à (L), disposée coaxialement par rapport à ladite enceinte extérieure, comprenant à une première extrémité, située à proximité de ladite première extrémité de l'enceinte extérieure, des moyens d'introduction permettant d'introduire, par une entrée dite première entrée interne, au moins une phase dense D2 ou au moins un mélange M2 contenant au moins une phase dense D2 et au moins une phase légère L2, lesdits moyens permettant d'introduire ladite phase dense D2 ou ledit mélange M2 de façon à ce que leur écoulement ait lieu dans la même direction que l'écoulement de la phase légère L1 jusqu'à la deuxième extrémité, opposée à ladite première extrémité, permettant la sortie de ladite phase dense D2 ou dudit mélange M2, par une première sortie, dite première sortie interne, de diamètre (Di) inférieur à (Dc), de ladite première enceinte intérieure,
  • au moins une deuxième enceinte intérieure, de section sensiblement circulaire, disposée coaxialement par rapport à ladite première enceinte intérieure, permettant l'entrée, par une entrée dite deuxième entrée interne, d'au moins une partie de phase légère, ladite deuxième enceinte comprenant à l'extrémité opposée à sa première extrémité des moyens de récupération permettant de récupérer, par une sortie dite deuxième sortie interne, ladite phase légère;
    ledit mélangeur-séparateur cyclonique étant caractérisé en ce que :
  • ladite enceinte extérieure comporte ladite entrée externe pour introduire un premier mélange M1 contenant au moins une phase dense D1, le mélange M1 étant introduit selon une direction sensiblement perpendiculaire à l'axe du mélangeur-séparateur ou sensiblement parallèle à l'axe du mélangeur-séparateur, et que ladite enceinte externe comporte des moyens de récupération permettant de récupérer par ladite sortie externe au moins une partie de ladite phase dense D1,
  • ladite deuxième enceinte intérieure comprend une première extrémité située à une distance (Le), de ladite deuxième extrémité de la première enceinte intérieure, ladite distance (Le) étant d'environ 0,1x (Dc) à environ 10x(Dc), permettant l'entrée , par ladite deuxième entrée interne, de diamètre (De) supérieur ou égal à (Di) et inférieur à (Dc), d'au moins une partie de la phase légère L1 et d'au moins une partie de la phase dense D2 ou du mélange M2, et ladite deuxième sortie interne, permettant de récupérer le mélange formé dans ladite deuxième enceinte qui comprend au moins une partie de la phase légère L1 et au au moins une partie de la phase dense D2 ou du mélange M2, le mélangeur-séparateur comprenant au moins un moyen permettant le soutirage, par la sortie externe, d'au moins une partie de la phase légère L1 en mélange avec la phase dense D1, ledit mélangeur-séparateur comprenant en aval, dans le sens de l'écoulement des diverses phases, de la deuxième entrée interne, des moyens limitant la progression de la phase légère L1 dans l'espace situé entre la paroi externe de la deuxième enceinte extérieure et la paroi interne de l'enceinte extérieure, lesdits moyens limitant la progression de la phase légère L1, étant des pales sensiblement planes dont le plan comprend l'axe du mélangeur-séparateur.
More specifically, the present invention relates to a cyclonic cocurrent mixer-separator, of elongated shape along at least one axis, of substantially circular section comprising:
  • at least one external enclosure, of substantially circular section of diameter (Dc) and length (L), comprising at a first end introduction means making it possible to introduce, by an input known as an external input, at least one light phase L1 , said means being adapted to impart at least to the light phase L1 a helical movement in the direction of flow in said external enclosure and also comprising at the end opposite to said first end an outlet called external outlet,
  • at least a first inner enclosure, of substantially circular section, of length (Li) less than (L), arranged coaxially with respect to said outer enclosure, comprising at a first end, located near said first end of the enclosure external, introduction means making it possible to introduce, via an entry known as the first internal entry, at least one dense phase D2 or at least one mixture M2 containing at least one dense phase D2 and at least one light phase L2, said means allowing introduce said dense phase D2 or said mixture M2 so that their flow takes place in the same direction as the flow of light phase L1 to the second end, opposite to said first end, allowing the exit of said dense phase D2 or of said mixture M2, by a first outlet, called first internal outlet, of diameter (Di) less than (Dc), from said first interior enclosure,
  • at least one second interior enclosure, of substantially circular section, arranged coaxially with respect to said first interior enclosure, allowing the entry, by an entry known as second internal entry, of at least a portion of light phase, said second enclosure comprising the end opposite to its first end of the recovery means making it possible to recover, by an outlet called the second internal outlet, said light phase;
    said cyclonic mixer-separator being characterized in that:
  • said external enclosure comprises said external inlet for introducing a first mixture M1 containing at least one dense phase D1, the mixture M1 being introduced in a direction substantially perpendicular to the axis of the mixer-separator or substantially parallel to the axis of the mixer-separator , and that said external enclosure comprises recovery means making it possible to recover by said external output at least a part of said dense phase D1,
  • said second interior enclosure comprises a first end situated at a distance (Le) from said second end of the first interior enclosure, said distance (Le) being from approximately 0.1x (Dc) to approximately 10x (Dc), allowing the entry, by said second internal entry, of diameter (De) greater than or equal to (Di) and less than (Dc), of at least part of the light phase L1 and at least part of the dense phase D2 or of the mixture M2, and said second internal outlet, making it possible to recover the mixture formed in said second enclosure which comprises at least a part of the light phase L1 and at least a part of the dense phase D2 or of the mixture M2, the mixer-separator comprising at least one means allowing the withdrawal, by the external outlet, of at least part of the light phase L1 in mixture with the dense phase D1, said mixer-separator comprising downstream, in the direction of flow of the various phases , the second internal input, means limiting the progression of the light phase L1 in the space between the outer wall of the second outer enclosure and the inner wall of the outer enclosure, said means limiting the progression of the light phase L1, being substantially flat blades whose plane includes the axis of the mixer-separator.

L'invention sera mieux comprise par la description de quelques modes de réalisation, donnés à titre purement illustratif mais nullement limitatif, qui en sera faite ci-après à l'aide des figures 1A, 1B, 2 et 3 annexées, sur lesquelles les organes similaires sont désignés par les mêmes chiffres et lettres de référence.The invention will be better understood by the description of some embodiments, given purely by way of illustration but in no way limiting, which will be made of it below with the aid of the appended FIGS. 1A, 1B, 2 and 3, in which the members similar are designated by the same reference numbers and letters.

La figure 1A est une vue en perspective d'un appareil selon l'invention.Figure 1A is a perspective view of an apparatus according to the invention.

La figure 1B est une vue en perspective d'un appareil selon l'invention qui ne diffère de celui représenté sur la figure 1A que par les moyens de sortie (7) de la phase dense D1 introduite par le conduit (1) lesdits moyens (7) permettant dans le mode de réalisation schématisé sur la figure 1A une sortie latérale (10) de la phase dense D1 et dans celui schématisé sur la figure 1B une sortie axiale (10) de cette phase.FIG. 1B is a perspective view of an apparatus according to the invention which differs from that shown in FIG. 1A only by the means of output (7) from the dense phase D1 introduced by the conduit (1), said means ( 7) allowing in the embodiment shown diagrammatically in FIG. 1A a lateral outlet (10) from the dense phase D1 and in that shown schematically in FIG. 1B an axial outlet (10) from this phase.

La figure 2 est une vue en coupe d'un appareil selon l'invention pratiquement identique à celui représenté sur la figure 1A mais comportant des moyens (6) dont la dimension dans la direction perpendiculaire à l'axe de l'appareil est inférieure à la dimension de la sortie externe (5).FIG. 2 is a sectional view of an apparatus according to the invention practically identical to that shown in FIG. 1A but comprising means (6) whose dimension in the direction perpendicular to the axis of the apparatus is less than the dimension of the external output (5).

Les appareils selon l'invention, schématisés sur les figures 1A et 2, de formes allongées, sensiblement régulières, le long d'un axe (AA') qui est un axe de symétrie, comportent une enceinte extérieure, de diamètre (Dc) et de longueur (L) ayant une entrée tangentielle (1) dite entrée externe, dans laquelle on introduit, suivant une direction sensiblement perpendiculaire à l'axe de l'appareil, le mélange M1 contenant au moins une phase dense D1 et au moins une phase légère L1. Cette entrée tangentielle a de préférence une section rectangulaire ou carrée dont le côté paralléle à l'axe de l'appareil a une dimension (Lk) habituellement d'environ 0,25 à environ 1 fois le diamètre (Dc), et le côté perpendiculaire à l'axe de l'appareil a une dimension (hk) habituellement d'environ 0,05 à environ 0,5 fois le diamètre (Dc).The devices according to the invention, shown diagrammatically in FIGS. 1A and 2, of elongated shapes, substantially regular, along an axis (AA ′) which is an axis of symmetry, comprise an outer enclosure, of diameter (Dc) and of length (L) having a tangential inlet (1) called external inlet, into which is introduced, in a direction substantially perpendicular to the axis of the apparatus, the mixture M1 containing at least one dense phase D1 and at least one phase slight L1. This tangential entry preferably has a rectangular or square section whose side parallel to the axis of the device has a dimension (Lk) usually about 0.25 to about 1 time the diameter (Dc), and the perpendicular side the axis of the device has a dimension (hk) usually from about 0.05 to about 0.5 times the diameter (Dc).

Le mélange M1 ainsi introduit s'enroule autour d'une première enceinte intérieure, disposée coaxialement par rapport à l'enceinte extérieure, ayant une entrée axiale (3), dite première entrée interne, permettant l'introduction d'au moins une phase dense D2 ou de préférence d'au moins un mélange M2 contenant une phase dense D2 et une phase légère L2. Cette phase dense D2 ou ce mélange M2 circule parallèlement à l'axe (AA') de l'appareil jusqu'à la première sortie interne (3') de diamètre (Di) inférieur au diamètre (Dc) de l'enceinte extérieure de l'appareil et habituellement d'environ 0,05 à environ 0,9 fois ce diamètre (Dc) et de préférence d'environ 0,4 à environ 0,8 fois ce diamètre (Dc).The mixture M1 thus introduced is wound around a first internal enclosure, arranged coaxially with respect to the external enclosure, having an axial inlet (3), called the first internal inlet, allowing the introduction of at least one dense phase D2 or preferably at least one mixture M2 containing a dense phase D2 and a light phase L2. This dense phase D2 or this mixture M2 circulates parallel to the axis (AA ') of the device up to the first internal outlet (3') of diameter (Di) less than the diameter (Dc) of the outer enclosure of the apparatus and usually from about 0.05 to about 0.9 times this diameter (Dc) and preferably from about 0.4 to about 0.8 times this diameter (Dc).

La longueur (Li), entre le niveau extrême de l'entrée tangentielle (1) et la première sortie interne, est inférieure à (L) et est habituellement d'environ 0,2 à environ 9,5 fois le diamètre (Dc) et de préférence d'environ 1 à environ 3 fois ce diamètre (Dc).The length (Li), between the extreme level of the tangential inlet (1) and the first internal outlet, is less than (L) and is usually about 0.2 to about 9.5 times the diameter (Dc) and preferably from about 1 to about 3 times this diameter (Dc).

Bien que cela ne soit pas réprésenté sur les figures 1A, 1B et 2 il est possible, et habituellement souhaitable, dans le cas de débits importants des diverses phases au niveau des entrées de l'appareil, d'utiliser des moyens permettant de favoriser la formation du vortex comme par exemple un toit hélicoïdal descendant à partir du niveau extrême de l'entrée tangentielle (1) ou une volute par exemple externe, et permettant de limiter la turbulence au niveau de l'entrée tangentielle (1). Habituellement le pas de l'hélice est d'environ 0,01 à environ 3 fois la valeur de (Lk) et le plus souvent d'environ 0,5 à environ 1,5 fois cette valeur.Although this is not represented in FIGS. 1A, 1B and 2, it is possible, and usually desirable, in the case of high flow rates of the various phases at the level of the inputs of the apparatus, to use means making it possible to promote the formation of the vortex, for example a helical roof descending from the extreme level of the tangential entry (1) or a volute, for example external, and making it possible to limit the turbulence at the level of the tangential entry (1). Usually the pitch of the propeller is about 0.01 to about 3 times the value of (Lk) and most often about 0.5 to about 1.5 times this value.

La phase dense D2 ou le mélange M2 pénètre ensuite au moins en partie dans la deuxième enceinte intérieure, disposée coaxialement par rapport à la première enceinte intérieure, par la deuxième entrée interne (4) située à une distance (Le) de la première sortie interne (3'), cette distance étant de préférence d'environ 0,2 à environ 2 fois le diamètre (Dc). Dans cette deuxième enceinte pénètre également au moins une partie de la phase légère L1. Cette deuxième entrée interne (4) a un diamètre interne (De) supérieur ou égal à (Di) et inférieur à (Dc) et habituellement d'environ 0,2 à environ 0,9 fois le diamètre (Dc). Ce diamètre (Di) est de préférence d'environ 0,4 à environ 0,8 fois le diamètre (Dc). On récupère par la deuxième sortie interne (4') de l'appareil un mélange comprenant au moins une partie de la phase légère L1 et au moins une partie de la phase dense D2 ou du mélange M2 comprenant une phase dense D2 et une phase légère L2.The dense phase D2 or the mixture M2 then penetrates at least partially into the second interior enclosure, arranged coaxially with respect to the first interior enclosure, by the second internal inlet (4) located at a distance (Le) from the first internal outlet. (3 '), this distance preferably being approximately 0.2 to approximately 2 times the diameter (Dc). In this second enclosure also penetrates at least part of the light phase L1. This second internal inlet (4) has an internal diameter (De) greater than or equal to (Di) and less than (Dc) and usually from about 0.2 to about 0.9 times the diameter (Dc). This diameter (Di) is preferably about 0.4 to about 0.8 times the diameter (Dc). A mixture comprising at least part of the light phase L1 and at least part of the dense phase D2 or of the mixture M2 comprising a dense phase D2 and a light phase is recovered by the second internal outlet (4 ′) of the apparatus. L2.

Selon la réalisation schématisée sur les figures 1A et 2 l'appareil comporte, en aval, dans le sens de l'écoulement des diverses phases, de la deuxième entrée interne, des moyens (6) limitant la progression de la phase légère L1 dans l'espace situé entre la paroi interne de l'enceinte extérieure et la paroi externe de la deuxième enceinte intérieure ou sortie externe (5). Ces moyens (6) sont de préférence des pales sensiblement planes dont le plan comprend l'axe de l'appareil. Ces moyens (6) sont habituellement fixés sur au moins une paroi de l'une des enceintes intérieure ou extérieure. Ces moyens (6) sont de préférence fixés à la paroi externe de la deuxième enceinte intérieure de sorte que la distance (Lp) entre la deuxième entrée interne et le point desdites pales le plus proche de cette deuxième entrée interne soit d'environ 0 à environ 5 fois le diamètre (Dc) et de préférence d'environ 0,1 à environ 1 fois ce diamètre (Dc).According to the embodiment shown diagrammatically in FIGS. 1A and 2, the device comprises, downstream, in the direction of flow of the various phases, from the second internal input, means (6) limiting the progression of the light phase L1 in the space located between the internal wall of the external enclosure and the external wall of the second internal enclosure or external outlet (5). These means (6) are preferably substantially planar blades whose plane includes the axis of the device. These means (6) are usually fixed on at least one wall of one of the interior or exterior enclosures. These means (6) are preferably fixed to the external wall of the second internal enclosure so that the distance (Lp) between the second internal inlet and the point of said blades closest to this second internal inlet is approximately 0 to about 5 times the diameter (Dc) and preferably about 0.1 to about 1 time this diameter (Dc).

Le nombre de pales est variable suivant la distribution du temps de séjour que l'on accepte pour la phase L1 et également en fonction du diamètre (Dc) de l'enceinte extérieure. Si le temps de séjour de la phase L1 peut avoir une distribution large il ne sera alors pas indispensable d'avoir des pales. Le nombre de pales est habituellement compris entre 0 et environ 50, le plus souvent, lorsque des pales sont présentes, d'au moins 2 et par exemple de 2 à environ 50 et de préférence de 3 à environ 50. Ainsi dans le cas de l'utilisation d'un appareil selon l'invention dans la mise en oeuvre de réactions ultra-rapides, par exemple dans le cas de l'ultra-pyrolyse, dans lesquelles il est souvent nécessaire de limiter la distribution des temps de séjour de la phase légère dans l'appareil, permettant en particulier la séparation et la trempe d'une phase légère, les pales vont permettre par une limitation de la continuation du vortex sur toute la section du cyclone, autour de la sortie interne (4) de la phase légère, une diminution et un contrôle de la distribution des temps de séjour et par voie de conséquence on limitera la dégradation des produits contenus dans la phase légère circulant autour de la sortie interne.The number of blades is variable according to the distribution of the residence time which is accepted for phase L1 and also according to the diameter (Dc) of the external enclosure. If the residence time of phase L1 can have a wide distribution then it will not be essential to have blades. The number of blades is usually between 0 and about 50, most often, when blades are present, at least 2 and for example from 2 to about 50 and preferably from 3 to about 50. Thus in the case of the use of an apparatus according to the invention in the implementation of ultra-rapid reactions, for example in the case of ultra-pyrolysis, in which it is often necessary to limit the distribution of the residence times of the light phase in the device, allowing in particular the separation and quenching of a light phase, the blades will allow, by limiting the continuation of the vortex over the entire section of the cyclone, around the internal outlet (4) of the light phase, a reduction and a control of the distribution of the residence times and consequently the degradation of the products contained in the light phase circulating around the internal outlet will be limited.

Chacune de ces pales a habituellement une dimension ou largeur (ep) mesurée dans la direction perpendiculaire à l'axe de l'appareil et définie par rapport au diamètre intérieur (Dc) de l'enceinte extérieure et au diamètre extérieur (D'e) de la deuxième enceinte intérieure, d'environ 0,01 à 1 fois la valeur [ ((Dc)-(D'e))/2

Figure imgb0001
Figure imgb0002
] de la demi différence de ces diamètres (Dc) et (D'e), de préférence d'environ 0,5 à 1 fois cette valeur et le plus souvent d'environ 0,9 à 1 fois cette valeur.Each of these blades usually has a dimension or width (ep) measured in the direction perpendicular to the axis of the device and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the second inner enclosure, approximately 0.01 to 1 times the value [ ((Dc) - (D'e)) / 2
Figure imgb0001
Figure imgb0002
] of the half difference of these diameters (Dc) and (D'e), preferably about 0.5 to 1 times this value and most often about 0.9 to 1 times this value.

Ces pales ont chacune sur leur arête, la plus proche de l'axe des enceintes intérieures, dans la direction parallèle à cet axe, une dimension ou hauteur interne (hpi) et une dimension ou hauteur externe (hpe) mesurée dans la direction de l'axe de l'appareil sur l'arête de ladite pale la plus proche de la paroi interne de l'enceinte extérieure. Ces dimensions (hpi) et (hpe) sont habituellement supérieures à 0,1 fois le diamètre (Dc) et par exemple d'environ 0,1 fois à environ 10 fois le diamètre (Dc) et le plus souvent d'environ 1 à environ 4 fois ce diamètre (Dc). De préférence ces pales ont chacune une dimension (hpi) supérieure ou égale à leur dimension (hpe).These blades each have on their edge, the closest to the axis of the interior enclosures, in the direction parallel to this axis, an internal dimension or height (hpi) and an external dimension or height (hpe) measured in the direction of l 'axis of the device on the edge of said blade closest to the inner wall of the outer enclosure. These dimensions (hpi) and (hpe) are usually greater than 0.1 times the diameter (Dc) and for example approximately 0.1 times to approximately 10 times the diameter (Dc) and most often approximately 1 to about 4 times this diameter (Dc). Preferably, these blades each have a dimension (hpi) greater than or equal to their dimension (hpe).

Selon la réalisation schématisée sur les figures 1A et 2 l'appareil comporte, en aval, dans le sens de l'écoulement des diverses phases, de la deuxième entrée interne, des moyens (8) permettant l'introduction éventuelle d'une phase légère L3 en au moins un point situé entre la deuxième entrée interne (4) de la deuxième enceinte intérieure et la sortie externe (10) de la phase dense D1 ; ce ou ces points sont de préférence à une distance (Lz) de l'entrée (4) de la deuxième enceinte intérieure. Ladite distance (Lz) a de préférence une valeur au moins égale à la somme des valeurs de (Lp) et (hpi) et au plus égale à la distance entre l'entrée (4) de la deuxième enceinte intérieure et les moyens de sortie (7) de la phase dense D1. Cette phase légère L3 peut être introduite par exemple dans le cas où il est souhaitable d'effectuer un strippage de la phase dense D1. La phase légère L3 est de préférence introduite en plusieurs points qui sont habituellement répartis symétriquement, dans un plan au niveau duquel l'introduction est effectuée, autours de l'enceinte extérieure.According to the embodiment shown diagrammatically in FIGS. 1A and 2, the device comprises, downstream, in the direction of flow of the various phases, from the second internal inlet, means (8) allowing the possible introduction of a light phase L3 at at least one point located between the second internal input (4) of the second internal enclosure and the external output (10) of the dense phase D1; this or these points are preferably at a distance (Lz) from the inlet (4) of the second interior enclosure. Said distance (Lz) preferably has a value at least equal to the sum of the values of (Lp) and (hpi) and at most equal to the distance between the input (4) of the second inner enclosure and the output means (7) of the dense phase D1. This phase light L3 can be introduced for example in the case where it is desirable to carry out a stripping of the dense phase D1. The light phase L3 is preferably introduced at several points which are usually distributed symmetrically, in a plane at the level of which the introduction is carried out, around the external enclosure.

Le ou les points d'introduction de cette phase légère L3 sont habituellement situés à une distance au moins égale à 0,1 fois le diamètre (Dc) de l'entrée (4) de la deuxième enceinte intérieure lorsque l'appareil ne comporte pas de moyens (6) ou du point desdits moyens (6) le plus proche des moyens (7) de sortie de la phase dense D1 lorsque l'appareil comporte des moyens (6). Le ou les points d'introduction de cette phase légère L3 sont de préférence situés à proximité de la sortie externe (10) et le plus souvent à proximité des moyens de sortie (7) de la phase dense D1.The point or points of introduction of this light phase L3 are usually located at a distance at least equal to 0.1 times the diameter (Dc) of the inlet (4) of the second interior enclosure when the device does not have means (6) or the point of said means (6) closest to the means (7) for outputting the dense phase D1 when the apparatus includes means (6). The point or points of introduction of this light phase L3 are preferably located near the external outlet (10) and most often near the outlet means (7) of the dense phase D1.

La dimension (p') entre le niveau de la deuxième entrée interne (4) et les moyens (7) de sortie de la phase dense D1 est déterminée à partir des autres dimensions des divers moyens formant l'appareil et de la longueur (L) de l'enceinte extérieure mesurée entre le niveau extrême de l'entrée tangentielle (1) et les moyens (7) de sortie de la phase dense D1. Cette dimension (L) est habituellement d'environ 1 à environ 35 fois le diamètre (Dc) de l'enceinte extérieure et le plus souvent d'environ 1 à 25 fois ce diamètre (Dc). On peut de même calculer la dimension (P), entre le point des moyens (6) le plus proche des moyens (7) de sortie de la phase dense D1 et lesdits moyens (7), à partir des autres dimensions des divers moyens formant l'appareil et de la longueur (L).The dimension (p ') between the level of the second internal inlet (4) and the means (7) for outputting the dense phase D1 is determined from the other dimensions of the various means forming the apparatus and the length (L ) of the external enclosure measured between the extreme level of the tangential input (1) and the means (7) for outputting the dense phase D1. This dimension (L) is usually about 1 to about 35 times the diameter (Dc) of the outer enclosure and most often about 1 to 25 times this diameter (Dc). We can likewise calculate the dimension (P), between the point of the means (6) closest to the means (7) for leaving the dense phase D1 and said means (7), from the other dimensions of the various means forming device and length (L).

On ne sortirait pas du cadre de la présente invention dans le cas où l'axe (AA') de l'appareil fait un angle avec la verticale. Dans ce cas il est cependant préférable, si des moyens (6) (limitant la circulation de la phase légère L1 dans la sortie externe (5) et donc réduisant la distribution des temps de séjour de cette phase L1 dans l'appareil) sont utilisés, de les placer verticalement et donc de réaliser un appareil comportant, dans le cas d'une sortie interne (4') axiale, un coude au dela duquel lesdits moyens (6) seront positionnés dans la sortie externe verticale. De même dans le cas d'un appareil tel que celui schématisé sur la figure 1B, ayant une sortie latérale (4'), il est possible de positionner les moyens (6) (limitant la circulation de la phase légère L1 dans la sortie externe (5) et donc réduisant la distribution des temps de séjour de cette phase L1 dans l'appareil) après le niveau de la sortie interne (4') et avant les moyens (7).It would not go beyond the scope of the present invention in the case where the axis (AA ′) of the device makes an angle with the vertical. In this case it is however preferable, if means (6) (limiting the circulation of the light phase L1 in the external output (5) and therefore reducing the distribution of the residence times of this phase L1 in the device) are used , to place them vertically and therefore to produce an apparatus comprising, in the case of an axial internal outlet (4 ′), a bend beyond which said means (6) will be positioned in the vertical external outlet. Similarly in the case of an apparatus such as that shown diagrammatically in FIG. 1B, having a lateral outlet (4 ′), it is possible to position the means (6) (limiting the circulation of the light phase L1 in the external outlet (5) and therefore reducing the distribution of the residence times of this phase L1 in the apparatus) after the level of the internal output (4 ') and before the means (7).

Les moyens (6) limitent la progression du vortex de la phase légère L1 dans la sortie externe (5). La position de ces moyens (6) et leur nombre influent donc sur les performances de la séparation des phases D1 et L1 contenues dans le mélange M1 (perte de charge et efficacité de la collecte de la phase dense D1) et également sur la pénétration du vortex de la phase légère L1 dans la sortie (5). Ces paramètres seront donc choisis avec soin par l'homme du métier en particulier en fonction des résultats souhaités et de la perte de charge tolérée. En particulier lorsque D1 est un solide, le nombre de pales, leur forme et leur position seront choisis avec soins en tenant compte de leur influence sur l'écoulement du solide en liaison avec la limitation recherchée de la progression du vortex dans la sortie externe (5).The means (6) limit the progression of the vortex of the light phase L1 in the external output (5). The position of these means (6) and their number therefore influence the performance of the separation of phases D1 and L1 contained in the mixture M1 (pressure drop and efficiency of collection of the dense phase D1) and also on the penetration of the vortex of the light phase L1 in the outlet (5). These parameters will therefore be carefully chosen by those skilled in the art, in particular as a function of the desired results and of the tolerated pressure drop. In particular when D1 is a solid, the number of blades, their shape and their position will be chosen with care taking into account their influence on the flow of the solid in connection with the desired limitation of the progression of the vortex in the external output ( 5).

La figure 3 est une vue en perspective d'un appareil selon l'invention comportant une enceinte extérieure, de diamètre (Dc) ayant une entrée (1) dite entrée externe axiale, dans laquelle on introduit suivant une direction sensiblement parallèle à l'axe (AA') de l'appareil le mélange M1 contenant une phase dense D1 et une phase légère L1. Cet appareil comporte en outre des moyens (2) placés à l'intérieur de l'entrée (1) dans l'espace situé entre la paroi interne de l'enceinte extérieure et la paroi externe de la première enceinte intérieure permettant de conférer en aval, dans le sens de circulation dudit mélange M1, un mouvement hélicoïdal ou tourbillonnant au moins à la phase L1 dudit mélange M1. Ces moyens sont habituellement des pales inclinées. La longueur L de l'appareil est comptée entre ces moyens permettant de créer un vortex, au moins sur la phase L1, et les moyens (7) de sortie de la phase dense D1. Cet appareil ne comporte pas de moyens (6) de limitation de la pénétration du vortex dans la sortie externe (5). Toutes les autres caractéristiques sont identiques à celles décrites en liaison avec les appareils représentés sur les figures 1A et 2, en particulier les diverses dimensions sont celles mentionnées dans la description de ces appareils. Les variantes décrites en liaison avec les appareils représentés sur les figures 1A et 2 sont également possibles dans le cas de l'appareil selon la présente invention schématisé sur la figure 3. On peut en particulier envisager une sortie interne (4') latérale et une sortie externe axiale (10) comme dans le cas de la réalisation schématisée sur la figure 1B, et également l'utilisation de moyens (6) dans la sortie externe (5).Figure 3 is a perspective view of an apparatus according to the invention comprising an outer enclosure, of diameter (Dc) having an inlet (1) called axial external inlet, into which is introduced in a direction substantially parallel to the axis (AA ') of the apparatus, the mixture M1 containing a dense phase D1 and a light phase L1. This device also comprises means (2) placed inside the entrance (1) in the space located between the internal wall of the external enclosure and the external wall of the first internal enclosure making it possible to confer downstream , in the direction of circulation of said mixture M1, a helical or swirling movement at least in phase L1 of said mixture M1. These means are usually inclined blades. The length L of the device is counted between these means making it possible to create a vortex, at least on the phase L1, and the means (7) for outputting the dense phase D1. This device does not include means (6) for limiting the penetration of the vortex into the external outlet (5). All the other characteristics are identical to those described in connection with the devices shown in FIGS. 1A and 2, in particular the various dimensions are those mentioned in the description of these devices. The variants described in connection with the devices shown in FIGS. 1A and 2 are also possible in the case of the device according to the present invention shown diagrammatically in FIG. 3. One can in particular envisage an internal internal outlet (4 ′) and a axial external output (10) as in the case shown diagrammatically in FIG. 1B, and also the use of means (6) in the external output (5).

Les moyens de sortie (7) de la phase dense D1 permettent habituellement de collecter et de canaliser cette phase dense D1 jusqu'a la sortie externe (10). Ces moyens sont le plus souvent un fond incliné ou un cône axé ou non sur la sortie interne (4').The output means (7) of the dense phase D1 usually make it possible to collect and channel this dense phase D1 up to the external output (10). These means are most often an inclined bottom or a cone oriented or not on the internal outlet (4 ').

Les appareils selon la présente invention permettent ainsi le tranfert de chaleur et/ou de matière entre les diverses phases en présences. Ces phases sont, pour ce qui est des phases légères L1, L2 et L3 des phases liquides, gazeuses ou des phases contenant à la fois du liquide et du gaz, et pour ce qui est des phases denses D1 et D2 des phases solides (sous forme de particules), liquides ou des phases contenant à la fois du solide et du liquide. Deux cas sont fréquemment rencontrés : le premier dans lequel les phases denses sont des solides et les phases légères des gaz et le second dans lequel il y a une phase liquide qui peut être la phase dense ou la phase légère.The devices according to the present invention thus allow the transfer of heat and / or material between the various phases present. These phases are, for the light phases L1, L2 and L3 of the liquid, gaseous phases or phases containing both liquid and gas, and for the dense phases D1 and D2 of the solid phases (under particle form), liquids or phases containing both solid and liquid. Two cases are frequently encountered: the first in which the dense phases are solids and the light phases of gases and the second in which there is a liquid phase which can be the dense phase or the light phase.

Les appareils de la présente invention schématisés sur les figures annexées comportent un axe unique (AA') mais on ne sortirait pas du cadre de la présente invention dans le cas où l'on réaliserait un appareil comportant plusieurs axes par exemple faisant un angle entre eux. Dans ce cas l'axe (AA') mentionné ci-avant serait l'axe de la partie de l'appareil située entre la première entrée interne (3) et la première sortie interne (3') et la valeur du diamètre (Dc) serait celle mesurée au niveau de cette sortie interne (3'), cet axe (AA') restant aussi dans ce cas l'axe de la deuxième enceinte intérieure, les deux enceintes intérieures restant disposées coaxialement (un tel cas est par exemple celui d'un appareil comportant une enceinte extérieure coudée).The apparatuses of the present invention shown diagrammatically in the appended figures have a single axis (AA ′) but it would not go beyond the scope of the present invention in the case where an apparatus comprising several axes, for example making an angle between them, is produced. . In this case the axis (AA ') mentioned above would be the axis of the part of the device located between the first internal inlet (3) and the first internal outlet (3') and the value of the diameter (Dc ) would be that measured at this internal output (3 '), this axis (AA') also remaining in this case the axis of the second interior enclosure, the two interior enclosures remaining arranged coaxially (such a case is for example that of a device comprising an angled external enclosure).

Le diamètre (Dc) de l'appareil mesuré au niveau de la première sortie interne (3') est habituellement d'environ 0,01 à environ 10 m (mètres) et le plus souvent d'environ 0,05 à environ 2 m. Il est habituellement préférable de garder un diamètre constant sur toute la longueur (L) de l'appareil ou même depuis le niveau de l'injection du mélange M1 jusqu'au niveau des moyens (7) de sortie de la phase dense D1 ; cependant on ne sortirait pas du cadre de l'invention dans le cas d'un appareil comportant des élargissements ou des rétrécissements de section entre lesdits niveaux.The diameter (Dc) of the device measured at the first internal outlet (3 ') is usually about 0.01 to about 10 m (meters) and most often about 0.05 to about 2 m . It is usually preferable to keep a constant diameter over the entire length (L) of the apparatus or even from the level of injection of the mixture M1 to the level of the means (7) for outputting the dense phase D1; however, it would not be departing from the scope of the invention in the case of an apparatus comprising enlargements or narrowing of sections between said levels.

Pour obtenir une bonne séparation d'une phase L1 contenue dans un mélange M1 comprenant également au moins une phase D1 et un mélange efficace de cette phase L1 avec au moins une phase D2 il est préférable d'avoir une vitesse superficielle d'entrée de cette phase L1 élevée et par exemple d'environ 5 à environ 150 mxs⁻¹ (mètre par seconde) et de préférence d'environ 10 à environ 75 mxs⁻¹. Le rapport en poids du débit de la phase D1 au débit de la phase L1 est habituellement d'environ 0,0001 : 1 à environ 50 : 1 et le plus souvent d'environ 0,1 : 1 à environ 15 : 1. Le débit de la phase D2 représente habituellement en poids d'environ 0,1 à environ 1000 % du débit de la phase D1 et le plus souvent d'environ 10 à environ 300 % du débit de la phase D1. La vitesse superficielle V2 de la phase L2, lorsqu'elle est présente, est habituellement d'environ 1 à environ 500 % de la vitesse axiale moyenne V1 sur toute la section de diamètre (Dc) située entre la première sortie interne (3') et la deuxième entrée interne (4) définie par la relation : V1=L1/(πxDc²)/4

Figure imgb0003
dans laquelle L1 est exprimé en m³xs⁻¹ (mètre cube par seconde) et Dc en m. La vitesse superficielle V2 sera de préférence d'environ 5 à environ 150 % de la vitesse V1.To obtain good separation of a phase L1 contained in a mixture M1 also comprising at least one phase D1 and an effective mixture of this phase L1 with at least one phase D2 it is preferable to have a surface velocity of entry of this phase L1 high and for example from approximately 5 to approximately 150 mxs⁻¹ (meter per second) and preferably from approximately 10 to approximately 75 mxs⁻¹. The weight ratio of the flow from phase D1 to the flow from phase L1 is usually from about 0.0001: 1 to about 50: 1 and most often from about 0.1: 1 to about 15: 1. flow rate of phase D2 usually represents by weight of approximately 0.1 to approximately 1000% of the flow rate of phase D1 and most often approximately 10 to approximately 300% of the flow of phase D1. The surface speed V2 of phase L2, when it is present, is usually about 1 to about 500% of the average axial speed V1 over the entire diameter section (Dc) located between the first internal outlet (3 ') and the second internal input (4) defined by the relation: V1 = L1 / (πxDc²) / 4
Figure imgb0003
where L1 is expressed in m³xs⁻¹ (cubic meter per second) and Dc in m. The surface speed V2 will preferably be from about 5 to about 150% of the speed V1.

Il est possible, par exemple en augmentant la pression en aval, dans le sens de la circulation de la phase dense D2, de la deuxième entrée interne (4) ou en diminuant la pression en aval, dans le sens de la circulation de la phase dense D1, des moyens (7) de sortie de cette phase, de soutirer une partie plus ou moins importante de la phase L1 avec la phase D1 et simultanément d'obtenir au niveau de la deuxième sortie (4') un mélange pratiquement complètement exempt de phase D1. On peut ainsi soutirer jusqu'à 90 % de la phase L1 avec D1, mais le plus souvent on soutire environ 1 à environ 10 % de cette phase L1 avec la phase D1. Les variations de pression permettant de jouer sur la quantité de phase L1 soutirée avec la phase D1 sont assurées par des moyens bien connus de l'homme du métier et par exemple en jouant sur la température de la trempe par modification des débits de phases L2 et/ou D2, ou en modifiant le débit de la phase L3, ou en modifiant les conditions d'opération en aval de la sortie (10).It is possible, for example by increasing the pressure downstream, in the direction of circulation of the dense phase D2, of the second internal inlet (4) or by decreasing the pressure downstream, in the direction of circulation of the phase dense D1, means (7) for exiting this phase, withdrawing a more or less significant part of phase L1 with phase D1 and simultaneously obtaining at the level of the second outlet (4 ') a mixture which is practically completely free of phase D1. It is thus possible to withdraw up to 90% of the L1 phase with D1, but most often one withdraws approximately 1 to approximately 10% of this L1 phase with the D1 phase. The pressure variations allowing to play on the quantity of phase L1 withdrawn with phase D1 are ensured by means well known to those skilled in the art and for example by varying the quenching temperature by modifying the flow rates of phases L2 and / or D2, or by modifying the flow rate of phase L3, or by modifying the operating conditions downstream of the output (10).

Dans les divers appareils selon l'invention et dans les différents modes d'injection du mélange M1, un tel soutirage peut permettre d'améliorer l'efficacité de récupération de la phase dense D1. Ainsi dans une forme avantageuse de réalisation de l'invention l'appareil comprendra au moins un moyen permettant le soutirage, par la sortie externe, d'au moins une partie de la phase légère L1 en mélange avec la phase dense D1.In the various devices according to the invention and in the various modes of injection of the mixture M1, such withdrawal can make it possible to improve the efficiency of recovery of the dense phase D1. Thus, in an advantageous embodiment of the invention, the apparatus will include at least one means allowing the withdrawal, by the external output, of at least part of the light phase L1 in admixture with the dense phase D1.

Le choix entre un appareil comportant une entrée tangentielle, pour le mélange M1, et un appareil comportant une entrée axiale, pour ce mélange M1, est habituellement guidé par le rapport en poids des débits des phases L1 et D1. Dans le cas où ce rapport est inférieur à 2 : 1 il peut être avantageux de choisir un appareil à entrée axiale.The choice between a device comprising a tangential inlet, for the mixture M1, and a device comprising an axial inlet, for this mixture M1, is usually guided by the weight ratio of the flow rates of the phases L1 and D1. If this ratio is less than 2: 1, it may be advantageous to choose an axial input device.

L'exemple qui suit est donné à titre illustratif et montre l'efficacité de la séparation d'une phase dense (solide) D1 contenue dans un mélange M1 contenant également une phase légère (gazeuse) L1, et également l'efficacité de la trempe de cette phase gazeuse L1 par un mélange M2 contenant une phase solide D2 et une phase gazeuse L2.The following example is given by way of illustration and shows the efficiency of the separation of a dense (solid) phase D1 contained in a mixture M1 also containing a light phase. (gas) L1, and also the efficiency of the quenching of this gas phase L1 by a mixture M2 containing a solid phase D2 and a gas phase L2.

On notera que dans l'art antérieur le plus proche USP 2,650,675, la technique décrite concerne une simple séparation d'une phase légère et d'une phase dense dans un mélange et non pas une séparation de deux mélanges comportant chacun une phase légère et une phase lourde.It will be noted that in the closest prior art USP 2,650,675, the technique described relates to a simple separation of a light phase and a dense phase in a mixture and not a separation of two mixtures each comprising a light phase and a heavy phase.

ExempleExample

On réalise deux appareils, d'axes verticaux, conformes à ceux représentés schématiquement sur les figures 1A et 2 comportant une entrée tangentielle à toit descendant sur 3/4 de tour régulièrement sur une hauteur égale à la valeur de Lk. Ces appareils ont les caractéristiques géométriques mentionnées dans le tableau I ci-après. TABLEAU I Appareil A Appareil B Dimensions avec sans en cm pales pales Dc 5,1 5,1 Di 2,5 2,5 Dimensions avec sans en cm pales pales De 2,5 2,5 Li 5,1 5,1 Le 1,2 1,2 Lk 2,5 2,5 Lp 2,5 --- hpe 5,1 --- hpi 5,1 --- hk 1,3 1,3 ep 1,2 --- Np*(nombre) 8 0 p' 25 25 *Np représente le nombre de pales. Les autres symboles sont définis dans la description. Two apparatuses are produced, with vertical axes, in accordance with those shown diagrammatically in FIGS. 1A and 2 comprising a tangential entry with a roof descending on 3/4 of a turn regularly over a height equal to the value of Lk. These devices have the geometrical characteristics mentioned in Table I below. TABLE I Device A Device B Dimensions with without in cm blades blades Dc 5.1 5.1 Sun 2.5 2.5 Dimensions with without in cm blades blades Of 2.5 2.5 Li 5.1 5.1 The 1.2 1.2 Lk 2.5 2.5 Lp 2.5 --- hpe 5.1 --- hpi 5.1 --- hk 1.3 1.3 ep 1.2 --- Np * (number) 8 0 p ' 25 25 * Np represents the number of blades. The other symbols are defined in the description.

Les flux des phases introduites sont caractérisés à l'aide des notations suivantes :
température d'entrée : T
capacité calorifique : Cp
conductivité thermique : k
débit massique : F
débit volumique : Q
masse volumique : R
vitesse superficielle : V
diamètre de sauter des particules : ds
La phase L1 est de l'air ayant les caractéristiques suivantes :
TL1=700°C, CpL1=1000J/Kg°C, kL1=0,034W/m°C, FL1=3,75x10⁻³Kg/s, QL1=10,7x10⁻ ³m³/s, VL1=V1=33m/s.
The flows of the phases introduced are characterized using the following notations:
inlet temperature: T
heat capacity: Cp
thermal conductivity: k
mass flow: F
volume flow: Q
density: R
surface speed: V
diameter of jumping particles: ds
Phase L1 is air having the following characteristics:
TL1 = 700 ° C, CpL1 = 1000J / Kg ° C, kL1 = 0.034W / m ° C, FL1 = 3.75x10⁻³Kg / s, QL1 = 10.7x10⁻ ³m³ / s, VL1 = V1 = 33m / s .

La phase L2 est de l'air ayant les caractéristiques suivantes : TL2=150°C, CpL2=1000J/Kg°C, kL2=0,063W/m°C, FL2=1,67x10⁻³Kg/s, QL2=2x10⁻³m³/s, VL2=V2=4,1m/s.Phase L2 is air having the following characteristics: TL2 = 150 ° C, CpL2 = 1000J / Kg ° C, kL2 = 0.063W / m ° C, FL2 = 1.67x10⁻³Kg / s, QL2 = 2x10⁻ ³m³ / s, VL2 = V2 = 4.1m / s.

Il n'y a pas d'injection de phase L3.There is no L3 phase injection.

La phase D1 est du sable ayant les caractéristiques suivantes :
TD1=700°C, CpD1=800J/Kg°C, kD1=0,5W/m°C, FD1=18,75x10⁻³Kg/s, RD1=2500Kg/m³, dsD1=29x10⁻⁶m.
Phase D1 is sand having the following characteristics:
TD1 = 700 ° C, CpD1 = 800J / Kg ° C, kD1 = 0.5W / m ° C, FD1 = 18.75x10⁻³Kg / s, RD1 = 2500Kg / m³, dsD1 = 29x10⁻⁶m.

La phase D2 est du sable ayant les caractéristiques suivantes : TD2=150°C, CpD2=800J/Kg°C, kD2=0,5W/m°C, FD2=17,05x10⁻³Kg/s, RD2=2500Kg/m³, dsD2=65x10⁻⁶m.Phase D2 is sand with the following characteristics: TD2 = 150 ° C, CpD2 = 800J / Kg ° C, kD2 = 0.5W / m ° C, FD2 = 17.05x10⁻³Kg / s, RD2 = 2500Kg / m³ , dsD2 = 65x10⁻⁶m.

Les performances des appareils, mentionnées dans le tableau II, sont exprimées comme suit : ED1= efficacité de séparation de D1 dans l'appareil (rapport du débit massique de D1 mesuré dans la sortie externe (10) au débit massique de D1 introduit dans l'entrée tangentielle (1)) avec un soutirage de la phase L1 dans la sortie externe (10) de 2 % en poids par rapport au poids de L1 introduit dans l'entrée tangentielle (1).The performances of the devices, mentioned in table II, are expressed as follows: ED1 = separation efficiency of D1 in the device (ratio of the mass flow of D1 measured in the external output (10) to the mass flow of D1 introduced into l 'tangential input (1)) with a withdrawal of phase L1 in the external output (10) of 2% by weight relative to the weight of L1 introduced into the tangential input (1).

Pvortex=distance entre la fin du vortex de L1 dans la sortie externe (5) et le sommet de la deuxième entrée interne (4).Pvortex = distance between the end of the vortex of L1 in the external output (5) and the top of the second internal input (4).

Ttrempe=température du mélange gazeux formé par L1 et L2 mesurée à une distance de 1 m du sommet de la deuxième entrée interne (4). TABLEAU II Performances Appareil A Appareil B ED1 98,4 % 98,1 % Pvortex 4cm 23cm Ttrempe 295°C 310°C Tempering = temperature of the gas mixture formed by L1 and L2 measured at a distance of 1 m from the top of the second internal inlet (4). TABLE II Performances Device A Device B ED1 98.4% 98.1% Pvortex 4cm 23cm Tempering 295 ° C 310 ° C

Claims (7)

  1. A co-current cyclone mixer-separator, of elongated form extending along at least one axis, of substantially circular cross-section, comprising:
    - at least one outer enclosure, of substantially circular cross-section of diameter (Dc) and of length (L), comprising at a first end introduction means for introducing through an inlet referred to as an outer inlet (1) at least one light phase L1, said means being adapted to impart a helical movement at least to the light phase L1 in the direction of flow in said outer enclosure, and also comprising at the opposite end to said first end an outlet referred to as the outer outlet (5).
    - at least one first inner enclosure, of substantially circular cross-section, of length (Li) which is less than (L), disposed coaxially in relation to said outer enclosure, comprising at a first end, disposed in proximity to said first end of the outer enclosure, introduction means for introducing at least one dense phase D2 or at least one mixture M2 containing at least one dense phase D2 and at least one light phase L2 through an inlet referred to as the first inner inlet (3), said means making it possible to introduce said dense phase D2 or said mixture M2 in such a way that they flow in the same direction as the flow of the light phase L1 as far as the second end, opposite said first end, permitting said dense phase D2 or said mixture M2 to issue through a first outlet referred to as the first inner outlet (3'), of diameter (Di) which is less than (Dc), from said first inner enclosure,
    - at least one second inner enclosure, of substantially circular cross-section, disposed coaxially in relation to said first inner enclosure, permitting the intake of at least a part of the light phase through an inlet referred to as the second inner inlet (4), said second enclosure comprising at the end opposite its first end recovery means for recovering said light phase through an outlet referred to as the second inner outlet (4');
    said cyclone mixer-separator being characterised in that:
    - said outer enclosure comprises said outer inlet (1) for introducing a first mixture M1 containing at least one dense phase D1, the mixture M1 being introduced in a direction which is substantially perpendicular to the axis of the mixer-separator or substantially parallel to the axis of the mixer-separator, and that said outer enclosure comprises recovery means (7) for recovering at least part of said dense phase D1 through said outer outlet (5),
    - said second inner enclosure comprises a first end disposed at a distance (Le) from said second end of the first inner enclosure, said distance (Le) being from approximately 0.1 x (Dc) to approximately 10 x (Dc), permitting the intake through said second inner inlet (4) of diameter (De) which is greater than or equal to (Dl) and less than (Dc) of at least part of the light phase L1 and at least part of the dense phase D2 or of the mixture M2, and said second inner outlet (4') for recovering the mixture formed in said second enclosure which comprises at least part of the light phase L1 and at least part of the dense phase D2 or mixture M2, the mixer-separator comprising at least one means for drawing off, through the outer outlet, at least part of the light phase L1 mixed with the dense phase D1, said mixer-separator comprising downstream, in the direction of flow of the various phases, of the second inner inlet, means (6) limiting progress of the light phase L1 in the space disposed between the outer wall of the second outer enclosure and the inner wall of the outer enclosure, said means limiting progress of the light phase L1 being substantially flat blades whose plane comprises the axis of the mixer-separator.
  2. A mixer-separator according to Claim 1, comprising from 2 to about 50 blades fixed to the outer wall of the second inner enclosure in such a way that the distance between the second inner inlet (4) and the point of said blades closest to this second inner inlet is from approximately 0 to approximately 5 x (Dc).
  3. A mixer-separator according to Claim 1 or Claim 2, wherein each of the blades is of a dimension (ep), measured in the direction perpendicular to the axis of the mixer-separator, of approximately 0.01 to approximately 1 times the value [ ((Dc)-(D'e))/2
    Figure imgb0005
    ] corresponding to the distance between the outer wall of the second inner enclosure of outer diameter (D'e) and the inner wall of the outer enclosure of inner diameter (Dc), a dimension (hpl), measured on the edge of the blade which is closest to the axis of the inner enclosures in the direction parallel to that axis, and a dimension (hpe), measured in the direction parallel to the axis of the mixer-separator on the edge of the blade which is closest to the inner wall of the outer chamber, said dimensions (hpi) and (hpe) being from approximately 0.1 x (Dc) to approximately 10 x (Dc).
  4. A mixer-separator according to Claim 3, wherein each of the blades has a dimension (hpi) which is greater than or equal to (hpe).
  5. A mixer-separator according to one of Claims 1 to 4, comprising means (8) for introducing a light phase L3 between the second inner inlet (4) and the outer outlet (5), said means preferably being disposed in proximity to said outer outlet.
  6. Use of the mixer-separator according to one of Claims 1 to 5 for rapid heat exchange between a light phase L1 and a dense phase D2 or a mixture M2 containing at least one dense phase D2 and at least one light phase L2.
  7. Use of the mixer-separator according to one of Claims 1 to 5 for the rapid replacement of a dense phase D1 contained in a mixture M1, further comprising a light phase L1, by a dense phase D2 which is different from D1.
EP91401389A 1990-06-05 1991-05-29 Concurrent cyclone mixer-separator and its applications Expired - Lifetime EP0461004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9006938A FR2662619B1 (en) 1990-06-05 1990-06-05 CO-CURRENT CYCLONIC MIXER-SEPARATOR AND ITS APPLICATIONS.
FR9006938 1990-06-05

Publications (2)

Publication Number Publication Date
EP0461004A1 EP0461004A1 (en) 1991-12-11
EP0461004B1 true EP0461004B1 (en) 1995-08-30

Family

ID=9397261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401389A Expired - Lifetime EP0461004B1 (en) 1990-06-05 1991-05-29 Concurrent cyclone mixer-separator and its applications

Country Status (7)

Country Link
US (1) US5186836A (en)
EP (1) EP0461004B1 (en)
JP (1) JP3362259B2 (en)
CA (1) CA2043880C (en)
DE (1) DE69112498T2 (en)
ES (1) ES2079596T3 (en)
FR (1) FR2662619B1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672590B1 (en) * 1991-02-07 1993-04-23 Inst Francais Du Petrole PROCESS AND DEVICE FOR CATALYTIC CONVERSION INTO A DRIVEN BED OF A LOAD CONTAINING AN OXYGEN COMPOUND.
FR2678280B1 (en) * 1991-06-27 1993-10-15 Institut Francais Petrole METHOD AND DEVICE FOR CATALYTIC CRACKING OF A HYDROCARBON LOAD USING A CO-CURRENT CYCLONIC SEPARATOR.
FR2684566B1 (en) * 1991-12-05 1994-02-25 Institut Francais Petrole CO-CURRENT CYCLONIC EXTRACTOR SEPARATOR.
EP0887096A1 (en) * 1997-06-27 1998-12-30 Merpro Products Limited Apparatus and method for separating a mixture of a less dense liquid and a more dense liquid
GB9817071D0 (en) 1997-11-04 1998-10-07 Bhr Group Ltd Cyclone separator
GB9817073D0 (en) * 1997-11-04 1998-10-07 Bhr Group Ltd Phase separator
US6238579B1 (en) * 1998-05-12 2001-05-29 Mba Polymers, Inc. Device for separating solid particles in a fluid stream
FR2798864B1 (en) * 1999-09-24 2001-12-14 Inst Francais Du Petrole GAS / LIQUID SEPARATION SYSTEM FOR A HYDROCARBON CONVERSION PROCESS
AU724082B3 (en) * 2000-01-18 2000-09-14 Westdeen Holdings Pty Ltd Soil sample collection device
US6331196B1 (en) * 2000-06-01 2001-12-18 Negev Tornado Ltd. Low turbulence co-current cyclone separator
US6379567B1 (en) * 2000-08-18 2002-04-30 Thomas Randall Crites Circular hydro-petroleum separation filter
US20040134352A1 (en) * 2003-01-13 2004-07-15 David Stacey Silica trap for phosphosilicate glass deposition tool
US7238281B2 (en) 2005-07-18 2007-07-03 Ohio University Storm water runoff treatment system
US7465391B2 (en) * 2005-09-09 2008-12-16 Cds Technologies, Inc. Apparatus for separating solids from flowing liquids
JP4852366B2 (en) * 2006-07-12 2012-01-11 財団法人 国際石油交流センター Gas-solid separator design method
JP4852365B2 (en) * 2006-07-12 2012-01-11 財団法人 国際石油交流センター Gas-solid separator
JP4854408B2 (en) * 2006-07-12 2012-01-18 財団法人 国際石油交流センター Gas-solid separator design method
GB2440726B (en) * 2006-08-12 2011-05-18 Caltec Ltd Cyclonic separator and a method of separating fluids
US7637699B2 (en) * 2007-07-05 2009-12-29 Babcock & Wilcox Power Generation Group, Inc. Steam/water conical cyclone separator
FR2937876B1 (en) * 2008-10-30 2011-03-25 Jean Xavier Morin FAST FLUIDIZED FLUIDIZED BED DEVICE WITH SATURATED FLOW OF CIRCULATING SOLIDS
JP5224382B2 (en) * 2009-03-30 2013-07-03 株式会社イズミフードマシナリ Dissolution pump with separation device
US8157895B2 (en) * 2010-05-04 2012-04-17 Kellogg Brown & Root Llc System for reducing head space in a pressure cyclone
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
DE102010047760A1 (en) * 2010-10-08 2012-04-12 Hydac Process Technology Gmbh A separator
US8899557B2 (en) 2011-03-16 2014-12-02 Exxonmobil Upstream Research Company In-line device for gas-liquid contacting, and gas processing facility employing co-current contactors
EP3466520B1 (en) 2013-01-25 2021-12-29 ExxonMobil Upstream Research Company Co-current contactor for contacting a gas stream with a liquid stream
US8999028B2 (en) * 2013-03-15 2015-04-07 Macronix International Co., Ltd. Apparatus and method for collecting powder generated during film deposition process
AR096132A1 (en) 2013-05-09 2015-12-09 Exxonmobil Upstream Res Co SEPARATE CARBON DIOXIDE AND HYDROGEN SULFIDE FROM A NATURAL GAS FLOW WITH CO-CURRENT SYSTEMS IN CONTACT
AR096078A1 (en) 2013-05-09 2015-12-02 Exxonmobil Upstream Res Co SEPARATION OF IMPURITIES OF A GAS CURRENT USING A CONTACT SYSTEM IN VERTICALLY ORIENTED EQUICORRIENT
CN103831185B (en) * 2014-03-20 2016-03-02 浙江明泉工业涂装有限公司 For the gas-solid mixer of coating equipment
CN104128267A (en) * 2014-07-15 2014-11-05 山东博润工业技术股份有限公司 High efficiency cyclone separator having lower exhaust structure
RU2580734C1 (en) * 2014-12-30 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Hydrocyclone oil trap with controlled operation
EP3242737A2 (en) 2015-01-09 2017-11-15 Exxonmobil Upstream Research Company Separating impurities from a fluid steam using multiple co-current contactors
CN104545695B (en) * 2015-01-28 2016-08-31 莱克电气股份有限公司 A kind of two grades of dust and gas isolating constructions and comprise the dirt cup of this structure
WO2016133647A1 (en) 2015-02-17 2016-08-25 Exxonmobil Upstream Research Company Inner surface featurees for co-current contactors
EP3268119A1 (en) 2015-03-13 2018-01-17 ExxonMobil Upstream Research Company Coalescer for co-current contactors
MX2019014327A (en) 2017-06-15 2020-02-05 Exxonmobil Upstream Res Co Fractionation system using compact co-current contacting systems.
US11260342B2 (en) 2017-06-15 2022-03-01 Exxonmobil Upstream Research Company Fractionation system using bundled compact co-current contacting systems
EP3641914A1 (en) 2017-06-20 2020-04-29 ExxonMobil Upstream Research Company Compact contacting systems and methods for scavenging sulfur-containing compounds
WO2019040306A1 (en) 2017-08-21 2019-02-28 Exxonmobil Upstream Research Company Integration of cold solvent and acid gas removal
DE102021127757A1 (en) * 2021-10-26 2023-04-27 Bitzer Kühlmaschinenbau Gmbh Separating device, compressor with a separating device and refrigeration system with a separating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957755A (en) * 1940-10-04 1950-02-25
US2650675A (en) * 1950-03-09 1953-09-01 Bituminous Coal Research Method and apparatus for the separation of particulate material from entraining gaseos fluids
GB1310792A (en) * 1970-04-24 1973-03-21 Pall Corp Vortex separator
US4162906A (en) * 1977-05-05 1979-07-31 Donaldson Company, Inc. Side outlet tube
US4206174A (en) * 1978-02-01 1980-06-03 Mobil Oil Corporation Means for separating suspensions of gasiform material and fluidizable particles
FR2548050A1 (en) * 1983-07-01 1985-01-04 Induspirit Sa Countercurrent cyclone exchanger
US4746340A (en) * 1986-10-28 1988-05-24 Donaldson Company, Inc. Air cleaner apparatus
US4790666A (en) * 1987-02-05 1988-12-13 Ecolab Inc. Low-shear, cyclonic mixing apparatus and method of using
US4865633A (en) * 1987-07-17 1989-09-12 Crown Iron Works Company Separator

Also Published As

Publication number Publication date
DE69112498D1 (en) 1995-10-05
US5186836A (en) 1993-02-16
CA2043880A1 (en) 1991-12-06
FR2662619B1 (en) 1993-02-05
ES2079596T3 (en) 1996-01-16
DE69112498T2 (en) 1996-03-14
CA2043880C (en) 2001-07-24
JP3362259B2 (en) 2003-01-07
JPH04227868A (en) 1992-08-17
FR2662619A1 (en) 1991-12-06
EP0461004A1 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
EP0461004B1 (en) Concurrent cyclone mixer-separator and its applications
CA2043947C (en) Dual-flow cyclon separator and its uses
CA2690235C (en) Heat exchanger and associated methods
EP0033285B1 (en) Device for mixing carbonated liquids and solid particles with turbulance
EP0852963B1 (en) Separator for the direct centrifuge of the particles of a gaseous mixture and its use in a thermal cracker or FCC unit
EP1219336B1 (en) Method and apparatus for removing harmful volatile elements, especially sulfates and/or chlorides, from a flue gas
EP2605854A1 (en) Method for separating gas in a fluidized gas/solid mixture
LU85914A1 (en) PROCESS AND APPARATUS FOR SEPARATING SOLID PARTICLES AND GASEOUS MATERIALS
AU7024598A (en) Hydrocyclone for separating immiscible fluids and removing suspended solids
EP1800728B1 (en) New system for gas-solid separation and for stripping for fluidised bed catalytic cracking units
EP0763384B1 (en) Centrifugal separator, in particular for a circulating fluidized bed boiler
FR2666031A1 (en) Process for the centrifugal separation of the phases of a mixture, and centrifugal separator having longitudinal blades implementing this process
EP3797092A1 (en) Method for treating a fluid by upflow through a bed of adsorbent media and corresponding installation
CA1217938A (en) Hot gas exchanger for thermal treatment of powdery substances
FR2672590A1 (en) PROCESS AND DEVICE FOR CATALYTIC CONVERSION INTO A DRIVEN BED OF A LOAD CONTAINING AN OXYGEN COMPOUND.
WO2023144491A1 (en) Method and system for capturing carbon dioxide
FR2748402A1 (en) INCINERATION FUMES TREATMENT PLANT WITH INTERNAL RECYCLING
FR2740054A1 (en) Device for distributing, mixing, injecting and/or extracting fluids
SU1611366A1 (en) Sublimation-desublimation still
FR2912931A1 (en) Heavy molecules and/or particles e.g. carbon dioxide, separating device, for use in water filter, has collection channels collecting flow containing heavy and light particles, where pressure at inlet of channels is adjusted to be equal
RU2091173C1 (en) Cyclone-separator
BE613964A (en)
FR2548050A1 (en) Countercurrent cyclone exchanger
FR2678280A1 (en) Process and device for the catalytic cracking of a hydrocarbon feedstock employing a concurrent cyclone separator
FR2706136A1 (en) Device for converting a feedstock including a countercurrent cyclone extractor separator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19920508

17Q First examination report despatched

Effective date: 19930820

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69112498

Country of ref document: DE

Date of ref document: 19951005

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079596

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030509

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030610

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040531