EP0441853B1 - Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage - Google Patents

Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage Download PDF

Info

Publication number
EP0441853B1
EP0441853B1 EP89912456A EP89912456A EP0441853B1 EP 0441853 B1 EP0441853 B1 EP 0441853B1 EP 89912456 A EP89912456 A EP 89912456A EP 89912456 A EP89912456 A EP 89912456A EP 0441853 B1 EP0441853 B1 EP 0441853B1
Authority
EP
European Patent Office
Prior art keywords
converter
charges
particles
plane
neutral particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89912456A
Other languages
German (de)
English (en)
Other versions
EP0441853A1 (fr
Inventor
Serge Maitrejean
Mario Ruscev
Irène Dorion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger SA
Original Assignee
Schlumberger SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8814187A external-priority patent/FR2638567B1/fr
Priority claimed from FR8814186A external-priority patent/FR2638536B1/fr
Application filed by Schlumberger SA filed Critical Schlumberger SA
Publication of EP0441853A1 publication Critical patent/EP0441853A1/fr
Application granted granted Critical
Publication of EP0441853B1 publication Critical patent/EP0441853B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/12Neutron detector tubes, e.g. BF3 tubes
    • H01J47/1205Neutron detector tubes, e.g. BF3 tubes using nuclear reactions of the type (n, alpha) in solid materials, e.g. Boron-10 (n,alpha) Lithium-7, Lithium-6 (n, alpha)Hydrogen-3
    • H01J47/1211Ionisation chambers

Definitions

  • the present invention further relates to a method for detecting and locating particles in a stream of neutral particles emitted by a source in such a device.
  • the object of the present invention is, on the contrary, to allow the production of higher resolution images and to allow, on a secondary basis, the obtaining of a high contrast, even in a priori unfavorable conditions of irradiation of the object to be examined, and more particularly in the event of poor conversion rates and / or in the presence of fluxes of incident particles of low intensity.
  • the device of the invention is essentially characterized in that said conversion elements capable of also ensuring the collection of charges consist of cells distributed in a flat two-dimensional matrix arranged beyond the anode wires with respect to the source .
  • the images obtained by the device of the invention have a higher resolution than that of the images obtained by the prior device described in patent EP-A-0 000 271, the two-dimensional matrix of which is formed by two parallel planes. linear elements also parallel to each other, the elements of two different planes being however crossed.
  • the converter comprises an insulating plate, one face of which carries said cells, this plate comprising, for each cell, a passage putting this cell in electrical contact with a conductor terminating on the other face of this plate.
  • the anode wires are placed in at least one plane substantially parallel to that of the converter, and are substantially parallel to each other.
  • the cells comprise a conversion material chosen from the group comprising gadolinium, boron, and lithium, in the case where the particles neutrals used are neutrons and the cells comprise a conversion material chosen from the group comprising iron, and silver in the case where the neutral particles used are X-rays, in particular soft X-rays.
  • the gas contains an extinguishing substance present in a proportion of at least 25 percent and that the ratio of the distance "S" between two neighboring anode wires, at the distance "G” between these wires and the converter, ie at least equal to 1.
  • At least one of the charge collection elements is connected to a reference electrical potential by means of a capacity capable of accumulating the charges collected by this element.
  • the device also comprises a source of voltage capable of creating an electrical voltage between the cathode and the anode wires at least equal to 2000 volts, and the anode wires have a minimum diameter greater than 20 microns.
  • the charge amplification operation preferably comprises the application of an electric field of sufficient value to allow the appearance of electronic avalanches of self-regulated size.
  • the method can advantageously comprise another operation, consisting in accumulating for a certain time the collected electrical charges.
  • the conversion of neutral particles into electrical charges is ensured with a conversion rate such that the number of particles detected is less than 105 particles per second and per square centimeter of surface of the converter.
  • FIG. 1 represents in 1 a source of neutral particles, for example a source of soft X-rays, but more typically a source of thermal neutrons in the main applications of the invention.
  • a source of neutral particles for example a source of soft X-rays, but more typically a source of thermal neutrons in the main applications of the invention.
  • At least part of the flow of particles emitted by this source passes through an object to be examined 2 and reaches the device 3 to which the present invention relates more particularly.
  • this device 3 firstly comprises an enclosure, intended to contain a gas and formed of a base 4a and a cover 4b made integral with each other so airtight vis-à-vis the atmosphere, the cover 4b being, however, permeable to neutral particles emitted by the source 1, to neutrons for example.
  • the gas contained in the enclosure is a gaseous mixture allowing the appearance of a "streamer" operating mode, in other words the appearance of avalanches of electrons whose size is self-regulated by spontaneous suffocation.
  • this gas comprises an effective quenching substance, consisting of carbonaceous and polyatomic molecules comprising many relaxation modes, such as isobutane or neopentane, in proportion of at least 25 percent.
  • this gas can be a mixture of 50 percent carbon dioxide and 50 percent isobutane, subjected to a pressure of the order of one to five bars.
  • the converter 5 and the planar grid are connected to a reference electrical potential, and are for example brought to potentials close to the earth potential prevailing outside the enclosure, both playing the role. cathodes.
  • the wires of the planar network 6 are on the other hand connected to an external source of electrical potential which delivers a positive potential + V with respect to the average potentials of the converter 5 and of the grid 7, for example of the order of 2000 to 7000 volts.
  • the converter 5 comprises an insulating plate 8, better visible in FIG. 3, and a two-dimensional matrix of cells, such as 9a, 9b, 9c, arranged on one face of the plate 8.
  • Each of the cells such as 9a, is intended to supply a signal representing a point of a two-dimensional image of the object 2.
  • Each of the cells therefore operates independently of its neighbors, and the image obtained consists of a matrix of points each of which corresponds to one of these cells.
  • the light intensity associated with a point of the image depends on the quantity of particles received by the corresponding cell, this quantity being itself dependent on the thickness and the nature of the material of which the object is made. solid angle defined by the source on the one hand and by the cell in question on the other.
  • the wavy path T1 represents that of a neutral particle, a neutron for example, which, after having been emitted by the source 1 and passed through the object 2, the cover 4b of the detector, the grid 7 and the plane of wires 6, reaches a cell 9c of the converter 5.
  • cell 9c made of an adequate material, emits in a statistically observable and reproducible way a fast electron whose trajectory is represented in T2.
  • this fast electron causes the ionization of the gas on its path, and the electrons thus produced drift towards the nearest wire, for example 6c, of the network 6 under the effect of the electric field resulting from the difference between the potentials of the converter 5 and of the wire plane 6.
  • This movement is identified by the arrows such as T3 in FIG. 3.
  • this amplification corresponds to a mode of operation in which avalanches of electrons appear whose size is self-regulated.
  • the corresponding positive ions representing a number of charges equal to that of the charges of all the electrons created, move away from the wire 6c from which they are repelled because of their charge, and drift towards the nearest cathodes, constituted by the grid 7 on the one hand and by the converter 5 on the other hand.
  • the converter 5 has a layered structure supported by an insulating plate 8, the latter being for example formed by a printed circuit board made of epoxy resin, with a thickness of 3.2 millimeters.
  • This plate is covered with a layer of copper 10, a few microns thick.
  • a layer of conductive adhesive 11 On the copper layer 10 is deposited a layer of conductive adhesive 11, with which the assembly can be covered with a layer of a conversion material 12, for example a sheet of gadolinium, with a thickness of tenth of a micron, previously gilded to avoid oxidation.
  • a conversion material 12 for example a sheet of gadolinium, with a thickness of tenth of a micron, previously gilded to avoid oxidation.
  • This stack of layers 10, 11, and 12, deposited on at least the major part of the surface of the plate 8, is then cut, by saw cutter lines such as 13 attacking the upper face of this plate, into elements. electrically isolated from each other, which constitute cells 9a, 9b, 9c, etc.
  • the insulating plate 8 comprises, for each cell such as 9c, a passage such as 14c putting this cell in electrical contact with a conductor such as 15c ending on the other face of the plate 8.
  • each wire such as 6c is stretched exactly over a row of cells such as 9c, these advantageously having a rectangular or square shape.
  • the cathode grid 7 may consist of stainless steel wires with a diameter of 50 microns each, intersecting at right angles, in a pitch of 500 microns, the role of this grid being to allow a symmetrization of the electric field on the wires such as 6c.
  • the plane of wires 6 is produced in the form of a weaving on an insulating frame of golden tungsten wires with a minimum diameter of at least 20 microns, and preferably from 50 to 100 microns each, arranged parallel to one another. others following a pitch S of 2.54 millimeters for example. All of the wires are connected to a source of electrical potential outside the enclosure 3, delivering a voltage of 5000 volts for example.
  • the distance G between the plane of wires 6 and the converter 5 on the one hand and the distance between the plane of wires 6 and the grid 7 on the other hand are preferably equal and of the order of 3 to 5 millimeters.
  • the cells such as 9c for example have the shape of squares of 2 millimeters on a side, produced at the same pace as the wires, 2.54 millimeters in this case.
  • the conversion material 12 used in cells such as 9c advantageously consists of gadolinium in the case where the neutral particles emitted by the source 1 are thermal neutrons, and of iron or silver in the case where these particles are rays X, in particular soft X.
  • the conductors such as 15c are on the one hand connected to the earth potential via respective capacitors such as 16c, on the other hand connected, each at least for a given time interval, to an electronic device 17, of the type known per se, the function of which is to convert the signal present on each of these conductors to a point in a video image and / or to information capable of being stored in an optical, electronic or other memory.
  • the wires such as 6c play the role of means for amplification and collection of negative charges, while the converter and its cells play both the role of conversion means, of cathode, and of means of collection of positive charges.
  • the useful signal for each point of the image of the object, is constituted by the electrical signal present on the conductors such as 15c, the cells such as 9c constitute more precisely the useful elements of the means of charge collection.
  • the invention develops all its advantages when the number of neutral particles detected is less than 105 particles per second and per square centimeter of surface of the converter, and it is of particular interest when the particles detected are thermal neutrons.
  • the charge amplification operation includes the application of an electric field of sufficient value to allow the appearance of electron avalanches of self-regulated size (streamer mode), and it is advantageous , for this purpose, that the ratio of the distance S (FIG. 3) between two neighboring anode wires 6b, 6c, to the distance G between these wires and the cathode 12, is at least equal to 1.
  • this mode allows the creation, for each fast electron emitted by the converter, of an extremely high number of charges, typically of the order of 107 to 109, so that it is possible, even from a small number of particles received by the converter, or a small number of particles converted by it, to obtain an image of an irradiated object such as 2 ( Figure 1).
  • This property is also best exploited according to the embodiment of the invention which comprises an accumulation, for a certain time, of the collected electrical charges, in a capacity such as 16c.
  • this operating mode makes it possible to overcome an intrinsic defect which the solid converters exhibit under certain conditions of use, in particular for the detection of thermal neutrons.
  • the fast electrons from the solid converter have a very high energy dispersion.
  • the number of first ionization charges directly created per unit of distance by a fast electron passing through the gas is a rapidly variable function of the energy of this fast electron, so that the charge collecting elements, the cells such as 9c in this case, risk providing respective signals representative no longer of the number of neutral particles that these elements have received, but of the energy of the fast electrons to which these particles have led by conversion.
  • the "streamer" mode which has the property of amplifying charges in a highly non-linear manner, makes it possible to re-establish this defect by giving rise, for each fast electron, to a number of charges collected which is substantially independent of the number of charges of first ionization directly created by fast electrons.
  • the use of this operating mode thus makes it possible to reduce the fluctuations of the useful signal to a level close to the fish fluctuations of the source.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

  • La présente invention concerne notamment un dispositif pour la détection et la localisation de particules dans un flux de particules neutres émises par une source, comprenant:
    • un convertisseur solide sensiblement plan, propre, sous l'impact de ces particules neutres, à produire des charges électriques, ce convertisseur comprenant des éléments de conversion électriquement autonomes les uns par rapport aux autres;
    • des fils anodiques, destinés à être portés à un potentiel électrique différent de celui du convertisseur pour faire apparaître un champ électrique, et à produire une amplification des charges par ionisation d'un gaz environnant, stimulée par ce champ électrique;
    • des moyens de collectage de charges, comprenant des éléments conducteurs électriquement autonomes les uns par rapport aux autres, dont certains au moins constituent des éléments de conversion; et,
    • une enceinte perméable aux particules neutres, renfermant le convertisseur, les fils anodiques, les moyens de collectage des charges, et le gaz.
  • La présente invention concerne en outre un procédé pour détecter et localiser des particules dans un flux de particules neutres émises par une source dans un tel dispositif.
  • Un dispositif de ce type est décrit dans la demande de brevet européen publiée sous le numéro Ep-A-0 000 271.
  • Bien que ce dispositif antérieur permette la réalisation directe d'images bidimensionnelles, sa conception repose sur la recherche d'une optimisation de l'efficacité dans certaines applications particulières au détriment d'une optimisation de la résolution.
  • Un autre exemple de dispositif de l'art antérieur figure dans le document publié dans la revue Nuclear Instruments and Methods, Volume 156, n°1, Octobre 1978 et intitulé "A hybrid MWPC gamma ray detecting system for applications in nuclear medicine", pages 27-31, de J.E. Bateman et al. Ce document décrit un empilement de compteurs proportionnels multifils dans lequel les cathodes sont constituées de feuilles métalliques convertissant les rayons gammas incidents en électrons et les anodes sont constituées de nappes de fils parallèles entre eux. Des rainures parallèles entre elles sont formées à la surface des cathodes, ces rainures étant alternativement perpendiculaires à la direction des fils anodiques.
  • Le but de la présente invention est au contraire de permettre la réalisation d'images de résolution supérieure et de permettre, à titre secondaire, l'obtention d'un haut contraste, même dans des conditions a priori défavorables d'irradiation de l'objet à examiner, et plus particulièrement en cas de taux de conversion médiocres et/ou en présence de flux de particules incidentes de faible intensité.
  • A cette fin, le dispositif de l'invention, est essentiellement caractérisé en ce que lesdits éléments de conversion propres à assurer également le collectage de charges sont constitués de cellules réparties suivant une matrice bidimensionnelle plane disposée au delà des fils anodiques par rapport à la source.
  • Grâce à cette disposition, les images obtenues par le dispositif de l'invention ont une résolution supérieure à celle des images obtenues par le dispositif antérieur décrit dans le brevet EP-A-0 000 271, dont la matrice bidimensionnelle est formée par deux plans parallèles d'éléments linéaires également parallèles les uns aux autres, les éléments de deux plans différents étant cependant croisés.
  • En effet cette disposition antérieure, en raison de l'espacement des deux plans qui forment ensemble la matrice bidimensionnelle, et de l'erreur de parallaxe qui en résulte, introduit pour tout rayonnement non perpendiculaire à la matrice des déformations différentes des images partielles récupérées sur les deux plans, dont résulte une altération sensible de la résolution.
  • Selon un mode de réalisation avantageux de l'invention, le convertisseur comprend une plaque isolante dont une face porte lesdites cellules, cette plaque comportant, pour chaque cellule, une traversée mettant cette cellule en contact électrique avec un conducteur aboutissant sur l'autre face de cette plaque.
  • Selon une disposition en soit connue, il est préférable pour l'invention que les fils anodiques soient disposés dans au moins un plan sensiblement parallèle à celui du convertisseur, et soient sensiblement parallèles les uns aux autres.
  • Compte tenu de la disposition adoptée dans l'invention, il est préférable, pour obtenir une bonne efficacité, que les cellules comprennent un matériau de conversion choisi dans le groupe comprenant le gadolinium, le bore, et le lithium, dans le cas où les particules neutres utilisées sont des neutrons et que les cellules comprennent un matériau de conversion choisi dans le groupe comprenant le fer, et l'argent dans le cas où les particules neutres utilisées sont des rayons X, en particulier des X mous.
  • Dans les cas où, quelqu'en soit la cause, le taux de comptage des particules est faible, il est avantageux que le gaz contienne une substance d'extinction présente dans une proportion d'au moins 25 pourcent et que le rapport de la distance "S" entre deux fils anodiques voisins, à la distance "G" entre ces fils et le convertisseur, soit au moins égal à 1.
  • Ces caractéristiques autorisent le dispositif à fonctionner selon un mode connu de l'homme de l'art sous la dénomination anglo-saxonne de "self-quenching streamer mode", caractérisé par l'apparition d'avalanches électroniques s'empilant jusqu'à une taille critique du nuage de charges, pour laquelle elles s'étouffent.
  • Les avantages particuliers, que ce mode de fonctionnement par ailleurs connu développe dans l'application spécifique qu'en fait l'invention, seront mieux compris dans la description détaillée de celle-ci.
  • De préférence, l'un au moins des éléments de collectage de charges est relié à un potentiel électrique de référence par l'intermédiaire d'une capacité propre à accumuler les charges collectées par cet élément.
  • Une telle intégration des charges contribue à compenser les effets négatifs associés aux flux de particules à faible taux de comptage.
  • De préférence, le dispositif comprend aussi une source de tension propre à créer entre la cathode et les fils anodiques une tension électrique au moins égale à 2000 volts, et les fils anodiques ont un diamètre minimum supérieur à 20 microns.
  • L'invention concerne aussi un procédé pour détecter et localiser des particules dans un flux de particules neutres émises par une source dans un tel dispositif, comprenant les opérations consistant à:
    • recevoir ces particules sur un convertisseur solide sensiblement plan, et produire ainsi des charges électriques à partir de ces particules neutres;
    • amplifier ces charges par ionisation stimulée d'un gaz environnant; et
    • collecter, sur le convertisseur, en différents emplacements espacés les uns des autres, les charges présentes dans au moins un plan sensiblement parallèle au convertisseur; ce procédé étant principalement caractérisé en ce que lesdits emplacements constituent une matrice bidimensionnelle plane.
  • Dans le cas de faibles taux de comptage, l'opération d'amplification de charges comprend de préférence l'application d'un champ électrique de valeur suffisante pour permettre l'apparition d'avalanches électroniques à taille auto-régulée.
  • Le procédé peut avantageusement comprendre une autre opération, consistant à accumuler pendant un certain temps les charges électriques collectées.
  • De préférence, la conversion des particules neutres en charges électriques est assurée avec un taux de conversion tel que le nombre de particules détectées est inférieur à 10⁵ particules par seconde et par centimètre carré de surface du convertisseur.
  • Ce procédé est particulièrement adapté, pour des raisons qui seront détaillées dans la suite de la description, à l'utilisation de neutrons thermiques en tant que particules neutres.
  • D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, parmi lesquels:
    • la figure 1 est une vue schématique représentant, en perspective, la mise en oeuvre d'un dispositif conforme à l'invention;
    • la figure 2 est une vue schématique éclatée d'un dispositif conforme à l'invention; et
    • la figure 3 est une vue en coupe d'un dispositif de détection utilisable dans le système de la figure 1, faite suivant le plan III-III de la figure 2;
  • La figure 1 représente en 1 une source de particules neutres, par exemple une source de rayons X mous, mais plus typiquement une source de neutrons thermiques dans les applications principales de l'invention.
  • Une partie au moins du flux de particules émis par cette source traverse un objet à examiner 2 et parvient au dispositif 3 sur lequel porte plus particulièrement la présente invention.
  • Comme le montre plus en détail la figure 2, ce dispositif 3 comprend tout d'abord une enceinte, destinée à renfermer un gaz et formée d'une embase 4a et d'un couvercle 4b rendus solidaires l'un de l'autre de façon étanche vis-à-vis de l'atmosphère, le couvercle 4b étant en revanche perméable aux particules neutres émises par la source 1, aux neutrons par exemple.
  • Le gaz contenu dans l'enceinte est un mélange gazeux autorisant l'apparition d'un mode de fonctionnement "streamer", autrement dit l'apparition d'avalanches d'électrons dont la taille est auto-régulée par étouffement spontané.
  • A cette fin, ce gaz comprend une substance d'extinction (quencher) efficace, constituée de molécules carbonées et polyatomiques comportant de nombreux modes de relaxation, tel que l'isobutane ou le néopentane, en proportion d'au moins 25 pourcent.
  • Par exemple, ce gaz peut être un mélange de 50 pourcent de gaz carbonique et de 50 pourcent d'isobutane, soumis à une pression de l'ordre de un à cinq bars.
  • A l'intérieur de l'enceinte, et parallèlement à l'embase 4a sont disposés:
    • un convertisseur solide sensiblement plan 5, propre, sous l'impact de ces particules neutres, à produire des charges électriques;
    • un réseau plan 6 de fils conducteurs tels que 6a, 6b, disposé parallèlement au convertisseur et à distance de celui-ci;
    • et, de préférence, une grille plane de fils conducteurs 7, elle-même disposée à distance du réseau 6.
  • Le convertisseur 5 et la grille plane sont reliés à un potentiel électrique de référence, et sont par exemple portés à des potentiels voisins du potentiel de la terre régnant à l'extérieur de l'enceinte, l'un et l'autre jouant le rôle de cathodes.
  • Les fils du réseau plan 6 sont en revanche reliés à une source externe de potentiel électrique qui délivre un potentiel positif + V par rapport aux potentiels moyens du convertisseur 5 et de la grille 7, par exemple de l'ordre de 2000 à 7000 volts.
  • Le convertisseur 5 comprend une plaque isolante 8, mieux visible sur la figure 3, et une matrice bidimensionnelle de cellules, telles que 9a, 9b, 9c, disposées sur une face de la plaque 8.
  • Chacune des cellules, telles que 9a, est destinée à fournir un signal représentant un point d'une image bidimensionnelle de l'objet 2.
  • Chacune des cellules fonctionne donc indépendamment de ses voisines, et l'image obtenue est constituée d'une matrice de points dont chacun correspond à l'une de ces cellules.
  • L'intensité lumineuse associée à un point de l'image dépend de la quantité de particules reçues par la cellule correspondante, cette quantité étant elle-même dépendante de l'épaisseur et de la nature du matériau dont est fait l'objet dans l'angle solide délimité par la source d'une part et par la cellule en question d'autre part.
  • Le fonctionnement du dispositif est illustré sur la figure 3.
  • Le trajet ondulé T1 représente celui d'une particule neutre, un neutron par exemple, qui, après avoir été émise par la source 1 et traversé l'objet 2, le couvercle 4b du détecteur, la grille 7 et le plan de fils 6, atteint une cellule 9c du convertisseur 5.
  • Frappée par cette particule neutre, la cellule 9c, constituée d'un matériau adéquat, émet de façon statistiquement observable et reproductible un électron rapide dont la trajectoire est représentée en T2.
  • En traversant l'enceinte, cet électron rapide provoque l'ionisation du gaz sur son parcours, et les électrons ainsi produits dérivent vers le fil le plus proche, par exemple 6c, du réseau 6 sous l'effet du champ électrique résultant de la différence entre les potentiels du convertisseur 5 et du plan de fils 6. Ce mouvement est repéré par les flèches telles que T3 sur la figure 3.
  • Parvenus à quelques diamètres du fil 6c, ces électrons sont très violemment accélérés par le champ électrique, dont la valeur augmente considérablement au voisinage immédiat du fil.
  • Ils acquièrent alors suffisamment d'énergie pour ioniser le gaz à leur tour, provoquant ainsi une amplification électronique.
  • Selon une caractéristique de l'invention, cette amplification correspond à un mode de fonctionnement dans lequel apparaissent des avalanches d'électrons dont la taille est auto-régulée.
  • Ce phénomène, dont résulte une augmentation considérable de la charge électrique, représentée par le nombre final d'électrons produit par chaque électron rapide, se poursuit jusqu'à étouffement spontané des avalanches.
  • Les ions positifs correspondants, représentant un nombre de charges égal à celui des charges de l'ensemble des électrons créés, s'écartent du fil 6c dont ils sont repoussés en raison de leur charge, et dérivent vers les cathodes les plus proches, constituées par la grille 7 d'une part et par le convertisseur 5 d'autre part.
  • Les ions positifs créés du côté de la grille sont recueillis par cette dernière tandis que ceux créés du côté du convertisseur 5 sont recueillis par une cellule de celui-ci, la cellule 9c en l'occurrence. Leur mouvement est repéré sur la figure 3 par les flèches en pointillé T4.
  • Comme le montre la figure 3, le convertisseur 5 présente une structure en couches supportée par une plaque isolante 8, cette dernière étant par exemple contituée par une carte de circuit imprimé en résine époxy, d'une épaisseur de 3.2 millimètres.
  • La surface supérieure de cette plaque est recouverte d'une couche de cuivre 10, de quelques microns d'épaisseur.
  • Sur la couche de cuivre 10 est déposée une couche de colle conductrice 11, grâce à laquelle l'ensemble peut être recouvert d'une couche d'un matériau de conversion 12, par exemple une feuille de gadolinium, d'une épaisseur d'un dixième de micron, préalablement dorée pour en éviter l'oxydation.
  • Cet empilage de couches 10, 11, et 12, déposé sur la plus grande partie au moins de la surface de la plaque 8, est ensuite découpé, par des traits de fraise scie tels que 13 attaquant la face supérieure de cette plaque, en éléments électriquement isolés les uns des autres, qui constituent les cellules 9a, 9b, 9c, etc.
  • De plus, la plaque isolante 8 comporte, pour chaque cellule telle que 9c, une traversée telle que 14c mettant cette cellule en contact électrique avec un conducteur tel que 15c aboutissant sur l'autre face de la plaque 8.
  • De préférence, chaque fil tel que 6c est tendu exactement au-dessus d'une rangée de cellules telles que 9c, celles-ci ayant avantageusement une forme rectangulaire ou carrée.
  • A titre d'exemple, la grille cathodique 7 peut être constituée de fils d'acier inoxydable d'un diamètre de 50 microns chacun, s'entrecroisant à angle droit, suivant un pas de 500 microns, le rôle de cette grille étant de permettre une symétrisation du champ électrique sur les fils tels que 6c.
  • Le plan de fils 6 est réalisé sous la forme d'un tissage sur un cadre isolant de fils de tungstène dorés d'un diamètre minimum d'au moins 20 microns, et de préférence de 50 à 100 microns chacun, disposés parallèlement les uns aux autres suivant un pas S de 2.54 millimètres par exemple. L'ensemble des fils est relié à une source de potentiel électrique extérieur à l'enceinte 3, délivrant une tension de 5000 volts par exemple.
  • La distance G entre le plan de fils 6 et le convertisseur 5 d'une part et la distance entre le plan de fils 6 et la grille 7 d'autre part sont de préférence égales et de l'ordre de 3 à 5 millimètres.
  • Les cellules telles que 9c ont par exemple la forme de carrés de 2 millimètres de côté, réalisés au même pas que les fils, 2.54 millimètres en l'occurence.
  • Le matériau de conversion 12 utilisé dans les cellules telles que 9c est avantageusement constitué de gadolinium dans le cas où les particules neutres émises par la source 1 sont des neutrons thermiques, et de fer ou d'argent dans le cas où ces particules sont des rayons X, en particulier des X mous.
  • Les conducteurs tels que 15c sont d'une part reliés au potentiel de terre par l'intermédiaire de capacités respectives telles que 16c, d'autre part reliés, chacun au moins pendant un intervalle de temps donné, à un dispositif électronique 17, de type connu en soi, dont la fonction est de convertir le signal présent sur chacun de ces conducteurs en un point d'une image vidéo et/ou en une information susceptible d'être stockée dans une mémoire optique, électronique, ou autre.
  • Dans les conditions exposées, les fils tels que 6c jouent le rôle de moyens d'amplification et de collectage de charges négatives, tandis que le convertisseur et ses cellules jouent à la fois le rôle de moyens de conversion, de cathode, et de moyens de collectage de charges positives.
  • En fait, dans la mesure où le signal utile, pour chaque point de l'image de l'objet, est constitué par le signal électrique présent sur les conducteurs tels que 15c, les cellules telles que 9c constituent plus précisément les éléments utiles des moyens de collectage de charges.
  • L'invention développe tous ses avantages lorsque le nombre de particules neutres détectées est inférieur à 10⁵ particules par seconde et par centimètre carré de surface du convertisseur, et elle revêt un intérêt particulier lorsque les particules détectées sont des neutrons thermiques.
  • Comme mentionné plus haut, l'opération d'amplification de charges comprend l'application d'un champ électrique de valeur suffisante pour permettre l'apparition d'avalanches d'électrons à taille auto-régulée (streamer mode), et il est avantageux, à cette fin, que le rapport de la distance S (figure 3) entre deux fils anodiques voisins 6b, 6c, à la distance G entre ces fils et la cathode 12, soit au moins égal à 1.
  • L'intérêt du mode de fonctionnement "streamer" pour un détecteur appliqué à l'imagerie conformément à l'invention trouve son origine dans les deux raisons suivantes.
  • D'une part, ce mode permet la création, pour chaque électron rapide émis par le convertisseur, d'un nombre de charges extrêmement élevé, typiquement de l'ordre de 10⁷ à 10⁹, de sorte qu'il est possible, même à partir d'un petit nombre de particules reçues par le convertisseur, ou d'un petit nombre de particules converties par lui, d'obtenir une image d'un objet irradié tel que 2 (figure 1). Cette propriété est en outre exploitée au mieux selon le mode de réalisation de l'invention qui comprend une accumulation, pendant un certain temps, des charges électriques collectées, dans une capacité telle que 16c.
  • D'autre part et surtout, ce mode de fonctionnement permet de pallier un défaut intrinsèque que présentent les convertisseurs solides dans certaines conditions d'utilisation, notamment pour la détection de neutrons thermiques.
  • En effet, si le nombre d'électrons rapides créés à partir d'un nombre prédéterminé de neutrons incidents est constant, statistiquement au moins, en revanche les électrons rapides issus du convertisseur solide présentent une très grande dispersion énergétique.
  • Or, le nombre de charges de première ionisation directement créées par unité de distance par un électron rapide traversant le gaz est une fonction rapidement variable de l'énergie de cet électron rapide, de sorte que les éléments de collectage de charges, les cellules telles que 9c en l'occurrence, risquent de fournir des signaux respectifs représentatifs non plus du nombre de particules neutres que ces éléments ont reçues, mais de l'énergie des électrons rapides auxquels ces particules ont conduit par conversion.
  • Le mode "streamer", qui a la propriété d'amplifier les charges de façon fortement non linéaire, permet de rétablir ce défaut en donnant naissance, pour chaque électron rapide, à un nombre de charges collectées qui est sensiblement indépendant du nombre de charges de première ionisation directement créées par les électrons rapides. L'utilisation de ce mode de fonctionnement permet ainsi de ramener les fluctuations du signal utile à un niveau proche des fluctuations poissonniennes de la source.

Claims (14)

  1. Dispositif pour la détection et la localisation de particules dans un flux de particules neutres émises par une source (1), comprenant:
    - un convertisseur solide sensiblement plan (5), propre, sous l'impact de ces particules neutres, à produire des charges électriques, ce convertisseur comprenant des éléments de conversion (9a, 9b, 9c) électriquement autonomes les uns par rapport aux autres;
    - des fils anodiques (6a, 6b), destinés à être portés à un potentiel électrique différent de celui du convertisseur pour faire apparaître un champ électrique, et à produire une amplification des charges par ionisation d'un gaz environnant, stimulée par ce champ électrique;
    - des moyens de collectage de charges (9c, 15c), comprenant des éléments conducteurs électriquement autonomes les uns par rapport aux autres dont certains au moins constituent des éléments de conversion; et,
    - une enceinte (4a, 4b) perméable aux particules neutres, renfermant le convertisseur, les fils anodiques,les moyens de collectage de charges, et le gaz;
    caractérisé en ce que lesdits éléments de conversion propres à assurer également le collectage de charges sont constitués de cellules réparties suivant une matrice bidimensionnelle plane disposée au delà des fils anodiques par rapport à la source.
  2. Dispositif suivant la revendication 1, caractérisé en ce que le convertisseur comprend une plaque isolante (8) dont une face porte lesdites cellules, cette plaque comportant, pour chaque cellule, une traversée (14c) mettant cette cellule en contact électrique avec un conducteur (15c) aboutissant sur l'autre face de cette plaque.
  3. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que lesdits fils anodiques sont disposés dans un moins un plan (6) sensiblement parallèle à celui du convertisseur, et sont sensiblement parallèles les uns aux autres.
  4. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que lesdites cellules comprennent un matériau de conversion choisi dans le groupe comprenant le gadolinium, le bore, et le lithium.
  5. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que lesdites cellules comprennent un matériau de conversion choisi dans le groupe comprenant le fer et l'argent.
  6. Dispositif suivant l'une quelconque des revendications précédentes, combinée à la revendication 3, caractérisé en ce que le gaz contient une substance d'extinction présente dans une proportion est au moins égale à 25 pourcent, et en ce que le rapport de la distance (S) entre deux fils anodiques voisins (6b, 6c), à la distance (G) entre ces fils et le convertisseur (5), est au moins égal à 1.
  7. Dispositif suivant la revendication 6, caractérisé en ce que l'un au moins desdists éléments de collectage de charges est relié à un potentiel électrique de référence par l'intermédiaire d'une capacité (16c) propre à accumuler les charges collectées par cet élément.
  8. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une source de tension propre à créer entre la cathode et les fils anodiques une tension électrique au moins égale à 2000 volts.
  9. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que les fils anodiques (6a, 6b, 6c) ont un diamètre minimum supérieur à 20 microns.
  10. Procédé pour détecter et localiser des particules dans un flux de particules neutres émises par une source (1), dans un dispositif suivant l'une quelconque des revendications précédentes, comprenant les opérations consistant à :
    - recevoir ces particules sur un convertisseur solide sensiblement plan (5), et produire ainsi des charges électriques à partir de ces particules neutres;
    - amplifier ces charges par ionisation stimulée d'un gaz environnant; et
    - collecter, sur le convertisseur, en différents emplacements espacés les uns des autres, les charges présentes dans au moins un plan sensiblement parallèle au convertisseur;
    caractérisé en ce que lesdits emplacements constituent une matrice bidimensionnelle plane.
  11. Procédé suivant la revendication 10, caractérisé en ce que l'opération d'amplification des charges comprend l'application d'un champ électrique de valeur suffisante pour permettre l'apparition d'avalanches électroniques à taille auto-régulée.
  12. Procédé suivant la revendications 10 ou 11, caractérisé en ce qu'il comprend en outre une opération consistant à accumuler pendant un certain temps les charges électriques collectées.
  13. Procédé suivant l'une quelconque des revendications 10 à 12, caractérisé en ce que la conversion des particules en charges électriques est assurée avec un taux de conversion tel que le nombre de particules détectées est inférieur à 10⁵ particules par seconde et par centimètre carré de surface du convertisseur.
  14. Procédé suivant l'une quelconque des revendications 10 à 13, caractérisé en ce que les particules neutres comprennent essentiellement des neutrons thermiques.
EP89912456A 1988-10-28 1989-10-24 Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage Expired - Lifetime EP0441853B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR8814187A FR2638567B1 (fr) 1988-10-28 1988-10-28 Procede et dispositif de localisation bidimensionnelle de particules neutres
FR8814187 1988-10-28
FR8814186 1988-10-28
FR8814186A FR2638536B1 (fr) 1988-10-28 1988-10-28 Procede et dispositif de localisation de particules neutres pour faibles taux de comptage
PCT/FR1989/000553 WO1990004851A1 (fr) 1988-10-28 1989-10-24 Procede et dispositif de localisation bidimensionnelle de particules neutres, notamment pour faibles taux de comptage

Publications (2)

Publication Number Publication Date
EP0441853A1 EP0441853A1 (fr) 1991-08-21
EP0441853B1 true EP0441853B1 (fr) 1994-10-12

Family

ID=26226960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89912456A Expired - Lifetime EP0441853B1 (fr) 1988-10-28 1989-10-24 Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage

Country Status (5)

Country Link
US (1) US5087821A (fr)
EP (1) EP0441853B1 (fr)
AT (1) ATE112891T1 (fr)
DE (1) DE68918871T2 (fr)
WO (1) WO1990004851A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037597A (en) * 1997-02-18 2000-03-14 Neutech Systems, Inc. Non-destructive detection systems and methods
US7377356B2 (en) * 2004-05-25 2008-05-27 Ford Global Technologies, Llc Driver selectable steering ratios
WO2011063008A2 (fr) * 2009-11-18 2011-05-26 Saint-Gobain Ceramics & Plastics, Inc. Système et procédé de détection de rayonnement ionisant
US8319175B2 (en) 2010-08-31 2012-11-27 Schlumberger Technology Corporation Nano-tips based gas ionization chamber for neutron detection
CN104345333B (zh) * 2013-08-07 2017-02-22 清华大学 用于组合中子探测管的阵列组合装置和中子探测设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1583571A (en) * 1977-06-24 1981-01-28 Exxon Research Engineering Co Hydrocarbon synthesis from co and h2 with ru ni or rh supported on a titanium oxide
FR2591036A1 (fr) * 1985-12-04 1987-06-05 Balteau Dispositif de detection et de localisation de particules neutres, et applications
GB8606086D0 (en) * 1986-03-12 1986-04-16 Marsden P K Cathode/converter

Also Published As

Publication number Publication date
ATE112891T1 (de) 1994-10-15
WO1990004851A1 (fr) 1990-05-03
US5087821A (en) 1992-02-11
EP0441853A1 (fr) 1991-08-21
DE68918871D1 (de) 1994-11-17
DE68918871T2 (de) 1995-04-27

Similar Documents

Publication Publication Date Title
EP0855086B1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
EP0742954B1 (fr) Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP0810631B1 (fr) Dispositif d'imagerie radiographique à haute résolution
US7589327B2 (en) Energy sensitive direct conversion radiation detector
JPH08509550A (ja) 放射線検出器
EP0228933B1 (fr) Dispositif de détection et de localisation de particules neutres, et application
US8586936B2 (en) Hybrid anode for semiconductor radiation detectors
FR2951580A1 (fr) Dispositif d'imagerie radiographique et detecteur pour un dispositif d'imagerie radiographique
EP0441853B1 (fr) Procede et dispositif de localisation bidimensionnelle et particules neutres, notamment pour faibles taux de comptage
EP0730291B1 (fr) Dispositifs d'imagerie médicale en rayonnement ionisant X ou gamma à faible dose
FR2790100A1 (fr) Detecteur bidimensionnel de rayonnements ionisants et procede de fabrication de ce detecteur
EP0851512A1 (fr) Dispositif de détection de rayonnements ionisants a semi-conducteur de haute résistivité
EP0064913A2 (fr) Multidétecteur de rayons X
EP0045704B1 (fr) Détecteur de rayonnement
EP0368694A1 (fr) Procédé et dispositif de localisation de particules neutres, à haute resolution
WO1998014981A1 (fr) Detecteur a gaz de rayonnements ionisants a tres grand taux de comptage
FR2705791A1 (fr) Détecteur de rayons X pour l'obtention de réponses sélectives en énergie.
US20060033029A1 (en) Low-voltage, solid-state, ionizing-radiation detector
JP2000121738A (ja) 半導体放射線検出器
EP1410420A1 (fr) Detecteur de rayonnements ionisants, a lame solide de conversion des rayonnements, et procede de fabrication de ce detecteur
FR2638536A1 (fr) Procede et dispositif de localisation de particules neutres pour faibles taux de comptage
FR2638567A1 (fr) Procede et dispositif de localisation bidimensionnelle de particules neutres
EP2483909B1 (fr) Détecteurs de radiations et dispositifs d'imagerie autoradiographique comprenant de tels détecteurs
WO2012168601A1 (fr) Dispositif de mesure des caractéristiques d'un faisceau de rayons x
FR2640426A1 (fr) Perfectionnements aux chambres a derive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 112891

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68918871

Country of ref document: DE

Date of ref document: 19941117

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

EAL Se: european patent in force in sweden

Ref document number: 89912456.4

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 7

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951020

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951030

Year of fee payment: 7

Ref country code: AT

Payment date: 19951030

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961024

Ref country code: GB

Effective date: 19961024

Ref country code: AT

Effective date: 19961024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: SCHLUMBERGER INDUSTRIES

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 89912456.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051024