EP0461003B1 - Gleichstrom-Zyklonabtrennvorrichtung und ihre Anwendungen - Google Patents

Gleichstrom-Zyklonabtrennvorrichtung und ihre Anwendungen Download PDF

Info

Publication number
EP0461003B1
EP0461003B1 EP91401388A EP91401388A EP0461003B1 EP 0461003 B1 EP0461003 B1 EP 0461003B1 EP 91401388 A EP91401388 A EP 91401388A EP 91401388 A EP91401388 A EP 91401388A EP 0461003 B1 EP0461003 B1 EP 0461003B1
Authority
EP
European Patent Office
Prior art keywords
phase
enclosure
inlet
cyclone separator
light phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91401388A
Other languages
English (en)
French (fr)
Other versions
EP0461003A1 (de
Inventor
Thierry Gauthier
Maurice Bergougnou
Cédric Briens
Pierre Galtier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0461003A1 publication Critical patent/EP0461003A1/de
Application granted granted Critical
Publication of EP0461003B1 publication Critical patent/EP0461003B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber

Definitions

  • the present invention relates to a cyclonic co-current separator.
  • This chemical engineering equipment is an apparatus allowing the separation of a dense phase D1 contained in a mixture M1 containing said dense phase D1 and a light phase L1, as known from document US-A-3,955,948 and which shows the characteristics of the preamble of claim 1.
  • the present invention also relates to the use of this improved cyclonic separator for the rapid separation of a dense phase D1 and a diluted phase L1 from their mixture M1.
  • cyclone Several types of cyclone are known according to the prior art, the performance of which is usually evaluated on the basis of the collection efficiency of the dense phase D1 and the pressure drop of the light phase L1 in the cyclonic separator (hereinafter referred to as after the appliance).
  • devices of this type are designed with the aim of obtaining the greatest possible efficiency for collecting the dense phase D1 while minimizing the pressure drop of the light phase L1 as much as possible.
  • a first type of cyclone is the reverse cyclone in which the mixture M1, containing the phases D1 and L1, enters tangentially into the enclosure of the cyclone, in the immediate vicinity of its summit, which induces, at least for the light phase L1 , a vortex and the centrifugal force which results from it makes it possible to migrate the dense phase D1 to the wall of the enclosure where it progresses in a spiral (in a helical movement) towards the bottom of the separator where it is usually collected or evacuated by a collector cone at which the vortex of the light phase turns over.
  • the light phase L1 having changed direction leaves against the current of the dense phase D1 towards the end of the separator where the inlet of the mixture M1 is placed.
  • a second type of cyclone is the cocurrent cyclone in which the mixture M1, containing the phases D1 and L1, penetrates axially or tangentially. In the case of a axial entry, the vortex is usually initiated using propeller-shaped blades.
  • the outlet of the light phase L1 and the outlet of the dense phase D1 are located near the same end of the cyclone which is the end opposite to that by which the mixture M1 is introduced into the apparatus. There will therefore be an outlet called internal or internal outlet through which the light phase L1 is discharged and an outlet called external or external outlet through which the dense phase D1 is discharged.
  • the length (Lc) of the device is in fact imposed by the natural length of the vortex (Lv) as is for example described by RM Alexander in Fundamentals of cyclone design and operation, Proc. Aus. IMM, 1949, pages 203-228, or by S. Bryant et al, Hydrocarbon processing, 1983, pages 87-90.
  • This length (Lv) is usually of the order of 3 to 4 times the diameter (Dc) of the device.
  • the vortex will rest on the cone of exit from the dense phase D1 causing the light phase to be re-entrained by the dense phase circulating in a spiral towards its exit. If the speed of entry of the mixture M1 is increased, the erosion at the tangential entry is simultaneously increased, which is not desirable industrially.
  • the dense and light phases circulate in the same direction.
  • the dense phase is evacuated through an external conduit and the light phase through an internal conduit, the inlet of which, called the internal inlet, is located at a distance (Ls) which can be much less than the length (Lc) of the reverse cyclone.
  • This internal inlet may be very close to the inlet of the mixture M1, but the closer it is the more the light phase will tend to circulate in the external outlet, around the internal duct, before coming out under the influence of the helical movement of the phases making up the mixture.
  • the flow of the phases in the entry is altered by interference and turbulence which projects part of the dense phase into the central part of the device, which causes a decrease all the more noticeable, in the collection efficiency of the dense phase D1, as the internal entry of the light phase L1 is close to the tangential entry of the mixture M1.
  • the present invention relates to a cyclonic co-current separator making it possible to very quickly separate a dense phase D1 and a light phase L1 from their mixture M1, with very good collection efficiency for the dense phase D1 and a distribution of the residence times of the light phase L1 in the apparatus narrower than in the cyclones of the prior art.
  • the volume useful for separation may be, in the apparatus of the invention, lower than in the cyclones of the prior art, and therefore the separation at constant light phase flow rate may be faster.
  • FIGS. 1A, 1B, 2, 3, 4 and 5 on which similar bodies are designated by the same reference numbers and letters.
  • Figure 1A is a perspective view of an apparatus according to the invention.
  • FIG. 1B is a perspective view of an apparatus according to the invention which differs from that shown in FIG. 1A only by the means for recovering the dense phase D1 and the light phase L1.
  • These means allow in the case of the device shown diagrammatically in FIG. 1A recovery by a lateral duct of the dense phase D1 and a recovery by an axial duct of the light phase L1 and in that shown diagrammatically in FIG. 1B by an axial duct of the dense phase D1 and recovery by a lateral duct of the light phase L1.
  • Figure 2 is a sectional view of an apparatus according to the invention practically identical to that shown in Figure 1A but comprising means (6), limiting the progression of the light phase L1 outside the inner enclosure , the dimension of which in the direction perpendicular to the axis of the external enclosure is less than the dimension of the external outlet (5).
  • the devices according to the invention shown diagrammatically in FIGS. 1A and 2, of elongated, substantially regular shapes, comprise an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially vertical, of diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1.
  • the mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure.
  • This tangential entry preferably has a rectangular or square section whose side parallel to the axis of the outer enclosure has a dimension (Lk) usually about 0.25 to about 1 times the diameter (Dc), and the side perpendicular to the axis of the outer enclosure has a dimension (hk) usually about 0.05 to about 0.5 times the diameter (Dc).
  • These devices comprise an inner enclosure of elongated shape along an axis, of substantially vertical and circular section, arranged coaxially with respect to said outer enclosure, comprising at a distance (Ls), less than (L), from the extreme level of the external input (1), an input (3) called the internal input, of diameter (Di) less than (Dc).
  • the diameter of this internal inlet (3) is usually about 0.2 to about 0.9 times the diameter (Dc), the more often from about 0.4 to about 0.8 times the diameter (Dc) and preferably from about 0.4 to about 0.6 times the diameter (Dc).
  • This distance (Ls) is usually about 0.2 to about 9.5 times the diameter (Dc) and most often about 0.5 to about 2 times the diameter (Dc).
  • a relatively short distance of between 0.5 and 2 times the diameter (Dc) usually allows very rapid separation while retaining good separation efficiency.
  • the devices also comprise downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1 in the space located between the wall internal of the external enclosure and the external wall of the internal enclosure or external outlet (5).
  • These means (6) are usually positioned inside the outer enclosure and the outside of the inner enclosure (between the outer wall of the inner enclosure and the inner wall of the outer enclosure), between the level of the internal input (3) and the means (7) for recovering the dense phase D1.
  • These means (6) are preferably substantially planar blades, the plane of which passes through a substantially vertical axis and are usually fixed on at least one wall of one of the interior or exterior enclosures.
  • These means are preferably fixed to the wall of the internal enclosure so that the distance (Lp) between the internal inlet and the point of said blades closest to this internal inlet is from about 0 to about 5 times the diameter (Dc) and preferably from about 0.1 to about 1 time this diameter (Dc).
  • the number of blades is variable according to the distribution of the residence time which is accepted for phase L1 and also according to the diameter (Dc) of the external enclosure.
  • the number of blades is usually at least 2 and for example from 2 to 50 and most often from 3 to 50.
  • the blades allow a limitation of the continuation of the vortex over the entire section of the cyclone, in the external outlet (5 ), around the duct forming the inner enclosure and connecting the internal input (3) to the internal output (4) of the light phase, and therefore a reduction and control of the distribution of the residence times of this phase in the device.
  • the residence time of the light phase L1 is limited. and the distribution of these residence times and consequently the degradation of the products contained in the light phase circulating around the internal input is thus limited.
  • Each of these blades usually has a dimension or width (ep) measured in the direction perpendicular to the axis of the inner enclosure (that is to say horizontally, from its edge closest to the axis of the outer enclosure) and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the inner enclosure of about 0.01 to 1 times the value [ ((Dc) - (D'e)) / 2 ] of the half difference of these diameters (Dc) and (D'e), preferably from approximately 0.5 to approximately 1 time this value and more often from approximately 0.9 to approximately 1 time this value.
  • ep dimension or width measured in the direction perpendicular to the axis of the inner enclosure (that is to say horizontally, from its edge closest to the axis of the outer enclosure) and defined with respect to the inner diameter (Dc) of the outer enclosure and the outer diameter (D'e) of the inner enclosure of about 0.01 to 1 times the value [ ((Dc) - (D'e)
  • this dimension (ep) may be from approximately 0.01 to approximately 1 time the value (Dc) / 2 of the half diameter of the external enclosure.
  • These blades each have on their edge, the closest to the axis of the inner enclosure, in the direction parallel to the substantially vertical axis through which the plane of the blade passes, an internal dimension or height (hpi) and a external dimension or height (hpe) measured in the direction parallel to the substantially vertical axis through which the plane of the blade passes, on the edge of said blade closest to the inner wall of the outer enclosure.
  • These dimensions (hpi) and (hpe) are usually greater than 0.1 times the diameter (Dc) and for example approximately 0.1 times to approximately 10 times the diameter (Dc) and most often approximately 1 to about 4 times this diameter (Dc).
  • these blades each have a dimension (hpi) greater than or equal to their dimension (hpe).
  • the apparatus comprises, downstream, in the direction of flow of the various phases, from the internal inlet (3), at least one means (8) allowing possible introduction a light phase L2 at at least one point located between the internal inlet (3) of the interior enclosure and the end of the conduit (9) for recovering the dense phase D1; this or these points are preferably at a distance (Lz) from the inlet (3) of the interior enclosure.
  • Said distance (Lz) preferably has a value at least equal to the sum of the values of (Lp) and (hpi) and at most equal to the distance between the inlet (3) of the inner enclosure and the outlet means (7) of the dense phase D1.
  • This light phase L2 can be introduced for example in the case where it is desirable to carry out a stripping of the dense phase D1.
  • This light phase 12 is preferably introduced at several points which are usually distributed symmetrically, in a plane at the level of which the introduction is carried out, around the outer enclosure.
  • the point of introduction of this light phase L2 is usually located at a distance at least equal to 0.1 times the diameter (Dc) of the point of said means (6) closest to the means (7) for leaving the dense phase D1.
  • the point of introduction of this light phase L2 is preferably located near the conduit (9) for recovering the dense phase D1 and most often near the outlet means (7) of the dense phase D1.
  • the dimension (p ') between the level of the internal input (3) and the means (7) for outputting the dense phase D1 is determined from the other dimensions of the various means forming the device and the length (L ) of the external enclosure measured between the extreme level of the tangential input (1) and the means (7) for outputting the dense phase D1.
  • This dimension (L) is usually about 1 to about 35 times the diameter (Dc) of the outer enclosure and most often about 1 to 25 times this diameter (Dc).
  • the means (6) limit the progression of the vortex of the light phase L1 in the external output (5).
  • the position of these means (6) and their number therefore influence the performance of the separation of the phases D1 and L1 contained in the mixture M1 (pressure drop and efficiency of the collection of the phases) and also on the penetration of the vortex of the light phase L1 in the outlet (5).
  • These parameters will therefore be carefully chosen by those skilled in the art, in particular as a function of the desired results and of the tolerated pressure drop.
  • D1 is a solid the number of blades, their shape and their position will be chosen with care taking into account their influence on the flow of the solid in connection with the desired limitation of the progression of the vortex in the external output (5 ).
  • FIG. 4 is a sectional view of an apparatus according to the invention of elongated, substantially regular shape, comprising an external enclosure, having an axis (AA ′) which is an axis of symmetry, substantially horizontal in diameter (Dc) and of length (L) between the extreme level of the tangential input (1), called the external input, and the means (7) for outputting the dense phase D1.
  • the mixture M1 containing at least one dense phase D1 and at least one light phase L1 is introduced through the tangential inlet (1) in a direction substantially perpendicular to the axis of the outer enclosure.
  • This device also comprises downstream, in the direction of circulation of the dense phase D1, from the level of the internal input (3), means (6) limiting the progression of the light phase L1, outside of the inner enclosure, in the space between the inner wall of the outer enclosure and the outer wall of the inner enclosure or external outlet (5).
  • These means (6) are usually positioned, downstream, in the direction of circulation of the dense phase D1, of the means for recovering (7) the dense phase D1, in the conduit (9), for recovering the dense phase D1, of diameter (Ds).
  • These means (6) are usually substantially planar blades, the plane of which passes through a substantially vertical axis.
  • the dimension (ep) of each of these blades is usually about 0.01 to about 1 times the diameter (Ds) of the conduit (9).
  • the blades are usually positioned so that the inner edge, that is to say the edge of the blade closest to the axis of the duct (9), of each of them is coincident with the axis of said conduit (9).
  • These blades are positioned at a distance (Lp) from the means (7) of about 0 to about 5x (Dc).
  • the means (8) for possibly introducing a light phase L2 are usually positioned downstream, in the direction of circulation of the dense phase D1, from the level of the internal inlet (3), and preferably between the means (7 ) recovering the dense phase D1 and the end of the conduit (9) recovering the dense phase D1.
  • the introduction of a light phase L2 is provided at 2 different levels by a first means (8) at the level of the means (7) and by a second means (8) in below the means (6).
  • the means (8) are positioned at a distance (Lz) from the means for recovering the dense phase D1, measured from said means (7).
  • This device shown diagrammatically in FIG. 4 comprises a conduit (9), for recovering the dense phase D1, of diameter (Ds) usually equal to approximately 0.1 to approximately 1 times the diameter (Dc) and most often of approximately 0.2 to about 0.7 times this diameter.
  • FIGS. 1A, 1B, 2, 3 and 4 it is possible, and usually desirable, in the case of high flow rates of the various phases at the level of the inputs of the device, to use means to promote the formation of the vortex.
  • Such means (10) are for example shown in FIG. 5 which represents, according to a preferred embodiment of the invention, the part close to the tangential inlet (1) of the mixture M1.
  • the device comprises a roof (10), for example helical, descending from the extreme level of the tangential entry (1).
  • These means (10) can also consist of an internal or external volute.
  • the pitch of the propeller is approximately 0.01 to approximately 3 times the value of (Lk) and most often approximately 0.5 to approximately 1 , 5 times this value.
  • the apparatus also comprises, between the external input and the internal input, means for stabilizing the helical flow of at least the light phase L1 and limiting the useful volume at separation. These means are preferably centered on the axis of the interior enclosure.
  • These means can be a cone whose tip is directed towards the internal inlet and whose base is located at the extreme level of the tangential inlet (1). They can also be formed, as shown diagrammatically in FIG. 5, by a cylinder (11) extended by a cone (12).
  • the diameter of the base of the cone is identical to that of the cylinder and is strictly less than the diameter (Dc). This diameter is usually about 0.01 to about 1.5 times the diameter (Di) of the internal inlet (3) and preferably about 0.75 to about 1.25 times the diameter (Di).
  • the axial size or dimension between the extreme level of these means closest to the tangential entry and the opposite end of said means is usually about 0.01 to about 3 times the value (Ls) of the distance between the extreme level of the tangential input (1) and the level of the internal input (3) and preferably from approximately 0.75 to approximately 1.25 times this value (Ls).
  • the output means (7) of the dense phase D1 usually make it possible to collect and channel this dense phase D1 to the external output (9). These means are most often an inclined bottom or a cone oriented or not on the internal outlet (4).
  • the devices according to the present invention thus allow rapid separation, from a mixture M1, comprising a dense phase and a light phase, of said dense phase and of said light phase. They can advantageously be used in the case where the mixture to be separated is a mixture obtained at the end of a chemical reaction and comprising at least one phase which contributes to this reaction.
  • the phases are, as regards the light phases of the liquid, gaseous phases or of phases containing both liquid and gas, and as regards the dense phase a solid phase (in the form of particles ), liquid or a phase containing both solid and liquid.
  • the dense phase is a solid phase and the light phases of gases and the second in which there is a liquid phase which can be the dense phase or the light phase.
  • the diameter (Dc) of the device measured at the tangential entry (1) on the side of its end closest to the internal entry (3) is usually about 0.01 to about 10 m (meters ) and most often about 0.05 to about 2 m. It is usually preferable to keep a constant diameter over the entire length of the device between the end of the tangential entry closest to the internal entry (3) and said internal entry (3) or even from the level from the injection of the mixture M1 to the level of the means (7) for outputting the dense phase D1; however, it would not be departing from the scope of the invention in the case of an apparatus comprising enlargements or narrowing of sections between said levels.
  • phase L1 contained in a mixture M1 also comprising at least one phase D1 it is preferable to have a high surface velocity of entry of this phase L1 and for example of approximately 5 to approximately 150 mxs ⁇ 1 (meter per second) and preferably from about 10 to about 75 mxs ⁇ 1.
  • the weight ratio of the flow from phase D1 to the flow from phase L1 is usually from about 0.0001: 1 to about 50: 1 and most often from about 0.1: 1 to about 15: 1.
  • the device will comprise at least one means allowing the withdrawal, by the external output (5), of at least part of the light phase L1 in admixture with the dense phase D1.
  • US-A-4,746,340 which relates to an air purifier and not the separation of two phases (light and heavy) of a solid / gas mixture obtained in particular after a chemical reaction.
  • US-A-3,955,948 which differs from the invention by the use of helical valves instead of flat blades.
  • the following example is given by way of illustration and shows the efficiency of the separation of a light (gas) phase L1 contained in a mixture M1 also containing a dense (solid) phase D1 and also the efficiency of the blades on the penetration of the vortex of the gas phase L1 into the external outlet.
  • FIGS. 1A and 2 Two apparatuses are produced, with vertical axes, in accordance with those shown diagrammatically in FIGS. 1A and 2 comprising a tangential entry with a roof descending on 3/4 of a turn continuously over a height equal to the value of Lk.
  • These devices have the geometrical characteristics mentioned in Table I below. They have a dead volume having the shape of that shown diagrammatically in FIG. 5 and composed of a cylinder extended by a cone, the point of which is directed towards the internal inlet (3).
  • the diameter of the cylinder is equal to 0.5 times the diameter (Dc) of the outer enclosure, its height is 0.5x (Dc) and the cone has a circular base of diameter 0.5x (Dc) and a height of 1x (Dc).
  • ED1 separation efficiency of D1 in the device (ratio of the mass flow of D1 measured in the conduit (9) for recovering the dense phase D1 to the flow mass of D1 introduced into the tangential inlet (1)) with a withdrawal of phase L1 in the conduit (9) for recovery of the dense phase D1 by 2% by weight relative to the weight of L1 introduced into the tangential inlet (1).
  • Pvortex distance between the end of the vortex of L1 in the external output (5) and the top of the internal input (3). This distance is measured using thermal probes allowing highlight the disappearance of the tangential velocity component and therefore of the vortex in the flow of phase L1 in the external output (5). TABLE II Performances Device A Device B ED1 99.9% 99.9% Pvortex 4 cm 18 cm

Landscapes

  • Cyclones (AREA)

Claims (10)

  1. Gleichstrom-Zyklonabscheider, umfassend in Kombination:
    - wenigstens einen äußeren Raum von längs einer Achse länglicher Form mit im wesentlichen kreisförmigem Querschnitt von einem Durchmesser (Dc), der an einem ersten Ende Einrichtungen zur Einführung umfaßt, die gestatten, eine Mischung M1, die wenigstens eine schwere Phase D1 und eine leichte Phase L1 enthält, über einen Einlaß, einen sogenannten äußeren Einlaß (1), einzuführen, wobei die Einrichtungen geeignet sind, wenigstens der leichten Phase L1 eine spiralförmige Bewegung in Strömungsrichtung der Mischung M1 in dem äußeren Raum zu erteilen, der gleichermaßen Einrichtungen zur Trennung der Phasen D1 und L1 sowie Einrichtungen (7) zur Wiedergewinnung an dem Ende, welches dem ersten Ende gegenüberliegt, umfaßt, die gestatten, wenigstens einen Teil der schweren Phase D1 über einen eine seitliche oder axiale Leitung (9) umfassenden Auslaß, einen sogenannten äußeren Auslaß (5), wiederzugewinnen, und zwischen den gegenüberliegenden Enden eine Länge L aufweist,
    - wenigstens einen in bezug auf den äußeren Raum koaxial angeordneten inneren Raum von längs einer Achse länglicher Form mit im wesentlichen kreisförmigem Querschnitt, der in einem zu L kleineren Abstand Ls vom äußeren Niveau des äußeren Einlasses einen Einlaß, einen sogenannten inneren Einlaß (3), von einem zu (Dc) kleineren Durchmesser (Di), in welchen wenigstens ein Teil der leichten Phase L1 eindringt, und Einrichtungen zur Wiedergewinnung an seinem gegenüberliegenden Ende umfaßt, die gestatten, den Teil der leichten Phase L1 über eine Leitung, eine sogenannte innere Leitung, welche entsprechend axial ist, wenn die Leitung des äußeren Auslasses seitlich ist, oder seitlich ist, wenn die Leitung des äußeren Auslasses axial ist, wiederzugewinnen,
    - und abströmseitig in Zirkulationsrichtung der schweren Phase D1 vom Niveau des inneren Einlasses des inneren Raumes Einrichtungen (6), welche die Fortbewegung der leichten Phase L1 zu dem Äußeren des inneren Raumes begrenzen, wobei die Einrichtungen im wesentlichen ebene Schaufeln sind, deren Ebene durch eine im wesentlichen vertikale Achse verläuft,
    - wobei der Abscheider dadurch gekennzeichnet ist, daß er außerdem wenigstens eine Einrichtung (8) zur Einführung einer leichten Phase L2 an wenigstens einer Stelle, die zwischen dem inneren Einlaß des inneren Raumes und dem Ende der Leitung zur Wiedergewinnung der schweren Phase angeordnet ist, umfaßt, und daß der äußere Einlaß, durch welchen die Mischung M1 eintritt, ein tangentialer Einlaß (1) ist, welcher gestattet, M1 in einer zu der Achse des äußeren Raumes im wesentlichen senkrechten Richtung einzuführen.
  2. Zyklonabscheider nach Anspruch 1, bei welchem der äußere Raum im wesentlichen vertikal ist und die Einrichtungen (6), welche die Fortbewegung der leichten Phase L1 zu dem Äußeren des inneren Raumes begrenzen, in dem Inneren des äußeren Raumes und in dem Äußeren des inneren Raumes zwischen dem Niveau des inneren Einlasses (3) und den Einrichtungen (7) zur Wiedergewinnung der schweren Phase D1 angeordnet sind.
  3. Zyklonabscheider nach Anspruch 1, bei welchem der äußere Raum im wesentlichen horizontal ist und die Einrichtungen (6), welche die Fortbewegung der leichten Phase L1 zu dem Äußeren des inneren Raumes begrenzen, abströmseitig in Zirkulationsrichtung der schweren Phase D1 der Einrichtungen (7) zur Wiedergewinnung der schweren Phase D1 in der Leitung (9) des äußeren Auslasses (5) angeordnet sind.
  4. Zyklonabscheider nach einem der Ansprüche 1 bis 3, welcher wenigstens eine Einrichtung umfaßt, welche die Entnahme von wenigstens einem Teil der leichten Phase L1 in Mischung mit der schweren Phase D1 über den äußeren Auslaß gestattet.
  5. Zyklonabscheider nach einem der Ansprüche 1 bis 4, welcher 2 bis 50 Schaufeln umfaßt, die jeweils eine Abmessung (ep), welche ausgehend von ihrer von der Achse des äußeren Raumes nächsten Kante horizontal gemessen ist, von dem ungefähr 0,01 bis etwa 1-fachen des Wertes [ ((Dc)-(D'e))/2
    Figure imgb0005
    ], wenn diese Schaufeln in dem Fall eines vertikalen Zyklonabscheiders zwischen der Außenwand des inneren Raumes mit Außendurchmesser (D'e) und der Innenwand des äußeren Raumes mit Innendurchmesser (Dc) positioniert sind, von dem ungefähr 0,01- bis 1-fachen des Wertes (Dc)/2 in dem Fall eines vertikalen Zyklonabscheiders mit innerem, seitlichen Auslaß (4), wenn sie nach diesem inneren Auslaß angeordnet sind, und von dem ungefähr 0,01- bis 1-fachen des Durchmessers (Ds) der Leitung (9) des äußeren Auslasses (5) in dem Fall eines horizontalen Zyklonabscheiders, eine Abmessung (hpe), welche in der Richtung parallel zu der im wesentlichen vertikalen Achse, durch die sich die Ebene der Schaufel erstreckt, über die von der Innenwand des äußeren Raumes oder von der Innenwand des äußeren Auslasses nächsten Kante der Schaufel gemessen ist, und eine Abmessung (hpi), welche in der Richtung parallel zu der im wesentlichen vertikalen Achse, durch die sich die Ebene der Schaufel erstreckt, über die von der Achse des inneren Raumes oder von der Achse des äußeren Auslasses nächsten Kante der Schaufel gemessen ist, wobei die Abmessungen (hpe) und (hpi) von ungefähr 0,1x(Dc) bis etwa 10x(Dc) sind und die Schaufeln jeweils in einem Abstand in bezug auf den inneren Einlaß in dem Fall eines vertikalen Zyklonabscheiders oder in bezug auf die Einrichtungen zur Trennung in dem Fall eines horizontalen Zyklonabscheiders von ungefähr 0 bis etwa 5x(Dc) angeordnet sind, aufweisen.
  6. Zyklonabscheider nach Anspruch 5, bei welchem die Schaufeln jeweils eine zu (hpe) größere oder gleiche Abmessung (hpi) aufweisen.
  7. Zyklonabscheider nach einem der Ansprüche 1 bis 6, welcher zwischen dem äußeren Einlaß (1) und dem inneren Einlaß (3) Einrichtungen zur Stabilisierung der spiralförmigen Strömung von wenigstens der leichten Phase L1 und zur Begrenzung des für die Trennung nutzbaren Volumens umfaßt.
  8. Zyklonabscheider nach einem der Ansprüche 1 bis 7, welcher Einrichtungen zur Begrenzung von Störungen zwischen dem Strom der eingeführten Mischung M1 und den Strömen der schon in dem Abscheider vorhandenen Phasen, die ausgewählt sind, vom Typ eines absteigenden Daches, einer äußeren Spirallinie und einer inneren Spirallinie.
  9. Verwendung eines Zyklonabscheiders nach einem der Ansprüche 1 bis 8 zur schnellen Trennung einer Mischung M1, die eine schwere Phase und eine leichte Phase umfaßt, von der schweren Phase und von der leichten Phase.
  10. Verwendung nach Anspruch 9, bei welcher die zu trennende Mischung eine Mischung ist, die am Ausgang einer chemischen Reaktion erhalten wird und wenigstens eine Phase, welche zur dieser Reaktion beiträgt, umfaßt.
EP91401388A 1990-06-05 1991-05-29 Gleichstrom-Zyklonabtrennvorrichtung und ihre Anwendungen Expired - Lifetime EP0461003B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9006937 1990-06-05
FR9006937A FR2662618B1 (fr) 1990-06-05 1990-06-05 Separateur cyclonique a co-courant et ses applications.

Publications (2)

Publication Number Publication Date
EP0461003A1 EP0461003A1 (de) 1991-12-11
EP0461003B1 true EP0461003B1 (de) 1995-08-23

Family

ID=9397260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401388A Expired - Lifetime EP0461003B1 (de) 1990-06-05 1991-05-29 Gleichstrom-Zyklonabtrennvorrichtung und ihre Anwendungen

Country Status (7)

Country Link
US (1) US5129930A (de)
EP (1) EP0461003B1 (de)
JP (1) JP3435515B2 (de)
CA (1) CA2043947C (de)
DE (1) DE69112286T2 (de)
ES (1) ES2079045T3 (de)
FR (1) FR2662618B1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672590B1 (fr) * 1991-02-07 1993-04-23 Inst Francais Du Petrole Procede et dispositif de conversion catalytique en lit entraine d'une charge contenant un compose oxygene.
FR2684566B1 (fr) * 1991-12-05 1994-02-25 Institut Francais Petrole Separateur extracteur cyclonique a co-courant.
DE4222593A1 (de) * 1992-07-09 1994-01-13 Krupp Polysius Ag Wärmetauscher mit Zyklonen mit nach unten herausgeführtem Tauchrohr
US5215553A (en) * 1992-09-08 1993-06-01 Blowhard Pneumatic Services Inc. Apparatus for separating particles from a gaseous medium
FR2706136B1 (fr) * 1993-06-07 1995-07-28 Inst Francais Du Petrole Dispositif de conversion d'une charge comprenant un séparateur extracteur cyclonique à co-courant.
US5637124A (en) * 1995-03-23 1997-06-10 Helical Dynamics, Inc. Modular air cleaning system
US5613990A (en) * 1995-03-28 1997-03-25 Helical Dynamics, Inc. Air cleaning system for mechanical industrial processes
US5622538A (en) * 1995-03-28 1997-04-22 Helical Dynamics, Inc. Source capture sytem for an air cleaning system
JPH11171340A (ja) * 1997-12-12 1999-06-29 Mitsui High Tec Inc 球状物の非接触型搬送装置
US6238579B1 (en) * 1998-05-12 2001-05-29 Mba Polymers, Inc. Device for separating solid particles in a fluid stream
JP2000005640A (ja) * 1998-06-22 2000-01-11 Kiyoyuki Horii 固液混相流体中の固体の分離あるいは濃縮方法
JP2000005641A (ja) * 1998-06-22 2000-01-11 Kiyoyuki Horii 固液混相流体中の固体の分離あるいは濃縮方法
US6203249B1 (en) * 1998-09-29 2001-03-20 Mitsui High-Tec Inc. Particulate objects conveying apparatus for conveying particles of a predetermined size
US6090175A (en) * 1999-02-02 2000-07-18 Richard; Kenneth L. Air inlet for a dust collector
US6846463B1 (en) * 1999-02-23 2005-01-25 Shell Oil Company Gas-solid separation process
US6540917B1 (en) 2000-11-10 2003-04-01 Purolator Facet Inc. Cyclonic inertial fluid cleaning apparatus
US6482245B2 (en) 2001-03-30 2002-11-19 Armstrong International Centrifugal particulate matter gas separator
DE102006038700B4 (de) 2006-08-18 2021-11-11 Polytec Plastics Germany Gmbh & Co. Kg Vorrichtung zur Abscheidung von Flüssigkeiten aus Gasen
BRPI0717253B1 (pt) * 2006-09-26 2018-05-08 Dresser Rand Co separador de fluido
US20080175094A1 (en) * 2007-01-19 2008-07-24 Bryan Henry Solid Charging System
US7637699B2 (en) * 2007-07-05 2009-12-29 Babcock & Wilcox Power Generation Group, Inc. Steam/water conical cyclone separator
WO2010083427A1 (en) 2009-01-15 2010-07-22 Dresser-Rand Company Shaft sealing with convergent nozzle
US8545215B2 (en) 2010-05-17 2013-10-01 General Electric Company Late lean injection injector
DE112012001826B4 (de) * 2011-05-19 2023-08-17 Koganei Corporation Filter
US9528407B2 (en) * 2013-12-12 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. High efficiency cyclone oil separator device
JP6634594B2 (ja) * 2016-02-17 2020-01-22 パナソニックIpマネジメント株式会社 集塵装置
CN112774321A (zh) * 2019-11-11 2021-05-11 中国石油天然气集团有限公司 气液分离装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957755A (de) * 1940-10-04 1950-02-25
US2471178A (en) * 1947-09-03 1949-05-24 Gen Electric Air cleaning axial flow blower
DE1619920B1 (de) * 1967-09-27 1970-10-01 Siemens Ag Dralleinrichtung zur Vorreinigung des Rohgasstromes eines Drehstr¦mungswirblers
GB1310792A (en) * 1970-04-24 1973-03-21 Pall Corp Vortex separator
US3885934A (en) * 1971-09-02 1975-05-27 Heat Fluid Engineering Corp Centrifugal tuyere for gas separator
US3930816A (en) * 1973-04-23 1976-01-06 Gerhard Miczek Structure for a gas and liquid contacting chamber in a gas effluent processing system
US4162906A (en) * 1977-05-05 1979-07-31 Donaldson Company, Inc. Side outlet tube
US4311494A (en) * 1977-09-26 1982-01-19 Facet Enterprises, Inc. Axial flow gas cleaning device
US4206174A (en) * 1978-02-01 1980-06-03 Mobil Oil Corporation Means for separating suspensions of gasiform material and fluidizable particles
CS206478B1 (en) * 1979-12-12 1981-06-30 Rudolf Kmeco Vertical turbulent sorter for sorting paper stock,especially for sorting foamed polystyrene granules
US4746340A (en) * 1986-10-28 1988-05-24 Donaldson Company, Inc. Air cleaner apparatus

Also Published As

Publication number Publication date
FR2662618A1 (fr) 1991-12-06
JP3435515B2 (ja) 2003-08-11
JPH04227867A (ja) 1992-08-17
DE69112286T2 (de) 1996-02-08
CA2043947C (fr) 2001-12-18
FR2662618B1 (fr) 1993-01-29
DE69112286D1 (de) 1995-09-28
CA2043947A1 (fr) 1991-12-06
EP0461003A1 (de) 1991-12-11
ES2079045T3 (es) 1996-01-01
US5129930A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
EP0461003B1 (de) Gleichstrom-Zyklonabtrennvorrichtung und ihre Anwendungen
EP0461004B1 (de) Gleichstrom zyklonische Abtrennvorrichtung und ihre Anwendungen
US6596046B2 (en) Cyclone separator having a variable longitudinal profile
EP1032473B1 (de) Vorrichtung und verfahren zur trennung eines heterogenen gemisches
FR2484287A1 (fr) Separateur a cyclone comportant une aube de guidage d'influent
EP1800728B1 (de) Neuartiges System zur Trennung von Gas und Feststoffen und zum Strippen für die Katkrackeinheiten in einem Wirbelbett
WO2013030490A1 (fr) Regenerateur pour unite de craquage catalytique a cyclones externes.
FR2758277A1 (fr) Separateur a enroulement direct de particules d'un melange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidise
FR2666031A1 (fr) Procede pour la separation centrifuge des phases d'un melange et separateur centrifuge a pales longitudinales mettant en óoeuvre ce procede.
EP0502767B1 (de) Verfahren und Vorrichtung zur katalytischen Umsetzung einer Sauerstoffverbindung in Olefine
EP0763384B1 (de) Zentrifugalabschneider, insbesondere für einen Kessel mit zirkulierendem Wirbelbett
EP0545771B1 (de) Gleichstrom-Zyklonextraktionsvorrichtung
WO2016198654A1 (fr) Installation, procédé de dénitration thermique, utilisation d'une telle installation et produit obtenu par un tel procédé
EP0498726B1 (de) Verfahren und Vorrichtung zur katalytischen Umsetzung einer Sauerstoffverbindung in Olefine
FR2613956A1 (fr) Procede et dispositif de separation centrifuge d'un melange de plusieurs phases
FR2771028A1 (fr) Dispositif pour la separation des constituants d'un melange heterogene
FR2678280A1 (fr) Procede et dispositif pour le craquage catalytique d'une charge d'hydrocarbures utilisant un separateur cyclonique a co-courant.
WO1997043032A1 (fr) Installation de traitement de fumees d'incineration ayant un recyclage interne
FR2706136A1 (fr) Dispositif de conversion d'une charge comprenant un séparateur extracteur cyclonique à co-courant.
FR2795345A1 (fr) Separateur a cyclone
EP3240621A1 (de) Schwefelentwässerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19920506

17Q First examination report despatched

Effective date: 19930820

R17P Request for examination filed (corrected)

Effective date: 19920506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69112286

Country of ref document: DE

Date of ref document: 19950928

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079045

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030509

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030610

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040531