EP0451233B1 - Dispositif implantable d'evaluation du taux de glucose - Google Patents

Dispositif implantable d'evaluation du taux de glucose Download PDF

Info

Publication number
EP0451233B1
EP0451233B1 EP90914732A EP90914732A EP0451233B1 EP 0451233 B1 EP0451233 B1 EP 0451233B1 EP 90914732 A EP90914732 A EP 90914732A EP 90914732 A EP90914732 A EP 90914732A EP 0451233 B1 EP0451233 B1 EP 0451233B1
Authority
EP
European Patent Office
Prior art keywords
glucose
membrane
pressure
pressure sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90914732A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0451233A1 (fr
Inventor
Frédéric Neftel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEFTEL, FREDERIC
Original Assignee
Neftel Frederic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neftel Frederic filed Critical Neftel Frederic
Publication of EP0451233A1 publication Critical patent/EP0451233A1/fr
Application granted granted Critical
Publication of EP0451233B1 publication Critical patent/EP0451233B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]

Definitions

  • the present invention relates to the field of medical devices and, more particularly, to an implantable device allowing an accurate and simple evaluation of an individual's blood glucose level.
  • the object of the invention is to allow a precise evaluation of the blood glucose level of an individual, by a non-aggressive method and through a device of very small size which is implanted, for example, in subcutaneous territory.
  • the principle consists in precisely measuring, in an interstitial territory, the absolute value - or the variations - of the osmotic pressure due to molecules having a spatial bulk equivalent to that of glucose using a very small footprint implanted device. Such a measurement can be carried out in any territory or compartment in glucose balance with the vascular compartment. From the measured value, the osmotic pressure due to glucose is deduced, and therefore the circulating glucose level.
  • a pressure sensor according to such techniques could be advantageously used given its very small final size (a few mm2 over less than a mm in thickness).
  • the sensitivity characteristics obtained are entirely compatible with the pressure variations to be measured which are of the order of a few millimeters of mercury.
  • membranes with a precise perforation allowing water, ions, lactates, but not glucose to pass through. Such membranes are said to be hemipermeable to glucose.
  • the diameter of the perforations is, in this case, between approximately between 0.6nm and 0.74nm.
  • Biocompatible coatings are also known which are permeable to glucose and to many molecules, but impermeable to cells.
  • Such coatings such as the perfluoro-sulfonic acid polymer (Nafion ⁇ by Du Pont de Nemours) have the advantage of not becoming blocked after several years in interstitial territory and of not being rejected by the body.
  • Such a coating can therefore advantageously be used as a biocompatible protective membrane.
  • the device according to the invention makes it possible to measure an absolute osmotic pressure, or differences in osmotic pressure, relative to the molecules of a bulk equivalent to that of glucose precisely.
  • an electronic system By coupling the two pressure sensors to an electronic system, the measured values can be communicated to a receiver located outside the individual.
  • Such an electronic system can be, in particular, a passive system of resonant type LC at variable frequency, responding to a Radio Frequency signal emitted from the outside. In this case, the electronic system does not require an energy source and can therefore remain installed for the very long term.
  • FIG. 1 shows the different elements constituting one of the two measurement chambers constituting the device according to the invention, located in an environment 1 for which it is desired to measure the osmotic pressure due to molecules of bulk equivalent to that of glucose.
  • the two measurement chambers being equivalent from the point of view of their operation, we will content our with describing the first of them which is distinguished from the second only by the properties of the hemipemable membrane used.
  • FIG. 1 shows the two parts A and B constituting an exploded view of this measurement chamber according to a sagittal section plane passing through its middle.
  • the membrane 20 is hemipermeable to glucose in nature, that is to say permeable to water and to molecules smaller than glucose, but impermeable to glucose.
  • the thickness of this membrane will be chosen according to its nature.
  • the cavity 41 machined by photolithographic process (with chemical attack with KOH) in a silicon layer 40 of approximately 30 »m thickness, represents the internal chamber for measuring the osmotic pressure.
  • the pressure sensor consists of the membrane 10 and of the layer 12 as well as of the cavity 11, the membrane 10 being directly related to the internal measurement chamber 41.
  • the membrane 10 is a p + doped silicon membrane of approximately 20 ”m thick, oxidized on the peripheral region 53, on the one hand, and 52, on the other hand, so as to be welded by hot process (bonding process) at 1000 ° C. to layer 12, respectively 40.
  • the layer 53 also serves as an insulator between the membrane 10 and the layer 12 so as to constitute a variable capacitor.
  • the layer 12, about 60 "m thick, is hollowed out at its center, by photolithographic process (with chemical attack with KOH), so as to form a cavity 11 about 20" m thick opposite the layer 10.
  • This cavity 11 must be perfectly sealed to ensure good precision and a low drift of the pressure sensor over time.
  • the pressure sensor therefore functions as a variable capacitor, the capacity of which varies as a function of the deformations of the membrane 10, under the effect of the pressure prevailing in the chamber 41.
  • the membrane 20 is stiffened by a layer 30 made, for example, of silicon according to the technique described by Gjermund Kittilsland and Göran Stemme (Depart. of Solid State Electronics, Chalmer Univ. of Technology, Gothenburg, Sweden) and presented in Montreux, Switzerland, at the "Transducer 89" congress, June 26, 1989.
  • a layer 30 made, for example, of silicon according to the technique described by Gjermund Kittilsland and Göran Stemme (Depart. of Solid State Electronics, Chalmer Univ. of Technology, Gothenburg, Sweden) and presented in Montreux, Switzerland, at the "Transducer 89" congress, June 26, 1989.
  • a layer 30 made, for example, of silicon according to the technique described by Gjermund Kittilsland and Göran Stemme (Depart. of Solid State Electronics, Chalmer Univ. of Technology, Gothenburg, Sweden) and presented in Montreux, Switzerland, at the "Transducer 89" congress, June 26, 1989.
  • Such a layer
  • This type of layer is obtained by welding 2 perforated silicon membranes 31 and 32, the perforations not overlapping and the welding being obtained hot (bonding process) thanks to a thin layer of silicon oxide 33 on the two surfaces. opposite and whose thickness is perfectly known.
  • This layer 30 is oxidized at the periphery 51, on the opposite face of the layer 40, so that it can be welded to it hot (bonding process).
  • a layer of the same kind, 35 (consisting of perforated membranes 36 and 37, as well as a thin layer of silicon oxide 38), can also be placed on the other side of the membrane 20.
  • a biocompatible protective layer 60 covers the entire device.
  • a layer must, in particular, be permeable to molecules smaller than glucose, as well as to glucose. It may, for example, be a layer of perfluorosulfonic acid polymer whose long-term resistance is excellent in subcutaneous tissue. The protection provided by this layer relates in particular to cells and deposits such as fibrin.
  • the second measurement chamber constituting the device is identical to the first measurement chamber thus described with the only difference of its membrane 20 which is chosen permeable limit to glucose, that is to say that it lets pass the glucose but not the molecules bigger than glucose.
  • the size of such a device is entirely compatible with its location since its thickness can be around 300 "m and its sides around 2mm.
  • FIG. 2 shows the electronic operation for each of the measurement chambers of the device, based on the principle of a passive resonant circuit of the LC type.
  • the capacitor C is obtained by the pressure sensor constituted by the layers 10 and 12, isolated from each other by the layer of silicon oxide 53. Any movement of the membrane 10, under the effect of pressure variations in the chamber 41, causes a change in the value of C.
  • This resonant frequency is measured remotely by a magnetically coupled oscillator which converts the value measured into osmotic pressure in the cavity 41 and, by difference between the two values obtained at the level of the two measurement chambers, into osmotic pressure due to the molecules of which I he congestion is identical to that of glucose and, by deduction and reference to a basic value, in glucose level.
  • This external electronic assembly therefore includes, for each of the two measurement chambers, an assembly consisting of a variable frequency oscillator 5, a choke L 'and a resonance detector 6 at the terminals of a resistor 7, the resonance characteristics for each of these measurement chambers being different so that they can be analyzed from the outside without interference.
  • a concentration of macro-molecules In order to be in the optimal measurement conditions, a function of physiological variations and of the characteristics of the pressure sensor, it is possible to define a concentration of macro-molecules to be placed inside the osmotic pressure measurement cavity 41.
  • several individual measurement chambers can be used in parallel to simulate a single measurement chamber of the device, each of these multiple individual measurement chambers having in its internal measurement chamber a different concentration of macro molecules.
  • the resonant frequencies of each of the sensors will be chosen to be different, so that each of the individual measurement sensors can be analyzed from the outside without creating interference.
  • FIG. 3 represents a type of resonant frequency curve which can be obtained from the pressure sensor described above. It can be seen that the maximum sensitivity is obtained for a certain range P of pressure variation which should be adapted to the useful range G for measuring the glucose level in the diabetic.
  • a particular location of the implant may be chosen.
  • the peritoneal cavity, the interstitial subcutaneous tissue are, from this point of view, more favorable regions.
  • the abdominal subcutaneous region for example, may be particularly indicated given the ease and safety of the implantation of the device in this location.
  • the two measurement chambers described to form the device can advantageously be produced in the same housing, or even result from photolithography operations on the same substrate.
  • Another advantage of the invention is to be able to couple the information obtained by the measurement device directly to an insulin micro-pump, so as to allow automatic adjustment of the doses of insulin to be administered to the patient.
  • Such a global system allowing to constitute a true artificial pancreas.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
EP90914732A 1989-10-06 1990-10-05 Dispositif implantable d'evaluation du taux de glucose Expired - Lifetime EP0451233B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8913069A FR2652736A1 (fr) 1989-10-06 1989-10-06 Dispositif implantable d'evaluation du taux de glucose.
FR8913069 1989-10-06
PCT/EP1990/001678 WO1991004704A1 (fr) 1989-10-06 1990-10-05 Dispositif implantable d'evaluation du taux de glucose

Publications (2)

Publication Number Publication Date
EP0451233A1 EP0451233A1 (fr) 1991-10-16
EP0451233B1 true EP0451233B1 (fr) 1995-03-01

Family

ID=9386146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90914732A Expired - Lifetime EP0451233B1 (fr) 1989-10-06 1990-10-05 Dispositif implantable d'evaluation du taux de glucose

Country Status (11)

Country Link
US (1) US5337747A (da)
EP (1) EP0451233B1 (da)
JP (1) JP2784259B2 (da)
AT (1) ATE119006T1 (da)
AU (1) AU638067B2 (da)
CA (1) CA2044150C (da)
DE (1) DE69017428T2 (da)
DK (1) DK0451233T3 (da)
ES (1) ES2071115T3 (da)
FR (1) FR2652736A1 (da)
WO (1) WO1991004704A1 (da)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024039711A1 (en) * 2022-08-16 2024-02-22 The United States Government As Represented By The Department Of Veterans Affairs Pressure sensor apparatus and systems and methods comprising same

Families Citing this family (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
JPH04278450A (ja) 1991-03-04 1992-10-05 Adam Heller バイオセンサー及び分析物を分析する方法
NL9200207A (nl) * 1992-02-05 1993-09-01 Nedap Nv Implanteerbare biomedische sensorinrichting, in het bijzonder voor meting van de glucoseconcentratie.
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US6455304B1 (en) * 1994-07-01 2002-09-24 The Board Of Regents Of The University Of Oklahoma Hyaluronate synthase gene and uses thereof
US7091008B1 (en) 1994-07-01 2006-08-15 The Board Of Regents Of The University Of Oklahoma Hyaluronan synthase genes and expression thereof in Bacillus hosts
DE19540456C2 (de) * 1995-10-30 1997-10-09 Buschmann Johannes Verfahren zur Messung der Glukosekonzentration in einer Flüssigkeit und Verwendung des Verfahrens
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
FR2748310A1 (fr) 1996-05-03 1997-11-07 Debiotech Sa Dispositif d'obturation par pincement d'un tube souple
JP3394262B2 (ja) 1997-02-06 2003-04-07 セラセンス、インク. 小体積インビトロ被検体センサー
US7657297B2 (en) * 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6862465B2 (en) * 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
EP1029229A1 (en) * 1997-09-30 2000-08-23 M- Biotech, Inc. Biosensor
CN101113436B (zh) * 1997-10-31 2013-02-06 俄克拉何马大学董事会 透明质酸合酶基因及其应用
EP1522579A3 (en) * 1997-10-31 2007-11-07 The Board Of Regents Of The University Of Oklahoma Hyaluronan synthase gene and uses thereof
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
GB9805896D0 (en) 1998-03-20 1998-05-13 Eglise David Remote analysis system
GB2335496B (en) * 1998-03-20 2000-06-07 David Eglise Sensing devices & systems
US20060188966A1 (en) * 1998-04-02 2006-08-24 Deangelis Paul L Natural, chimeric and hybrid glycosaminoglycan polymers and methods of making and using same
US6987023B2 (en) * 1998-04-02 2006-01-17 The Board Of Regents Of The University Of Oklahoma DNA encoding hyaluronan synthase from Pasteurella multocida and methods of use
US20080108110A1 (en) * 1998-04-02 2008-05-08 Deangelis Paul L Targeted glycosaminoglycan polymers by polymer grafting and methods of making and using same
US7223571B2 (en) * 1998-04-02 2007-05-29 The Board Of Regents Of The Universtiy Of Oklahoma Targeted glycosaminoglycan polymers by polymer grafting and methods of making and using same
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US7094581B2 (en) * 1998-10-26 2006-08-22 The Board Of Regents Of The University Of Oklahoma Hyaluronan synthases and methods of making and using same
ATE421593T1 (de) 1998-11-11 2009-02-15 Univ Oklahoma Polymerpfropfung mittels polysaccharide-synthase
US6193656B1 (en) 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US7642071B2 (en) 1999-04-01 2010-01-05 The Board Of Regents Of The University Of Oklahoma Methods of expressing gram-negative glycosaminoglycan synthase genes in gram-positive hosts
US6669663B1 (en) * 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
US6546268B1 (en) 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
JP4801301B2 (ja) 1999-06-18 2011-10-26 アボット ダイアベティス ケア インコーポレイテッド 物質移動が制限された生体内分析物センサー
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
US7534589B2 (en) 1999-11-10 2009-05-19 The Board Of Regents Of The University Of Oklahoma Polymer grafting by polysaccharide synthases
US6383767B1 (en) * 2000-01-21 2002-05-07 Motorola, Inc. Luminescent in vivo glucose measurement
US6458118B1 (en) * 2000-02-23 2002-10-01 Medtronic, Inc. Drug delivery through microencapsulation
US6405066B1 (en) 2000-03-17 2002-06-11 The Regents Of The University Of California Implantable analyte sensor
US20050287638A1 (en) * 2000-04-25 2005-12-29 Weigel Paul H Hyaluronan receptor for endocytosis, variants thereof, and methods of making and using same
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6968743B2 (en) * 2001-01-22 2005-11-29 Integrated Sensing Systems, Inc. Implantable sensing device for physiologic parameter measurement
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6663615B1 (en) * 2001-09-04 2003-12-16 The Ohio State University Dual stage microvalve and method of use
US20070020737A1 (en) * 2001-12-03 2007-01-25 Pummill Philip E Hyaluronan synthases and methods of making and using same
GB2383846A (en) * 2002-01-02 2003-07-09 Sentec Ltd Passive biological sensor
US20050154272A1 (en) * 2002-01-23 2005-07-14 Danfoss A/S Method and device for monitoring analyte concentration by use of differential osmotic pressure measurement
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
NO317911B1 (no) * 2003-06-10 2004-12-27 Lifecare As Sensor for in-vivo malinger av osmotiske forandringer
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc ELECTRODE SYSTEMS FOR ELECTROCHEMICAL DETECTORS
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7715893B2 (en) 2003-12-05 2010-05-11 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US7925321B2 (en) 2003-08-01 2011-04-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US7276029B2 (en) 2003-08-01 2007-10-02 Dexcom, Inc. System and methods for processing analyte sensor data
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US20070066873A1 (en) 2003-08-22 2007-03-22 Apurv Kamath Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US20050124896A1 (en) * 2003-08-25 2005-06-09 Jacob Richter Method for protecting implantable sensors and protected implantable sensors
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US20080200788A1 (en) * 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
EP2301428B1 (en) 2003-12-09 2016-11-30 Dexcom, Inc. Signal processing for continuous analyte sensor
US7615375B2 (en) * 2003-12-18 2009-11-10 Xerox Corporation Osmotic reaction cell for monitoring biological and non-biological reactions
US7553669B2 (en) * 2003-12-18 2009-06-30 Palo Alto Resaerch Center Incorporated Osmotic reaction detector for monitoring biological and non-biological reactions
US7637868B2 (en) * 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US8515516B2 (en) 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
AU2005304912A1 (en) 2004-11-04 2006-05-18 Smith & Nephew, Inc. Cycle and load measurement device
US7790111B2 (en) * 2004-12-20 2010-09-07 Palo Alto Research Center Incorporated Osmotic reaction detector for detecting biological and non-biological reactions
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8486070B2 (en) * 2005-08-23 2013-07-16 Smith & Nephew, Inc. Telemetric orthopaedic implant
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US9849216B2 (en) * 2006-03-03 2017-12-26 Smith & Nephew, Inc. Systems and methods for delivering a medicament
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US20080071157A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
WO2008056363A2 (en) * 2006-11-09 2008-05-15 G-Sense Ltd. System and method for pseudo-continuous measurement of metabolite concentrations in a mammalian body
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
EP2114247B1 (en) 2007-02-23 2013-10-30 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8267863B2 (en) * 2007-04-30 2012-09-18 Integrated Sensing Systems, Inc. Procedure and system for monitoring a physiological parameter within an internal organ of a living body
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
PL2185910T3 (pl) * 2007-08-20 2018-12-31 Lifecare As Urządzenie i sposób do mierzenia zwiększonego ciśnienia osmotycznego we wnęce odniesienia
AU2008296209B2 (en) 2007-09-06 2014-05-29 Smith & Nephew, Inc. System and method for communicating with a telemetric implant
US8083503B2 (en) 2007-09-27 2011-12-27 Curlin Medical Inc. Peristaltic pump assembly and regulator therefor
US7934912B2 (en) 2007-09-27 2011-05-03 Curlin Medical Inc Peristaltic pump assembly with cassette and mounting pin arrangement
US8062008B2 (en) 2007-09-27 2011-11-22 Curlin Medical Inc. Peristaltic pump and removable cassette therefor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
GB2446247B (en) * 2007-11-27 2008-12-17 Robert Joseph Wagener Homeostatic insulin pump
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
WO2009097485A1 (en) * 2008-02-01 2009-08-06 Smith & Nephew, Inc. System and method for communicating with an implant
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
EP2471573B1 (en) 2008-04-17 2015-09-30 Apollo Endosurgery, Inc. Implantable access port device and attachment system
US9023063B2 (en) 2008-04-17 2015-05-05 Apollo Endosurgery, Inc. Implantable access port device having a safety cap
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
CA2737461A1 (en) 2008-09-19 2010-03-25 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
RU2545424C2 (ru) 2008-10-15 2015-03-27 Смит Энд Нефью, Инк. Композитный внутренний фиксатор
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
EP2410910A4 (en) 2009-03-27 2014-10-15 Dexcom Inc METHODS AND SYSTEMS FOR PROMOTING GLUCOSE MANAGEMENT
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
AU2010278894B2 (en) 2009-07-30 2014-01-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8715158B2 (en) 2009-08-26 2014-05-06 Apollo Endosurgery, Inc. Implantable bottom exit port
US8506532B2 (en) 2009-08-26 2013-08-13 Allergan, Inc. System including access port and applicator tool
US8708979B2 (en) 2009-08-26 2014-04-29 Apollo Endosurgery, Inc. Implantable coupling device
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc ANALYTICAL SIGNAL PROCESSING APPARATUS AND METHOD
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc METHOD AND APPARATUS FOR PROVIDING NOTIFICATION FUNCTION IN SUBSTANCE MONITORING SYSTEMS
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
US8882728B2 (en) 2010-02-10 2014-11-11 Apollo Endosurgery, Inc. Implantable injection port
EP2552532A1 (en) 2010-03-24 2013-02-06 Abbott Diabetes Care, Inc. Medical device inserters and processes of inserting and using medical devices
US8992415B2 (en) 2010-04-30 2015-03-31 Apollo Endosurgery, Inc. Implantable device to protect tubing from puncture
US20110270025A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Remotely powered remotely adjustable gastric band system
US20110270021A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Electronically enhanced access port for a fluid filled implant
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US20120041258A1 (en) 2010-08-16 2012-02-16 Allergan, Inc. Implantable access port system
US20120065460A1 (en) 2010-09-14 2012-03-15 Greg Nitka Implantable access port system
US20120265036A1 (en) 2011-04-15 2012-10-18 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US8821373B2 (en) 2011-05-10 2014-09-02 Apollo Endosurgery, Inc. Directionless (orientation independent) needle injection port
US8801597B2 (en) 2011-08-25 2014-08-12 Apollo Endosurgery, Inc. Implantable access port with mesh attachment rivets
US9199069B2 (en) 2011-10-20 2015-12-01 Apollo Endosurgery, Inc. Implantable injection port
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8858421B2 (en) 2011-11-15 2014-10-14 Apollo Endosurgery, Inc. Interior needle stick guard stems for tubes
US9089395B2 (en) 2011-11-16 2015-07-28 Appolo Endosurgery, Inc. Pre-loaded septum for use with an access port
CA3182961A1 (en) 2011-12-11 2013-06-20 Abbott Diabetes Care Inc Analyte sensor devices, connections, and methods
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9375079B2 (en) 2012-10-26 2016-06-28 Baxter Corporation Englewood Work station for medical dose preparation system
KR101695119B1 (ko) 2012-10-26 2017-01-23 백스터 코포레이션 잉글우드 의료 투여분 조제 시스템을 위한 개선된 이미지 취득
CA2933166C (en) * 2013-12-31 2020-10-27 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
EP2974656A1 (en) * 2014-07-14 2016-01-20 Universität Zürich Device for measuring the concentration of an analyte in the blood or tissue of an animal or a human, particularly a premature infant, in a self-calibrating manner
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
US10818387B2 (en) 2014-12-05 2020-10-27 Baxter Corporation Englewood Dose preparation data analytics
JP2018507487A (ja) 2015-03-03 2018-03-15 バクスター・コーポレーション・イングルウッドBaxter Corporation Englewood アラート統合を伴う薬局ワークフロー管理
AU2016260547B2 (en) 2015-05-14 2020-09-03 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
DE102015108644A1 (de) 2015-06-01 2016-12-01 Biotronik Se & Co. Kg Querempfindlichkeitskompensierter Biosensor
US11071478B2 (en) 2017-01-23 2021-07-27 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
NO20170927A1 (en) 2017-06-07 2018-12-10 Lifecare As Interstitial fluid osmotic pressure measuring device system and method
US20190120785A1 (en) 2017-10-24 2019-04-25 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245075A1 (en) * 1986-05-06 1987-11-11 Ase (Uk) Limited Adjustable anchorage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403984A (en) * 1979-12-28 1983-09-13 Biotek, Inc. System for demand-based adminstration of insulin
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4538616A (en) * 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4703756A (en) * 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4822336A (en) * 1988-03-04 1989-04-18 Ditraglia John Blood glucose level sensing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245075A1 (en) * 1986-05-06 1987-11-11 Ase (Uk) Limited Adjustable anchorage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sensors and Actuators, A21-A23, 1990, pages 58-61; Ylva Bäcklund et al.; "Passive Silicon Transensor Intended for Biomedical, Remote Pressure Monitoring" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024039711A1 (en) * 2022-08-16 2024-02-22 The United States Government As Represented By The Department Of Veterans Affairs Pressure sensor apparatus and systems and methods comprising same

Also Published As

Publication number Publication date
ES2071115T3 (es) 1995-06-16
JP2784259B2 (ja) 1998-08-06
EP0451233A1 (fr) 1991-10-16
DE69017428D1 (de) 1995-04-06
FR2652736A1 (fr) 1991-04-12
DE69017428T2 (de) 1995-09-21
AU638067B2 (en) 1993-06-17
CA2044150C (fr) 1999-03-30
JPH04506919A (ja) 1992-12-03
DK0451233T3 (da) 1995-08-28
ATE119006T1 (de) 1995-03-15
US5337747A (en) 1994-08-16
WO1991004704A1 (fr) 1991-04-18
CA2044150A1 (fr) 1991-04-07
AU6510090A (en) 1991-04-28

Similar Documents

Publication Publication Date Title
EP0451233B1 (fr) Dispositif implantable d'evaluation du taux de glucose
US11229384B2 (en) Orthogonally redundant sensor systems and methods
US11064946B2 (en) Devices and related methods for epidermal characterization of biofluids
US6438397B1 (en) Method and apparatus for analyte detection using intradermally implanted skin port
CN106028932B (zh) 用于提高正交冗余传感器的可靠性的方法及系统
US8965477B2 (en) Analyte monitoring device and methods
US20040147034A1 (en) Method and apparatus for measuring a substance in a biological sample
US20120259188A1 (en) Flexible Eye Insert and Glucose Measuring System
US20050154272A1 (en) Method and device for monitoring analyte concentration by use of differential osmotic pressure measurement
US20020042065A1 (en) Hydrogel biosensor and biosensor-based health alarm system
JPH05507866A (ja) 生体内の血糖レベルを測定するための装置
CN100475129C (zh) 在体内测量渗透变化的传感器
JP2004016609A (ja) 体液成分濃度測定方法及び体液成分濃度測定装置
JP2012070907A (ja) 血糖値センサ
US9617578B2 (en) Sensor membrane with low temperature coefficient
Wu et al. A new generation of sensors for non-invasive blood glucose monitoring
Krushinitskaya Osmotic sensor for blood glucose monitoring applications
Momy An Overview of Current and Emerging Biomaterials Technology for Continuous Glucose Monitoring (CGM) Devices--Current state and future perspectives of the leading technologies
Huang Miniaturized implantable affinity sensors for continuous glucose monitoring
Cote Development of a robust optical glucose sensor
WO2020002342A1 (en) Fully implantable sensor element and method for detecting at least one analyte in a body fluid
Martini et al. Accurate glucose detection in a small etalon
TW200831896A (en) Solid-state urea biosensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930906

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 119006

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69017428

Country of ref document: DE

Date of ref document: 19950406

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NEFTEL, FREDERIC

ITF It: translation for a ep patent filed

Owner name: FERRAIOLO S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950505

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071115

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951010

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951011

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951027

Year of fee payment: 6

Ref country code: DK

Payment date: 19951027

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961005

Ref country code: DK

Effective date: 19961005

Ref country code: AT

Effective date: 19961005

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: NEFTEL FREDERIC

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

EUG Se: european patent has lapsed

Ref document number: 90914732.4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030911

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030916

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030924

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005