EP0440706B1 - Pulverisation de metaux - Google Patents

Pulverisation de metaux Download PDF

Info

Publication number
EP0440706B1
EP0440706B1 EP89912118A EP89912118A EP0440706B1 EP 0440706 B1 EP0440706 B1 EP 0440706B1 EP 89912118 A EP89912118 A EP 89912118A EP 89912118 A EP89912118 A EP 89912118A EP 0440706 B1 EP0440706 B1 EP 0440706B1
Authority
EP
European Patent Office
Prior art keywords
atomizing
stream
spray
flow field
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89912118A
Other languages
German (de)
English (en)
Other versions
EP0440706A1 (fr
Inventor
Stuart Jeffrey Coombs
Gordon Roger 59 Glen Road Norton Dunstan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Osprey Ltd
Original Assignee
Osprey Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osprey Metals Ltd filed Critical Osprey Metals Ltd
Publication of EP0440706A1 publication Critical patent/EP0440706A1/fr
Application granted granted Critical
Publication of EP0440706B1 publication Critical patent/EP0440706B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • This invention relates to a device for gas atomizing a liquid metal or metal alloy stream.
  • apparatus for gas atomizing a stream of molten metal or metal alloy comprising: an atomizing device for receiving a supply of atomizing gas; an opening defined by the atomizing device through which the stream may be teemed; a rotor, supported by the atomizing device, and including an annular jet or a plurality of jets arranged about the opening through which atomizing gas may issue for atomizing the stream into a spray of droplets, in use, the atomizing gas issuing from the annular jet or plurality of jets forming an atomising gas flow field which would, when the rotor is stationary, surround the stream and be of asymmetric geometry with respect to the axis of the stream; means for moving the rotor relative to the atomizing device for varying the positional relationship of the asymmetric gas flow field relative to the stream whereby the asymmetry of the atomizing gas flow field may impart movement to the spray relative to the axis of the liquid stream whilst the overall geometry of the atom
  • the invention also includes a method of moving a spray of atomized droplets of molten metal or metal alloy comprising the steps of passing a stream of molten metal or metal alloy through an opening in an atomizing device, providing the atomizing device with a rotor having an atomizing jet or jets arranged about the opening, supplying atomizing gas to the atomizing device whereby an atomizing gas flow field is formed which, when the rotor is stationary, surrounds the stream and is of asymmetric geometry with respect to the axis of the stream, directing the atomizing gas flow field at the stream to atomize the stream into a spray of droplets, and moving the rotor to vary the positional relationship of the atomizing gas flow field relative to the stream during atomization to impart movement to the spray whilst maintaining the overall geometry of the atomizing gas flow field substantially constant.
  • the improved method of the present invention does not involve the switching on and off of gas jets to move the spray. Instead, despite the proximity to the nozzle from which molten metal issues, we have devised a system whereby the spray is moved by moving the atomizing jets themselves possibly with the whole atomizing device tilting as well if desired. This has the following particular advantages over previous methods:
  • the apparatus and method of the present invention provides a very high degree of control over the atomizing device and the movement of the spray which previously has not been attainable. This enables the locus of the spray axis to be varied to suit the shape of deposit being produced or to control the deposition conditions and/or the profile of the spray on the surface of the collector.
  • the liquid stream is molten metal or metal alloy
  • the spray is directed at a substrate moving continuously through the spray and the spray is moved transverse to the direction of movement to achieve uniformity of thickness of deposition across the width of the substrate and is spread laterally in the direction of movement by the asymmetry of the gas flow field whereby strip, coated strip, plate or coated plate products may be formed.
  • an atomizing device (10) is positioned within an atomizer housing (11) and below the nozzle opening (12) of tundish (13).
  • the atomizing device (10) includes a plenum chamber (14) and has atomizing gas jet openings (15).
  • the atomizing device (10) is substantially annular in shape having a central opening (16) through which a stream (17) from the tundish (13) is arranged to pass.
  • the atomizing device is supported within the housing (11) by diametrically opposed supports (18, 19) which project outwardly from the atomizing device (10) and is positioned sufficiently away from the bottom of the tundish (13) and has a central opening (16) dimensioned so that the atomizing device may be made to undergo a tilting motion. So that this tilting motion may be achieved the supports (18, 19) are mounted within respective bearings (20, 21) in the atomizer housing (11).
  • One of the supports (18) also serves as a conduit (22) to supply atomizing gas to the plenum chamber (14).
  • the movement of the atomizing device (10) is effected by mechanical means consisting of a rotated cam and a cam follower held against the cam profile (not shown).
  • the cam follower has a connecting arm (27) pivoted to it and extends to a pivotal connection (29) on a plate (30).
  • the plate (30) is freely movable and is fixed to the support (19) at a position offset from the pivotal connection (29).
  • movement of the rotated cam is translated into movement of the atomizing device (10) via the cam follower connecting arm (27) and plate (30).
  • the cam profile may be designed to define a predetermined degree of movement and the speed of rotation of the cam controls the speed of movement of the atomizing device.
  • the to and fro tilting movement of the atomizing device imparts a corresponding scanning movement to the spray (31) since the atomizing device (10) carries with it the atomizing gas jet openings (15). Further details of this arrangement may be obtained from our aforementioned European Patent Publication No. 225080.
  • FIG. 1 For examples of products formed using the apparatus of figure 1 reference may be had to figures 2a, 2b, and 2c.
  • the spray (31) is shown scanning the deposition surface, either axially in the direction of arrow (32) in the formation of a tube (33) (figure 2a) or about the end of a bar deposit (34) which, as with the tube, is rotated in the direction of arrows (35) and moved axially in the direction of arrow (36) as shown in figure 2b.
  • the locus of the spray axis (37) on the surface follows a to and fro linear path. It is therefore essential to ensure that the scanning frequency of the spray is sufficiently high that the resulting layer per revolution is effectively uniform.
  • the spray profile (38) defined about the locus of the spray axis must overlap to give uniform deposition for each revolution.
  • the ratio of scanning frequency to rotational speed increases, which can lead to mechanical design problems due to the inherent inertia of the tilting atomizer.
  • FIG 3 a strip or plate (60) is shown being formed on a substrate (61) moving in the direction of arrow (62). But, in order to achieve maximum spray density whilst accommodating the maximum spray mass flux profile of a spray without defects consequential on too hot deposition (indicated by line (63) with respect to spray profiles (64), it is necessary to use two or more rows (65) of two or more atomized sprays (66) to produce strip with sufficiently uniform deposition conditions throughout the section even though the atomized sprays (66) scan transverse to the direction of movement as indicated by arrows (67).
  • the spray cone generated by the atomizing device is always maintained, the tilting of the atomizer achieving to and fro movement of the spray cone, and the gas jets are used merely for atomization.
  • the atomizing device may be tilted, but movement of the spray may be achieved without such motion.
  • a liquid stream (41) of molten metal or metal alloy is atomized by gas which is fed via pipes (42) to an atomiser body (43).
  • the gas exits through orifices (44) arranged around the liquid stream (41) in a rotor (45) which is movable about the axis of the liquid stream (41) and may be arranged either to undertake angular oscillation to and fro about the stream or to undertake complete rotation about the stream.
  • the size of the orifices (44) differ according to the circumferential position around the liquid stream in order to generate an asymmetric atomizing gas field.
  • the rotor (45) is held in position by bearings (46) and (47), the gas leakage is prevented between the rotor (45) and the atomizer body (43) by suitable seals (48) and (49) as shown.
  • the gas jets emerging from the orifices (44) atomize the liquid stream (41) to form the spray (50).
  • the rotor (45) is movable about the stream (41) by means of a driven actuating means (51) such as a spur gear for example.
  • a driven actuating means (51) such as a spur gear for example.
  • figure 5 a similar apparatus is shown including a rotor (145) and similar reference numerals to those in figure 4 have been used in a one hundred series to indicate corresponding parts.
  • the angles of attack of the emerging gas jets - indicated by references (152) - are varied about the circumference to produce the asymmetric spray pattern.
  • combinations of figure 4 and figure 5 are possible, ie. varying the orifice size and the angles of attack.
  • an asymmetric atomizing gas field is produced by means of two rotors which are rotatable relative to each other and to the atomizer body.
  • a liquid metal stream (241) passing through the atomizer body is atomized by an atomizing gas fed via pipes (242) to the atomizer body (243).
  • the gas is received in a plenum chamber (253) and exists the atomizer body (243) through atomizing orifices (244).
  • the orifices (244) are arranged in two circular arrays in two concentric rotors (254, 255) and are distributed about the stream (241) in order to atomize it.
  • each rotor (254, 255) differ according to their circumferential position around the liquid stream in order to generate an asymmetric atomizing gas field. However, by using two rotors (254, 255) more flexibility in the control of the resultant spray shape is provided.
  • the inner rotor (254) is held in position by bearings (246) and (247) and the outer rotor (255) by bearings (256) and (257). Gas leakage is prevented between the rotors (254, 255) and the atomizer body (243) by suitable seals (248, 249 and 258).
  • the arrays of gas jets in the respective rotors (254, 255) may be focused at a single atomizing point relative to the stream or at an atomizing zone (259) where the stream (241) is broken up into a spray.
  • the rotors (254, 255) are movable by means of respective bevel gears (260, 261).
  • the asymmetric gas flow field can be kept substantially constant and rotation or to and fro angular oscillation imparts movement to the spray whilst it retains its same cross-sectional shape determined by the gas flow field.
  • by moving one rotor relative to the other the geometry of the gas flow field may be altered as well which provides increased flexibility.
  • the atomizer with a rotor or rotors for rotation and/or angular to and fro oscillation about the stream can be used in the tilting arrangement of figure 1 so that the atomizing device tilts and rotates or angularly oscillates simultaneously.
  • the additional rotation or angular oscillation of the atomizing rotor causes the locus of the spray axis indicated by lines (404) and (405) in figures 8a and 8b respectively to be spread (or to have an effective wider spray profile (407) as indicated in figure 8c with reference to the formation of tube) which allows the scanning speed of the spray to be reduced whilst still achieving the necessary overlap to give uniform deposition. As the scanning speed is reduced more metal can be put down without having a detrimental effect on the desired properties of the finished deposit.
  • FIGS 9a and 9b the production of strip or plate (410) is diagrammatically illustrated.
  • the addition of rotation or angular oscillation to the atomizing rotor produces a spread uniformity illustrated by spray profile (411) of figure 9c, such that only one row of tilting atomizers (412) is required as opposed to two greatly simplifying the plant needed and possibly increasing the production rate.
  • spray profile (411) of figure 9c such that only one row of tilting atomizers (412) is required as opposed to two greatly simplifying the plant needed and possibly increasing the production rate.
  • rows of two atomizers have been disclosed in figures 3a and 9a, if a reduced width of strip or plate is required then a single atomizer may be sufficient in the present invention as opposed to two atomizers, one behind the other, previously required.
  • FIG. 10a shows a spray profile (420) achieve solely by tilting the atomizer to and fro
  • figure 10b shows a spray profile (421) with the addition of rotation or angular oscillation to achieve greater spread.
  • This results in more uniform deposition conditions throughout the thickness of the strip which will reduce the amount of porosity in the bottom and top surfaces of the strip deposit (caused by low deposition rates at the edge of the spray).
  • the method of rotation of the present invention will also have significant advantages in the production of tubes, billets and clad products, particularly for billets and tubes of large diameter.
  • the reason for this is that the spray will cover a larger area, ie. have a larger 'footprint' and therefore it is easier to obtain complete coverage of the tube or the billet surface compared to the old method solely of tilting.
  • the invention has been particularly described with a stream axis which passes through the centre of a rotatable atomizing device, the axis of rotation of atomizer or the axis of the jets could be different to axis of metal stream. In this arrangement the holes could be uniform whilst the geometry of the gas flow field and thus the spray would be asymmetric to the liquid stream.
  • the jets need not be arranged on a circle; for example, the jets could be in an elliptical arrangement and there could be one, two or more rotors. In the case of two rotors, these could be rotating in the same or opposite directions (or angularly oscillated in the same or opposite directions).
  • the above devices can also be used for producing gas atomized metal powders whereby the movement of the spray can impart improved cooling to the atomised particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Nozzles (AREA)

Claims (19)

  1. Appareil pour pulvériser un courant liquide de métal ou d'alliage de métaux à l'aide d'un gaz comprenant:
       un dispositif de pulvérisation destiné à être alimenté en gaz de pulvérisation;
       une ouverture définie par le dispositif de pulvérisation, à travers laquelle le courant peut être déversé;
       un rotor, supporté par le dispositif de pulvérisation, et comportant une buse annulaire ou une pluralité de buses disposées autour de l'ouverture à travers laquelle le gaz de pulvérisation peut passer pour pulvériser le courant en formant, pendant l'utilisation, un jet de gouttelettes, le gaz de pulvérisation provenant de la buse annulaire ou de la pluralité de buses constituant un flux de gaz de pulvérisation qui, lorsque le rotor est fixe, entoure le courant et présente une géométrie asymétrique par rapport à l'axe du courant;
       un moyen pour produire le mouvement du rotor par rapport au dispositif de pulvérisation et faire varier la relation de position existant entre le flux de gaz asymétrique et le courant, de façon que l'asymétrie du flux de gaz de pulvérisation puisse provoquer le déplacement du jet d'aspersion par rapport à l'axe du courant liquide, tandis que la géométrie globale du flux de gaz de pulvérisation demeure sensiblement constante.
  2. Appareil selon la revendication 1, dans lequel le rotor de pulvérisation comprend une pluralité de buses de pulvérisation de dimensions variables disposées autour du rotor, de façon qu'un courant de gaz asymétrique puisse être produit.
  3. Appareil selon la revendication 1, comportant une pluralité de buses de pulvérisation, le flux de gaz asymétrique étant produit par variation de l'angle d'attaque des buses de pulvérisation autour du rotor.
  4. Appareil selon la revendication 1, dans lequel le flux de gaz asymétrique est produit par l'axe du rotor, qui est espacé de l'axe du courant.
  5. Appareil selon la revendication 1, comportant une pluralité de buses de pulvérisation, le flux de gaz asymétrique étant produit par disposition des buses d'amenée de gaz de pulvérisation dans le rotor de façon asymétrique par rapport à son axe.
  6. Appareil selon la revendication 1, dans lequel le rotor de pulvérisation comprend une buse de pulvérisation annulaire, le flux de gaz asymétrique étant produit par l'ouverture annulaire dont la largeur ou position dans le rotor varie autour de l'axe du rotor de façon à former le flux de gaz asymétrique.
  7. Appareil selon la revendication 1, comportant deux rotors comprenant chacun une buse ou une pluralité de buses de pulvérisation pour former un flux de gaz asymétrique par rapport à l'axe du courant liquide, chacun pouvant être déplaçable par rapport à l'autre et par rapport au dispositif de pulvérisation de façon que, en association, il soit possible de faire varier l'asymétrie du flux de gaz par rapport au courant liquide.
  8. Appareil selon l'une quelconque des revendications précédentes, comportant en outre des moyens pour basculer le dispositif de pulvérisation, de façon que pendant la pulvérisation, le jet d'aspersion puisse être déplacé alternativement par basculement du dispositif de pulvérisation.
  9. Appareil selon la revendication 1, comprenant une chambre ou plenum formé à l'intérieur du dispositif de pulvérisation;
       des moyens couplés au dispositif de pulvérisation pour supporter le dispositif de pulvérisation, comportant un chemin d'admission faisant communiquer la chambre ou plenum avec une source de gaz de pulvérisation; et
       plusieurs ouvertures d'arrivée de gaz de pulvérisation formées dans le rotor, pour diriger le gaz de pulvérisation vers le courant liquide qui traverse l'ouverture, les ouvertures d'arrivée de gaz de pulvérisation étant placées dans une relation fixe prédéterminée les unes par rapport aux autres, de façon à former un flux de gaz de pulvérisation d'une géométrie prédéterminée.
  10. Appareil selon la revendication 9, comportant des moyens de commande fonctionnant par mise en oeuvre soit d'un mouvement oscillant angulaire au rotor, soit d'une rotation complète.
  11. Appareil selon la revendication 10, dans lequel les moyens de commande comprennent un engrenage à ergot se connectant avec le rotor, permettant de déplacer le rotor par rapport au dispositif de pulvérisation.
  12. Appareil selon la revendication 1, comportant au moins un premier et un second rotors qui peuvent être déplacés l'un par rapport à l'autre, et par rapport au dispositif de pulvérisation, et dans lequel la géométrie globale du flux de gaz de pulvérisation reste sensiblement constante lorsque les rotors sont synchronisés.
  13. Procédé de déplacement d'un jet d'aspersion de gouttelettes pulvérisées de métal ou d'alliage de métaux fondu comprenant les étapes consistant à faire passer un courant de métal ou d'alliage de métaux fondu par une ouverture située dans un dispositif de pulvérisation, à munir le dispositif de pulvérisation d'un rotor comportant une buse ou plusieurs buses de pulvérisation disposées autour de l'ouverture, à alimenter le dispositif de pulvérisation en gaz de pulvérisation de façon qu'un flux de gaz de pulvérisation soit formé, lequel, lorsque le rotor est fixe, entoure le courant liquide et présente une géométrie asymétrique par rapport à l'axe du courant liquide, à diriger le flux de gaz de pulvérisation vers le courant liquide pour atomiser le courant liquide et former un jet de gouttelettes, et à déplacer le rotor de façon à faire varier la relation de position existant entre le flux de gaz de pulvérisation et le courant liquide pendant la pulvérisation pour provoquer le mouvement du jet tout en maintenant sensiblement constante la géométrie globale du flux de gaz de pulvérisation
  14. Procédé selon la revendication 13, comprenant en outre le basculement du dispositif de pulvérisation autour d'un axe afin de soumettre à un mouvement alternatif le flux de gaz asymétrique.
  15. Procédé selon la revendication 13, dans lequel le jet d'aspersion est dirigé vers un substrat se déplaçant en continu dans le jet d'aspersion, le jet d'aspersion étant déplacé transversalement par rapport au sens du mouvement, en basculant le dispositif de pulvérisation alternativement, afin d'obtenir une uniformité d'épaisseur du dépôt sur le substrat, et le jet d'aspersion étant déplacé latéralement selon le sens du mouvement en faisant varier la relation de position existant entre le flux de gaz asymétrique pour obtenir une uniformité du dépôt selon le sens du mouvement du substrat de façon que des produits en bandes, en bandes revêtues, en plaques ou en plaques revêtues, puissent être formés.
  16. Procédé selon la revendication 13, 14 ou 15, dans lequel des particules métalliques ou céramiques à incorporer dans un dépôt formé sur un substrat collecteur sont contenues dans le jet.
  17. Procédé selon l'une quelconque des revendications 13 à 16, dans lequel les mouvements du jet d'aspersion sont contrôlés de façon à produire des dépôts par aspersion, sur lingots, barres, tubes, anneaux, rouleaux, formes coniques, des galettes forgées et extrudées, des formes pour déformation thixotropiques, des produits feuilletés ou revêtus, et des composites de matrices métalliques.
  18. Procédé selon la revendication 13, dans lequel le courant liquide est pulvérisé par action d'un gaz de pulvérisation provenant au moins de deux rotors pouvant tourner de façon relative; et comprenant l'étape supplémentaire de variation de la relation de position et/ou de l'asymétrie du flux de gaz par rapport au courant liquide pendant la pulvérisation pour que le jet d'aspersion effectue un mouvement, soit en maintenant sensiblement constante la géométrie globale du flux de gaz de pulvérisation par synchronisation des rotors, soit par variation de l'asymétrie du flux de gaz en effectuant un mouvement relatif entre les rotors pendant la pulvérisation.
  19. Procédé selon la revendication 13, dans lequel on opére de façon que le jet d'aspersion se refroidisse et se solidifie en vol et qu'une poudre métallique soit formée.
EP89912118A 1988-10-22 1989-10-20 Pulverisation de metaux Expired - Lifetime EP0440706B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB888824823A GB8824823D0 (en) 1988-10-22 1988-10-22 Atomisation of metals
GB8824823 1988-10-22
PCT/GB1989/001248 WO1990004661A1 (fr) 1988-10-22 1989-10-20 Pulverisation de metaux

Publications (2)

Publication Number Publication Date
EP0440706A1 EP0440706A1 (fr) 1991-08-14
EP0440706B1 true EP0440706B1 (fr) 1995-08-02

Family

ID=10645672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89912118A Expired - Lifetime EP0440706B1 (fr) 1988-10-22 1989-10-20 Pulverisation de metaux

Country Status (7)

Country Link
EP (1) EP0440706B1 (fr)
JP (1) JP2862927B2 (fr)
AT (1) ATE125882T1 (fr)
AU (1) AU637334B2 (fr)
DE (1) DE68923706T2 (fr)
GB (1) GB8824823D0 (fr)
WO (1) WO1990004661A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9113304D0 (en) * 1991-06-20 1991-08-07 Alcan Int Ltd Metal spraying apparatus
AU666456B3 (en) * 1995-01-31 1996-02-08 David Nathan Nozzle assembly
JP2012000592A (ja) * 2010-06-18 2012-01-05 Kobe Steel Ltd 高温溶湯のガスアトマイザー
RU2508964C1 (ru) * 2012-11-26 2014-03-10 Общество с ограниченной ответственностью "СУАЛ-ПМ" (ООО "СУАЛ-ПМ") Способ распыления расплавленных металлов

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725517A (en) * 1971-11-26 1973-04-03 Whittaker Corp Powder production by gas atomization of liquid metal
US3911173A (en) * 1973-02-05 1975-10-07 Usm Corp Adhesive process
GB8311167D0 (en) * 1983-04-25 1983-06-02 Jenkins W N Directed spray
GB8527852D0 (en) * 1985-11-12 1985-12-18 Osprey Metals Ltd Atomization of metals
DE3811077A1 (de) * 1988-03-29 1989-10-19 Mannesmann Ag Einrichtung fuer die zerstaeubung eines giessstrahles fluessigen metalls

Also Published As

Publication number Publication date
AU637334B2 (en) 1993-05-27
AU4506189A (en) 1990-05-14
DE68923706T2 (de) 1996-01-18
WO1990004661A1 (fr) 1990-05-03
GB8824823D0 (en) 1988-11-30
JP2862927B2 (ja) 1999-03-03
EP0440706A1 (fr) 1991-08-14
DE68923706D1 (de) 1995-09-07
ATE125882T1 (de) 1995-08-15
JPH04501288A (ja) 1992-03-05

Similar Documents

Publication Publication Date Title
US4779802A (en) Atomization of metals
EP0225732B1 (fr) Production de dépôts projetés de métaux liquides
US4905899A (en) Atomisation of metals
EP0244454B1 (fr) Production de depots par aspersion de metal
US4064295A (en) Spraying atomized particles
EP0659898B1 (fr) Busette pour la pulvérisation de métal liquide
US5460851A (en) Spray deposition of metals
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
US5401539A (en) Production of metal spray deposits
EP0440706B1 (fr) Pulverisation de metaux
US4977950A (en) Ejection nozzle for imposing high angular momentum on molten metal stream for producing particle spray
US4901784A (en) Gas atomizer for spray casting
CA2040968A1 (fr) Appareil de pulverisation oscillant
US5634593A (en) Apparatus for scanning a stream of atomized particles having externally adjustable and programmable gas routing
US6093449A (en) Atomizer for spray forming ring structures
CA1268313A (fr) Atomisation de metaux
JPH0665613A (ja) 噴霧ノズル装置
KR100360379B1 (ko) 광폭합금판재제조용분무주조장치
CA1263062A (fr) Production de depots par atomisation
KR20010057616A (ko) 광폭 롤 제조용 다중 노즐 가스분무 주조장치
KR200169960Y1 (ko) 가스분무 주조장치
KR100590810B1 (ko) 고속 주조용 다중분무성형장치
KR20000042172A (ko) 다층 복합판재 제조용 분무주조장치
WO1990010514A1 (fr) Dispositifs pulverisateurs et procedes de coulee par pulverisation
RU1770097C (ru) Распыливающее устройство установки дл получени порошка

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950802

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950802

Ref country code: AT

Effective date: 19950802

REF Corresponds to:

Ref document number: 125882

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 68923706

Country of ref document: DE

Date of ref document: 19950907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951102

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961031

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011227

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020930

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

BERE Be: lapsed

Owner name: *OSPREY METALS LTD

Effective date: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST