EP0434891B1 - Manipulator for forging machines, in particular multi-punch forging machines - Google Patents

Manipulator for forging machines, in particular multi-punch forging machines Download PDF

Info

Publication number
EP0434891B1
EP0434891B1 EP90109301A EP90109301A EP0434891B1 EP 0434891 B1 EP0434891 B1 EP 0434891B1 EP 90109301 A EP90109301 A EP 90109301A EP 90109301 A EP90109301 A EP 90109301A EP 0434891 B1 EP0434891 B1 EP 0434891B1
Authority
EP
European Patent Office
Prior art keywords
manipulator
worm
piston
workpiece
cylinder unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90109301A
Other languages
German (de)
French (fr)
Other versions
EP0434891A3 (en
EP0434891A2 (en
Inventor
Wilhelm Krieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eumuco AG fuer Maschinenbau
Original Assignee
Eumuco AG fuer Maschinenbau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eumuco AG fuer Maschinenbau filed Critical Eumuco AG fuer Maschinenbau
Priority to AT90109301T priority Critical patent/ATE96704T1/en
Publication of EP0434891A2 publication Critical patent/EP0434891A2/en
Publication of EP0434891A3 publication Critical patent/EP0434891A3/en
Application granted granted Critical
Publication of EP0434891B1 publication Critical patent/EP0434891B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/08Accessories for handling work or tools
    • B21J13/10Manipulators

Definitions

  • the invention relates to a manipulator for forging machines, for. B. multi-plunger Schmi edemaschinen with a plurality of plungers acting radially on the forging, the manipulator having a rotatably mounted central axis with which the workpiece is rotatable in the circumferential direction according to the forging sequence, the rotary drive of the manipulator using a preselected constant speed Running motor takes place, which acts on the central axis of the manipulator via a worm drive and the rotor movement of the central axis is brought to a standstill by the plunger before the pressure contact phase and is kept at a standstill during the pressure contact phase, the driven worm being mounted so as to be axially displaceable.
  • the rotor movement of the forging is brought to a standstill before the pressure contact phase, ie the engagement of the forging jaws on the workpiece, and is kept at a standstill during the pressure contact phase.
  • Such forging machines are generally equipped with high or unchangeable frequencies. The forging machines are primarily used for forging long workpieces.
  • the manipulators move the workpiece according to the forging sequence both in the axial direction and in the circumferential direction in a rotary manner.
  • the rotary drive takes place by means of a constantly running electric motor, which acts on the axis of rotation via a worm drive.
  • the rotor movement is performed according to the necessary function by superimposing a constant worm gear and brake-spring system during the Pressure contact phase brought to a standstill.
  • the driven screw is axially displaceably supported and is axially supported by spring assemblies, so that the screw can dodge axially in both directions.
  • a disc brake is arranged with which the constant rotational movement of the manipulator axis of the worm wheel is braked before the start of the pressure contact phase and thus held.
  • the constant running motor drive causes the worm to unscrew the spring tension on the braked worm wheel.
  • the brake is released, whereby the screw is reset by the tensioned spring.
  • the rotation angle residue caused by braking is made up again.
  • the oscillation system requires a fixed stroke frequency of the forging machine. Since the rotating mass differs depending on the size of the workpiece, there is an adverse effect on the vibration system due to a change in mass. In addition, friction and damping change during operation. The necessary brake in the rotary drive also creates wear. The braking distances of a friction brake are not constant, which has the consequence that the function of the machine is impaired.
  • the object of the invention is to eliminate the disadvantage of the oscillating system in the axially displaceably driven worm in a manipulator for forging machines of the type mentioned above and instead to act actively and positively on the axial displaceability of the worm.
  • the manipulator of the type mentioned at the outset is characterized in accordance with the invention in that a controllable axially active superposition drive acts on the worm of the worm drive.
  • a hydraulically operating piston-cylinder unit is arranged at the free end of the worm shaft.
  • Part of the piston-cylinder unit, primarily the piston, is rigidly connected to the axially displaceable worm shaft, while the other part of the piston-cylinder unit, primarily the cylinder, is fixed in place.
  • the inventive arrangement of a controllable superimposition drive for the axial movement of the worm shaft enables the worm itself to be rotated by means of a motor drive rotating at a preselectable speed, the associated movement characteristic being effectively communicated to the axial movement of the worm.
  • Such active control of the system has the effect that the manipulator axis of rotation comes to a standstill before the pressure contact phase is reached, and after the pressure contact phase the subsequent run-up is overtaken by the next work cycle by additional acceleration and speed.
  • a further advantage results from the fact that both the forging machine can work with different stroke frequencies and the downtimes of the axis of rotation can be adapted in accordance with the pressure contact times.
  • the manipulator axis of rotation it is possible for the manipulator axis of rotation to be able to execute harmonic movements in a predetermined, controlled manner, in particular to accelerate and decelerate harmoniously and also to bring the standstill during the pressure contact phase of the forging machine without any other mechanical devices such as brakes, springs, damping elements, etc. being required for this . This reduces the mechanical construction effort and increases the functionality.
  • the hydraulic piston-cylinder unit is designed as a servo control device. Using the servo control, a predeterminable movement characteristic for the axial movement of the screw can be generated.
  • a servo control device is preferred with feedback by comparison of the actual values and target values.
  • the manipulator 1 of FIG. 1 moves the workpiece 2 in the axial direction as well as in the circumferential direction in accordance with the forging sequence.
  • the rotation takes place via a central axis 3, which is mounted in the manipulator housing 4;
  • the torque is introduced via the hub 5, which is fixedly connected to the central axis 3.
  • a predetermined number of pliers levers are arranged on a projecting collar 6, which are pivotably mounted about pins 8 and carry pliers jaws 9 at the free end that come into engagement with the workpiece 2.
  • the control depends on the forging sequence.
  • the worm drive 11 is composed of the worm wheel 12 and the worm 13.
  • the worm wheel 12 is non-rotatably connected to the central axis 3 of the manipulator.
  • the worm 13 which is in engagement with the worm wheel 12 is axially displaceably mounted.
  • the central axis 3 of the manipulator is conveyed to the rotor drive via the worm 13.
  • a speed-controlled motor 14 drives by means of a transmission element, e.g. a toothed belt 15, a pulley 16 through which the worm 13 is rotated.
  • the worm 13 is axially displaceable.
  • One end 18 of the worm 13 engages with a rotatably mounted bushing 19 which is rigidly connected to the pulley 16.
  • a hydraulically operating piston-cylinder unit 22 is arranged at the other end 20 of the axially displaceable screw 13.
  • a piston 25 is hydraulically displaceable, which is axially fixedly connected to the shaft end 20 by means of bushings 26 or the like, the worm shaft 13 being freely rotatable and at the same time axially with the end parts 18 and 20 is slidably mounted.
  • the hydraulically operating piston-cylinder unit 22 is advantageously controlled with a SERVO-HydrauliSCHEN VALVE so that by means of the SERVO-HydrauliSCHEN-VALVE 28 a predeterminable movement characteristic for the Axial movement of the screw 13 can be generated.
  • THE SERVO-HYDRAULIC VALVE 28 with feedback by comparing the actual and target values allows the axial displacement of the worm 13 to be influenced in such a way that the central axis 3 of the manipulator 1 comes to a standstill before the plunger reaches the pressure contact phase.
  • the driven, axially movable worm 13 is shifted at a corresponding constant speed in the direction of arrow 29, so that the worm 13 unscrews from the worm wheel 12 in such a way that the worm wheel 12 and thus the CENTRAL AXIS 3 despite the constant drive 14 to 18 stands still.
  • the axially displaceable screw 13 is reset in the direction of arrow 30 by means of the SERVO-HydrauliSCHEN valve 28, thereby the CENTRAL AXIS 3 is accelerated in addition to the constantly running drive, so that the resulting run-up is caught up until the next work cycle .
  • the programmable control device By means of the programmable control device additionally acting on the axial displacement of the worm 13 as a superposition drive, there is an active intervention in the axial kinematics of the rotatable worm shaft. It is made possible with simple means that the forging machine can now work with different stroke frequencies, the downtimes of the axis of rotation of the manipulator being able to be adjusted in advance in accordance with the pressure contact times by the plunger. Other mechanical devices such as brakes, springs, damping elements and the like. omitted. The mechanical construction effort is considerably reduced and the functionality of the entire system is increased.
  • the piston-cylinder unit 22 is controlled by means of a servo-hydraulic valve 28.
  • the setpoint input is rotatory - with the lowest output - e.g. with a stepper motor 31, which by means of a transmission element, e.g. a toothed belt 32, drives a pulley 33 and acts on a spindle-nut system 34 of the servo-hydraulic valve 28, whereby the rotary movement of the input shaft is converted into a linear movement such that the movement of the valve 35 opens in the opposite direction to the desired direction of movement of the piston 25 .
  • a transmission element e.g. a toothed belt 32
  • valve 35 Due to the non-rotatable connection of the threaded spindle 36 to the piston 25, the valve 35 is connected linearly directly to the piston 25, so that the actual position of the piston 25 acts on the valve 35 through the closed mechanical control loop and thus when the predetermined target value is reached Valve 35 is closed again.
  • the actual value of the piston 25 is recorded via a separate position measuring system 37 and compared in the electrical control with the predetermined target value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

A workpiece manipulator assembly for a forging press having a press ram comprises a workpiece rotating mechanism including a rotary drive system for rotating a workpiece in peripheral direction. The rotary drive system is operated by a drive motor running at a preselected constant speed to rotate the workpiece about an axis of rotation. An arresting assembly stops the rotary movement of the workpiece before and during a pressure contact phase for the press ram. The rotary drive system is adapted to rotate a driven worm which produces rotary movement to the workpiece rotating means and is mounted for axial displacement. The arresting assembly includes an axial drive unit for predeterminably controlling axial displacement of the driven worm to effect the arresting of said rotary movement.

Description

Die Erfindung bezieht sich auf einen Manipulator für Schmiedemaschinen, z. B. Mehr-Stößel-Schmi edemaschinen mit mehreren auf das Schmiedestück radial wirkenden Stößeln, wobei der Manipulator eine drehbar gelagerte Zentralachse aufweist, mit welcher das Werkstück entsprechend der Schmiedefolge rotorisch in Umfangsrichtung bewegbar ist, wobei der Drehantrieb des Manipulators mittels eines mit vorgewählter konstanter Drehzahl laufenden Motors erfolgt, der über einen Schneckentrieb auf die Zentralachse des Manipulators wirkt und wobei die rotorische Bewegung der Zentralachse vor der Druckberührungsphase durch die Stößel zum Stillstand gebracht und während der Druckberührungsphase im Stillstand gehalten wird, wobei die angetriebene Schnecke axial verschiebbar gelagert ist.The invention relates to a manipulator for forging machines, for. B. multi-plunger Schmi edemaschinen with a plurality of plungers acting radially on the forging, the manipulator having a rotatably mounted central axis with which the workpiece is rotatable in the circumferential direction according to the forging sequence, the rotary drive of the manipulator using a preselected constant speed Running motor takes place, which acts on the central axis of the manipulator via a worm drive and the rotor movement of the central axis is brought to a standstill by the plunger before the pressure contact phase and is kept at a standstill during the pressure contact phase, the driven worm being mounted so as to be axially displaceable.

Die rotorische Bewegung des Schmiedestücks wird vor der Druckberührungsphase, d. h. dem Eingriff der Schmiedebacken an dem Werkstück, zum Stillstand gebracht und während der Druckberührungsphase im Stillstand gehalten. Solche Schmiedemaschinen sind im allgemeinen mit hohen bzw. unveränderbaren Frequenzen ausgestattet. Die Schmiedemaschinen dienen vornehmlich zum Schmieden von langen Werkstücken.The rotor movement of the forging is brought to a standstill before the pressure contact phase, ie the engagement of the forging jaws on the workpiece, and is kept at a standstill during the pressure contact phase. Such forging machines are generally equipped with high or unchangeable frequencies. The forging machines are primarily used for forging long workpieces.

Bei einer aus der DE-OS 19 31 514.1 bekannten Schmiedemaschine bewegen die Manipulatoren das Werkstück entsprechend der Schmiedefolge sowohl in axialer Richtung als auch rotorisch in Umfangsrichtung. Der Drehantrieb erfolgt bei diesen Manipulatoren mittels eines konstant laufenden Elektromotors, der über einen Schneckentrieb auf die Drehachse wirkt. Die rotorische Bewegung wird entsprechend der notwendigen Funktion durch Uberlagerung von konstantem Schneckentrieb und Brems-Feder-System während der Druckberührungsphase zum Stillstand gebracht. Bei der bekannten Ausführung ist die angetriebene Schnecke axial verschiebbar gelagert und wird axial über Federpakete abgestützt, so daß die Schnecke axial in beiden Richtungen ausweichen kann. Um das Drehmoment an der Manipulatorachse aus der Federwirkung während der Druckberührungsphase zu vermeiden, ist eine Scheibenbremse angeordnet, mit der die konstante Drehbewegung der Manipulatorachse des Schneckenrades vor Beginn der Druckberührungsphase abgebremst und damit festgehalten wird. Der konstant weiterlaufende Motorantrieb führt dazu, daß sich die Schnecke an dem festgebremsten Schneckenrad fegen die Federspannung herausschraubt. Nach Beendigung der Druckberührungsphase wird die Bremse gelöst, wodurch die Schnecke über die gespannte Feder wieder zurückgestellt wird. Es entsteht an dem Schneckenrad und damit an der Manipulatorzange eine gegenüber der konstanten Geschwindigkeit erhöhte Geschwindigkeit. Der durch die Bremsung entstandene Drehwinkelrückstand wird wieder aufgeholt.In a forging machine known from DE-OS 19 31 514.1, the manipulators move the workpiece according to the forging sequence both in the axial direction and in the circumferential direction in a rotary manner. In these manipulators, the rotary drive takes place by means of a constantly running electric motor, which acts on the axis of rotation via a worm drive. The rotor movement is performed according to the necessary function by superimposing a constant worm gear and brake-spring system during the Pressure contact phase brought to a standstill. In the known embodiment, the driven screw is axially displaceably supported and is axially supported by spring assemblies, so that the screw can dodge axially in both directions. In order to avoid the torque on the manipulator axis from the spring action during the pressure contact phase, a disc brake is arranged with which the constant rotational movement of the manipulator axis of the worm wheel is braked before the start of the pressure contact phase and thus held. The constant running motor drive causes the worm to unscrew the spring tension on the braked worm wheel. After the pressure contact phase has ended, the brake is released, whereby the screw is reset by the tensioned spring. At the worm wheel and thus at the manipulator pliers there is a higher speed than the constant speed. The rotation angle residue caused by braking is made up again.

Im Verlauf der Schnecken-Rückstellbewegung und in Wirkzusammenhang mit den zusätzlich beschleunigten Massen wird rückstellend nicht nur die Mittelstellung erreicht, sondern das System schwingt in das gegenüberliegende Federpaket hinein und auch teilweise dann wieder zurück. Die Bremse fällt ein, bevor die neue Druckberührungszeit des nächsten Arbeitsspiels beginnt.In the course of the screw reset movement and in connection with the additionally accelerated masses, not only is the center position reset, but the system swings into the opposite spring assembly and then partially back again. The brake is applied before the new pressure contact time of the next work cycle begins.

Bei dem schwingenden System stehen die Federspannung, die Massenkräfte und die Geschwindigkeiten in direktem physikalischen Zusammenhang. Bei diesem System kann ein ordnungsgemäßes Funktionieren nur sichergestellt werden, wenn die konstruktiv festgelegten Parameter eingehalten werden. Schon bei den unterschiedlichen Bearbeitungsarten (Schruppen, Feinbearbeitung) bildet das Verhältnis von Berührungszeit und Leerzeit eine Variable, wodurch sich unterschiedliche Parameter für das Schwingsystem ergeben.With the vibrating system, the spring tension, the inertial forces and the speeds are directly physically related. With this system, proper functioning can only be ensured if the design parameters are observed. Even with the different types of processing (Roughing, fine machining), the ratio of contact time to idle time forms a variable, which results in different parameters for the vibration system.

Das Schwingsystem erfordert die Bindung an eine feste Hubfrequenz der Schmiedemaschine. Da die Drehmasse, abhängig von der Werkstückgröße, unterschiedlich ist, ergibt sich eine nachteilige Wirkung durch Massenveränderung auf das Schwingsystem. Hinzu kommt, daß im laufenden Betrieb sich Reibung und Dämpfung verändern. Die notwendige Bremse im Drehantrieb erzeugt darüber hinaus Verschleiß. Die Bremswege einer Reibungsbremse sind nicht konstant, was die Beeinträchtigung der Funktion der Maschine zur Folge hat.The oscillation system requires a fixed stroke frequency of the forging machine. Since the rotating mass differs depending on the size of the workpiece, there is an adverse effect on the vibration system due to a change in mass. In addition, friction and damping change during operation. The necessary brake in the rotary drive also creates wear. The braking distances of a friction brake are not constant, which has the consequence that the function of the machine is impaired.

Aufgabe der Erfindung ist es, bei einem Manipulator für Schmiedemaschinen der anfangs genannten Art, den Nachteil des Schwingsystems bei der axial verschiebbar gelagerten angetriebenen Schnecke auszuschalten und stattdessen aktiv und positiv auf die axiale Verschiebbarkeit der Schnecke einzuwirken. Der Manipulator der eingangs erwähnten Bauart zeichnet sich gemäß der Erfindung dadurch aus, daß auf die Schnecke des Schneckentriebs ein steuerbarer axial wirksamer Überlagerungsantrieb einwirkt.The object of the invention is to eliminate the disadvantage of the oscillating system in the axially displaceably driven worm in a manipulator for forging machines of the type mentioned above and instead to act actively and positively on the axial displaceability of the worm. The manipulator of the type mentioned at the outset is characterized in accordance with the invention in that a controllable axially active superposition drive acts on the worm of the worm drive.

Gemäß einem weiteren Merkmal der Erfindung ist am freien Ende der Schneckenwelle eine hydraulisch arbeitende Kolben-Zylinder-Einheit angeordnet. Ein Teil der Kolbenzylinder-Einheit, vornehmlich der Kolben, ist mit der axial verschiebbaren Schneckenwelle starr verbunden, während der andere Teil der Kolbenzylinder-Einheit, vornehmlich der Zylinder, ortsfest angebracht ist.According to a further feature of the invention, a hydraulically operating piston-cylinder unit is arranged at the free end of the worm shaft. Part of the piston-cylinder unit, primarily the piston, is rigidly connected to the axially displaceable worm shaft, while the other part of the piston-cylinder unit, primarily the cylinder, is fixed in place.

Durch die erfindungsgemäße Anordnung eines steuerbaren Überlagungsantriebes für die Axialbewegung der Schneckenwelle kann die Schnecke selbst über einen mit vorwählbarer Geschwindigkeit umlaufenden motorischen Antrieb gedreht werden, wobei der Axialbewegung der Schnecke eine zugeordnete Bewegungscharakteristik wirksam mitgeteilt wird. Eine solche aktive Steuerung des Systems bewirkt, daß vor Erreichen der Druckberührungsphase die Manipulator-Drehachse zum Stillstand kommt, und nach der Druckberührungsphase durch zusätzliche Beschleunigung und Geschwindigkeit der entstandene Nachlauf bis zum nächsten Arbeitsspiel eingeholt wird. Ein weiterer Vorteil ergibt sich dadurch, daß sowohl die Schmiedemaschine mit unterschiedlichen Hubfrequenzen arbeiten kann, als auch die Stillstandzeiten der Drehachse entsprechend der Druckberührungszeiten angepaßt werden können. Es ist ermöglicht, daß die Manipulatordrehachse in vorgegebener gesteuerter Weise harmonische Bewegungen ausführen kann, insbesondere harmonisch beschleunigt und verzögert und auch der Stillstand während der Druckberührungsphase der Schmiedemaschine bewirkt wird, ohne daß hierzu sonstige mechanische Einrichtungen, wie Bremsen, Federn, Dämpfungselemente usw. erforderlich sind. Der mechanische Bauaufwand wird hierdurch vermindert und die Funktionstüchtigkeit erhöht.The inventive arrangement of a controllable superimposition drive for the axial movement of the worm shaft enables the worm itself to be rotated by means of a motor drive rotating at a preselectable speed, the associated movement characteristic being effectively communicated to the axial movement of the worm. Such active control of the system has the effect that the manipulator axis of rotation comes to a standstill before the pressure contact phase is reached, and after the pressure contact phase the subsequent run-up is overtaken by the next work cycle by additional acceleration and speed. A further advantage results from the fact that both the forging machine can work with different stroke frequencies and the downtimes of the axis of rotation can be adapted in accordance with the pressure contact times. It is possible for the manipulator axis of rotation to be able to execute harmonic movements in a predetermined, controlled manner, in particular to accelerate and decelerate harmoniously and also to bring the standstill during the pressure contact phase of the forging machine without any other mechanical devices such as brakes, springs, damping elements, etc. being required for this . This reduces the mechanical construction effort and increases the functionality.

Gemäß der Erfindung ist weiterhin vorgesehen, daß die hydraulische Kolben-Zylinder-Einheit als Servo-Steuerungs-Vorrichtung ausgebildet ist. Mittels der Servosteuerung kann eine vorher bestimmbare Bewegungscharakteristik für die Axialbewegung der Schnecke erzeugt werden.According to the invention it is further provided that the hydraulic piston-cylinder unit is designed as a servo control device. Using the servo control, a predeterminable movement characteristic for the axial movement of the screw can be generated.

Bevorzugt ist die Verwendung einer Servosteuerungs-Vorrichtung mit Rückkopplung durch Vergleich der Ist-Werte und Soll-Werte.The use of a servo control device is preferred with feedback by comparison of the actual values and target values.

Die Erfindung wird anhand eines in der Zeichnung dargestellten Ausführungsbeispieles nachstehend erläutert:

Figur 1
zeigt eine Ausführungsform eines Manipulators zur Bewegung des Werkstückes in axialer Richtung und rotorisch in Umfangsrichtung im Längsschnitt und im Schema.
Figur 2
stellt einen Schnitt nach der Linie II-II der Figur 1 durch das Schneckengetriebe zum Teil in Ansicht, zum Teil im Schnitt im Schema dar.
Figur 3
veranschaulicht eine Ausführungsform einer Servo-Steuervorrichtung für die Steuerung der Axialbewegung der Schnecke prinzipmäßig und im Schema.
The invention is explained below using an exemplary embodiment shown in the drawing:
Figure 1
shows an embodiment of a manipulator for moving the workpiece in the axial direction and rotor in the circumferential direction in longitudinal section and in the diagram.
Figure 2
represents a section along the line II-II of Figure 1 through the worm gear partly in view, partly in section in the diagram.
Figure 3
illustrates an embodiment of a servo control device for controlling the axial movement of the screw in principle and in the diagram.

Der Manipulator 1 der Figur 1 bewegt das Werkstück 2 entsprechend der Schmiedefolge sowohl in axialer Richtung als auch rotorisch in Umfangsrichtung. Die Rotation erfolgt über eine Zentralachse 3, die im Manipulatorgehäuse 4 gelagert ist; die Einleitung des Drehmoments erfolgt über die mit der Zentralachse 3 fest verbundene Nabe 5. Am vorderen freien Ende der Zentralachse 3 ist an einem vorstehenden Bund 6 eine vorbestimmte Anzahl von Zangenhebeln angeordnet, die um Zapfen 8 schwenkbar gelagert sind und am freien Ende Zangenbacken 9 tragen, die mit dem Werkstück 2 in Eingriff kommen. Die Steuerung richtet sich nach der Schmiedefolge.The manipulator 1 of FIG. 1 moves the workpiece 2 in the axial direction as well as in the circumferential direction in accordance with the forging sequence. The rotation takes place via a central axis 3, which is mounted in the manipulator housing 4; The torque is introduced via the hub 5, which is fixedly connected to the central axis 3. At the front free end of the central axis 3, a predetermined number of pliers levers are arranged on a projecting collar 6, which are pivotably mounted about pins 8 and carry pliers jaws 9 at the free end that come into engagement with the workpiece 2. The control depends on the forging sequence.

Für den Drehantrieb der Zentralachse 3 des Manipulators 1 dient ein mit vorwählbarer Drehzahl konstant laufender Motor 14. Dieser wirkt über einen Schneckentrieb 11 auf die Zentralachse 3 des Manipulators. Der Schneckentrieb 11 setzt sich aus dem Schneckenrad 12 und der Schnecke 13 zusammen. Das Schneckenrad 12 ist mit der ZENTRALACHSE 3 des Manipulators drehfest verbunden. Die mit dem Schneckenrad 12 in Eingriff stehtende Schnecke 13 ist axial verschieblich gelagert. Über die Schnecke 13 wird der ZENTRALACHSE 3 des Manipulators der rotorische Antrieb vermittelt. Als Antriebsmotor für die Schnecke 13 treibt ein drehzahlgeregelter Motor 14 mittels eines Übertragungsgliedes, z.B. eines Zahnriemens 15, eine Riemenscheibe 16 an, durch die die Schnecke 13 in Rotation gebracht wird.A motor 14, which runs at a preselectable speed and serves to rotate the central axis 3 of the manipulator 1, acts on the central axis 3 of the manipulator via a worm drive 11. The worm drive 11 is composed of the worm wheel 12 and the worm 13. The worm wheel 12 is non-rotatably connected to the central axis 3 of the manipulator. The worm 13 which is in engagement with the worm wheel 12 is axially displaceably mounted. The central axis 3 of the manipulator is conveyed to the rotor drive via the worm 13. As a drive motor for the worm 13, a speed-controlled motor 14 drives by means of a transmission element, e.g. a toothed belt 15, a pulley 16 through which the worm 13 is rotated.

Die Schnecke 13 ist axial verschiebbar gelagert. Das eine Ende 18 der Schnecke 13, greift mit einer drehbar gelagerten Buchse 19 zusammen, welche mit der Riemenscheibe 16 starr verbunden ist. Am anderen Ende 20 der axial verschiebbaren Schnecke 13 ist eine hydraulisch arbeitende Kolben-Zylinder-Einheit 22 angeordnet. In einem in einer Gestellwand 23 oder dergleichen ortsfest gelagerten Zylinder 24 ist ein Kolben 25 hydraulisch verschiebbar, der mittels Buchsen 26 oder dergleichen mit dem Wellenende 20 in axialer fester Verbindung steht, wobei die Schneckenwelle 13 mit den Endteilen 18 und 20 ungehindert drehbar und zugleich axial verschiebbar gelagert ist.The worm 13 is axially displaceable. One end 18 of the worm 13 engages with a rotatably mounted bushing 19 which is rigidly connected to the pulley 16. A hydraulically operating piston-cylinder unit 22 is arranged at the other end 20 of the axially displaceable screw 13. In a cylinder 24 mounted in a fixed manner in a frame wall 23 or the like, a piston 25 is hydraulically displaceable, which is axially fixedly connected to the shaft end 20 by means of bushings 26 or the like, the worm shaft 13 being freely rotatable and at the same time axially with the end parts 18 and 20 is slidably mounted.

Die hydraulisch arbeitende Kolben-Zylinder-Einheit 22 ist vorteilhaft mit einem SERVO-HydrauliSCHEN VENTIL gesteuert so daß mittels des SERVO-HydrauliSCHEN-VENTILS 28 eine vorbestimmbare Bewegungscharakteristik für die Axialbewegung der Schnecke 13 erzeugt werden kann. DAS SERVO-HydrauliSCHE-VENTIl 28 mit Rückkoplung durch Vergleich der Ist-Werte und Soll-Werte erlaubt es, die Axialverschiebung der Schnecke 13 so zu beeinflussen, daß vor Erreichen der Druckberührungsphase durch die Stößel die ZENTRALACHSE 3 des ManiPULATORS 1 zum Stillstand kommt.The hydraulically operating piston-cylinder unit 22 is advantageously controlled with a SERVO-HydrauliSCHEN VALVE so that by means of the SERVO-HydrauliSCHEN-VALVE 28 a predeterminable movement characteristic for the Axial movement of the screw 13 can be generated. THE SERVO-HYDRAULIC VALVE 28 with feedback by comparing the actual and target values allows the axial displacement of the worm 13 to be influenced in such a way that the central axis 3 of the manipulator 1 comes to a standstill before the plunger reaches the pressure contact phase.

In diesem Falle wird die angetriebene, axial bewegliche Schnecke 13 mit entsprechender konstanter Geschwindigkeit in Pfeilrichtung 29 verschoben, so daß sich die Schnecke 13 aus dem Schneckenrad 12 so herausschraubt, daß das Schneckenrad 12 und somit die ZENTRALACHSE 3 trotz des konstant bleidenden Antriebs 14 bis 18 stillsteht. Nach Beendigung der Druckberührphase durch die Stößel der Schmiedemaschine wird mittels des SERVO-HydrauliSCHEN Ventils 28 die axial verschiebbare Schneke 13 in Pfeilrichtung 30 zurückgestellt, hierdurch wird die ZENTRALACHSE 3 zusätzlich zum konstant laufenden Antrieb beschleunigt, so daß der entstandene Nachlauf bis zum nächsten Arbeitsspiel eingeholt ist. Mittels der auf die Axialverschiebung der Schnecke 13 zusätzlich einwirkenden programmierbaren Steuerungsvorrichtung als Überlagerungsantrieb wird aktiv in die axiale Kinematik der drehbaren Schneckenwelle eingegriffen. Es ist mit einfachen Mitteln ermöglicht, daß die Schmiedemaschine nunmehr mit unterschiedlichen Hubfrequenzen arbeiten kann, wobei die Stillstandzeiten der Drehachse des Manipulators entsprechend der Druckberührungszeiten durch die Stößel vorher bestimmbar angepaßt werden können. Sonstige mechanische Einrichtungen, wie Bremsen, Federn, Dämpfungselemente u.dgl. entfallen. Der mechanische Bauaufwand wird erheblich vermindert und die Funktionstüchtigkeit der Gesamtanlage erhöht.In this case, the driven, axially movable worm 13 is shifted at a corresponding constant speed in the direction of arrow 29, so that the worm 13 unscrews from the worm wheel 12 in such a way that the worm wheel 12 and thus the CENTRAL AXIS 3 despite the constant drive 14 to 18 stands still. After the end of the pressure contact phase by the ram of the forging machine, the axially displaceable screw 13 is reset in the direction of arrow 30 by means of the SERVO-HydrauliSCHEN valve 28, thereby the CENTRAL AXIS 3 is accelerated in addition to the constantly running drive, so that the resulting run-up is caught up until the next work cycle . By means of the programmable control device additionally acting on the axial displacement of the worm 13 as a superposition drive, there is an active intervention in the axial kinematics of the rotatable worm shaft. It is made possible with simple means that the forging machine can now work with different stroke frequencies, the downtimes of the axis of rotation of the manipulator being able to be adjusted in advance in accordance with the pressure contact times by the plunger. Other mechanical devices such as brakes, springs, damping elements and the like. omitted. The mechanical construction effort is considerably reduced and the functionality of the entire system is increased.

Anhand der Figur 3 wird ein Ausführungsbeispiel einer Sorvosteuerungsvorrichtung erläutert. Die Kolben-Zylinder-Einheit 22 wird mittels eines servo-hydraulischen Ventils 28 gesteuert. Der Sollwert-Eingang erfolgt rotorisch - mit kleinster Leistung - z.B. mit einem Schrittmotor 31, der mittels eines Übertragungsgliedes, z.B. eines Zahnriemens 32, eine Riemenscheibe 33 antreibt und auf ein Spindel-Mutter-System 34 des servohydraulischen Ventils 28 wirkt, wodurch die rotorische Bewegung der Eingangswelle in eine Linearbewegung so umgesetzt wird, daß die Bewegung des Ventils 35 entgegengesetzt zur gewünschten Bewegungsrichtung des Kolbens 25 öffnet. Durch die drehfeste Anbindung der Gewindespindel 36 mit dem Kolben 25 ist das Ventil 35 linear direkt mit dem Kolben 25 verbunden, so daß die Ist-Stellung des Kolbens 25 durch den geschlossenen mechanischen Regelkreis auf das Ventil 35 wirkt und somit bei Erreichen des vorgegebenen Sollwertes das Ventil 35 wieder geschlossen ist. Zur Kontrolle der Kolbenstellung wird der Ist-Wert des Kolbens 25 über ein separates Wegmeßsystem 37 erfaßt und in der elektrischen Steuerung mit dem vorgegebenen Soll-Wert verglichen.An exemplary embodiment of a Sorvo control device is explained with reference to FIG. The piston-cylinder unit 22 is controlled by means of a servo-hydraulic valve 28. The setpoint input is rotatory - with the lowest output - e.g. with a stepper motor 31, which by means of a transmission element, e.g. a toothed belt 32, drives a pulley 33 and acts on a spindle-nut system 34 of the servo-hydraulic valve 28, whereby the rotary movement of the input shaft is converted into a linear movement such that the movement of the valve 35 opens in the opposite direction to the desired direction of movement of the piston 25 . Due to the non-rotatable connection of the threaded spindle 36 to the piston 25, the valve 35 is connected linearly directly to the piston 25, so that the actual position of the piston 25 acts on the valve 35 through the closed mechanical control loop and thus when the predetermined target value is reached Valve 35 is closed again. To check the piston position, the actual value of the piston 25 is recorded via a separate position measuring system 37 and compared in the electrical control with the predetermined target value.

Claims (4)

  1. Manipulator for forging machines, e.g. multi-ram forging machines with several rams acting radially on the forged piece, where the manipulator has a rotating central axle (3) with which the workpiece (2) can be rotationally moved in the peripheral direction in accordance with the forging sequence, where the rotary drive (12, 13) of the manipulator (1) is controlled by a motor (14) running at a preselected constant rotational speed, the motor acting on the central axle (3) of the manipulator (1) via a worm drive (12, 13), and where the rotational movement of the central axle is halted by the rams before the pressure contact phase and is held still during the pressure contact phase, where the driven worm (13) is mounted in bearings permitting axial movement, characterised in that a controllable, axially-acting cross-drive (22, 28) acts on the worm (13).
  2. Manipulator as per Claim 1, characterised in that a hydraulic piston/cylinder unit (22) is attached to the free end (20) of the worm (13) and that a part of the piston/cylinder unit (22), namely the piston (25), is rigidly connected to the axially moveable worm (13) and the other part of the piston/cylinder unit (22), namely the cylinder (24), is stationary.
  3. Manipulator as per Claim 1 or 2, characterised in that the cross-drive essentially consists of a servo-hydraulic valve (28) and the piston/cylinder unit (22), where the movement characteristic of the worm (13) can be determined by means of the servo-hydraulic valve (28) via the piston/cylinder unit (22).
  4. Manipulator as per one of the Claims 1 to 3, characterised in that the servo-hydraulic valve (28) is mechanically connected to the piston (25), so that the position of the piston (25) acts on the servo-hydraulic valve (28) via a closed, mechanical control loop.
EP90109301A 1989-12-23 1990-05-17 Manipulator for forging machines, in particular multi-punch forging machines Expired - Lifetime EP0434891B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90109301T ATE96704T1 (en) 1989-12-23 1990-05-17 MANIPULATOR FOR FORGING MACHINES, ESPECIALLY MORE-PILOT FORGING MACHINES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3942942 1989-12-23
DE3942942A DE3942942C1 (en) 1989-12-23 1989-12-23

Publications (3)

Publication Number Publication Date
EP0434891A2 EP0434891A2 (en) 1991-07-03
EP0434891A3 EP0434891A3 (en) 1991-12-18
EP0434891B1 true EP0434891B1 (en) 1993-11-03

Family

ID=6396429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90109301A Expired - Lifetime EP0434891B1 (en) 1989-12-23 1990-05-17 Manipulator for forging machines, in particular multi-punch forging machines

Country Status (6)

Country Link
US (1) US5000028A (en)
EP (1) EP0434891B1 (en)
JP (1) JPH0732946B2 (en)
KR (1) KR930009401B1 (en)
AT (1) ATE96704T1 (en)
DE (2) DE3942942C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501483A1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR FORGING A WORKPIECE
AT501482A1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR INTERMITTENTLY DRIVING A SPINDLE FOR A WORKPIECE BRACKET, ESPECIALLY A FORGING MACHINE
EP2243572A2 (en) 2009-04-23 2010-10-27 SMS Meer GmbH Manipulator for forging machines

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9005834U1 (en) * 1990-05-23 1991-09-19 Eumuco Aktiengesellschaft Fuer Maschinenbau, 5090 Leverkusen, De MANIPULATOR FOR FORGING MACHINES, ESPECIALLY MULTI-STAINLESS FORGING MACHINES
DE4132220A1 (en) * 1991-09-27 1993-04-01 Pahnke Eng Gmbh & Co Kg Hydraulically actuated forging press - has a workpiece manipulator which is synchronised with movement of press ram
AT396883B (en) * 1992-08-13 1993-12-27 Gfm Fertigungstechnik CLAMPING HEAD FOR FORGING MACHINES
DE202004020404U1 (en) * 2003-06-05 2005-05-25 Langenstein & Schemann Gmbh Handling device for handling a workpiece during a forming process
DE102005012297B4 (en) * 2005-03-17 2007-06-14 Sms Meer Gmbh forging machine
DE102009052482A1 (en) * 2009-02-11 2010-08-19 Sms Meer Gmbh Method and device for producing tubular workpieces from a pre-punched hollow block
KR100968213B1 (en) * 2009-11-16 2010-07-06 (주)씨피티 Apparatus for forging billet and method of the same
ES2388391B2 (en) * 2010-03-30 2013-09-05 Eurocopter Espana S A ACTUATOR OF A BUTTON OF A EQUIPMENT AND TEST BENCH EQUIPPED WITH SUCH ACTUATOR.
CN101983795B (en) * 2010-08-30 2012-10-31 张家港市明华机械制造有限公司 Rotation actuating device of feeding shaft sleeve on pipe bender
KR101219291B1 (en) * 2011-02-14 2013-01-21 주식회사 나래코퍼레이션 Forging system using servo control hydraulic method
JP6438667B2 (en) * 2014-03-26 2018-12-19 大和製罐株式会社 Molding apparatus, object molding method, and can body manufacturing method
AT516507B1 (en) * 2014-12-02 2016-06-15 Gfm-Gmbh forging machine
TWI663005B (en) * 2017-02-14 2019-06-21 春日機械工業股份有限公司 Driving device of forging parts processing machine
CN109047617B (en) * 2018-08-14 2020-07-07 浙江联大锻压有限公司 Parallel lifting mechanism for clamp of forging manipulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126770A (en) * 1964-03-31 Forge tongs
US3098402A (en) * 1960-03-18 1963-07-23 Kralowetz Brnno Forging machine
AT252691B (en) * 1964-03-19 1967-03-10 Othmar Ing Ruthner Device on the rotary tong drive of forge manipulators or similar. Devices
DE1627660A1 (en) * 1966-02-16 1970-05-06 Zdarske Strojirny A Slevarny Device for manipulating with blanks, in particular rough blocks
AT278481B (en) * 1968-08-01 1970-02-10 Ges Fertigungstechnik & Maschb Clamping head for forging machines
DD230133A3 (en) * 1982-09-02 1985-11-20 Schwermasch Rau Wildau FENDER FOR CHARGING MACHINES

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501483A1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR FORGING A WORKPIECE
AT501482A1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR INTERMITTENTLY DRIVING A SPINDLE FOR A WORKPIECE BRACKET, ESPECIALLY A FORGING MACHINE
AT501483B1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR FORGING A WORKPIECE
AT501482B1 (en) * 2004-05-26 2006-09-15 Gfm Beteiligungs & Man Gmbh DEVICE FOR INTERMITTENTLY DRIVING A SPINDLE FOR A WORKPIECE BRACKET, ESPECIALLY A FORGING MACHINE
EP2243572A2 (en) 2009-04-23 2010-10-27 SMS Meer GmbH Manipulator for forging machines
DE102009052141A1 (en) 2009-04-23 2010-10-28 Sms Meer Gmbh Manipulator for forging machines
US8234903B2 (en) 2009-04-23 2012-08-07 Sms Meer Gmbh Manipulator for forging machine
EP2243572A3 (en) * 2009-04-23 2014-11-19 SMS Meer GmbH Manipulator for forging machines

Also Published As

Publication number Publication date
JPH03193234A (en) 1991-08-23
EP0434891A3 (en) 1991-12-18
JPH0732946B2 (en) 1995-04-12
KR910009361A (en) 1991-06-28
EP0434891A2 (en) 1991-07-03
ATE96704T1 (en) 1993-11-15
DE3942942C1 (en) 1991-06-20
KR930009401B1 (en) 1993-10-04
US5000028A (en) 1991-03-19
DE59003350D1 (en) 1993-12-09

Similar Documents

Publication Publication Date Title
EP0434891B1 (en) Manipulator for forging machines, in particular multi-punch forging machines
EP1748853B1 (en) Stamping machine with a motorised rotating/lifting drive
DE2534626C2 (en) Device for balancing inertia forces in machines driven by a crank drive
DE875119C (en) Friction wheel drive
AT401486B (en) MANIPULATOR FOR FORGING MACHINES, e.g. MULTISMASTER FORGING MACHINES
DE3000532C2 (en) Drive device for bending slides of stamping and bending machines
EP1748854B1 (en) Machine tool comprising a lifting drive for acting on a workpiece by means of a machining tool
DE2834360C3 (en) Positioning device for the kneading mechanism of a rotary kneading machine in ring type
DE3240211C2 (en) Roll feeding device
EP2319635B1 (en) Pressing drive and method for generating a stroke movement in a tool mount using a pressing drive
DE10107484B4 (en) Stroke position control of the ram of punch presses
DE2533639C3 (en) Machine for cutting true-to-size sections from an elongated workpiece
DE912522C (en) Repassing or swing cut press for processing workpieces in the manner of a scraping process
DE3911073C1 (en)
DE102009060232A1 (en) Swivel drive, particularly rotary indexing table, has housing component, rotary element rotatable relative to housing component, and electrically operated drive unit, through which rotary element is drivable to clocked rotary movement
DE4206329A1 (en) Press used in guillotine for paper, cardboard, etc - has servomotor driving spindle through toothed belt with nut on spindle bearing on press head
DE3424515C2 (en)
DE2322660C3 (en) Drive for a press punch
DE2438784A1 (en) Rolling head to profile cylindrical work pieces - uses hydraulically or pneumatically driven actuator
DE614420C (en) Device for controlling the adjustment movement of the tool of turning and boring mills rotating in front of the workpieces for the production of bodies with non-circular cross-sections, in particular of pilger roller calibers
EP0980727A2 (en) Device connected to a crank for moving a part mounted on a slider relative thereto
DE2233550C3 (en) Electric motor with axially movable rotor
DD147867B1 (en) STEP SCHALTWERK
DE2308948A1 (en) OSCILLATING DEVICE FOR TOOL SLIDES ON MACHINE TOOLS
DD288338A5 (en) DEVICE FOR CONTROLLING THE READING TIME OF FRICTION WELDING MACHINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19920806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 96704

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59003350

Country of ref document: DE

Date of ref document: 19931209

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EUMUCO AKTIENGESELLSCHAFT FUER MASCHINENBAU

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940203

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960923

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090527

Year of fee payment: 20

Ref country code: FR

Payment date: 20090513

Year of fee payment: 20

Ref country code: AT

Payment date: 20090515

Year of fee payment: 20

Ref country code: DE

Payment date: 20090525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090522

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100517