EP0430689B1 - Brai en phase méso pour la préparation d'objets en carbone - Google Patents

Brai en phase méso pour la préparation d'objets en carbone Download PDF

Info

Publication number
EP0430689B1
EP0430689B1 EP19900312978 EP90312978A EP0430689B1 EP 0430689 B1 EP0430689 B1 EP 0430689B1 EP 19900312978 EP19900312978 EP 19900312978 EP 90312978 A EP90312978 A EP 90312978A EP 0430689 B1 EP0430689 B1 EP 0430689B1
Authority
EP
European Patent Office
Prior art keywords
pitch
mesophase
carbon
mesophase pitch
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900312978
Other languages
German (de)
English (en)
Other versions
EP0430689A1 (fr
Inventor
Isao Mochida
Yukio C/O Mitsubishi Gas Chemical Co. Inc. Sakai
Hiroyuki Mitsubishi Gas Chemical Co. Inc Ohtsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27230090A external-priority patent/JP2917486B2/ja
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of EP0430689A1 publication Critical patent/EP0430689A1/fr
Application granted granted Critical
Publication of EP0430689B1 publication Critical patent/EP0430689B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch

Definitions

  • the present invention relates to mesophase pitch for use in the production of high-performance carbon fibers and other carbon materials.
  • High-performance carbon fibers are commercially produced chiefly from PAN (polyacrylonitrile).
  • PAN polyacrylonitrile
  • PAN is expensive and does not show high yield in carbonization. It has recently been found that carbon fibers which have comparable or better characteristics than those prepared from PAN can be produced from inexpensive pitch, and active efforts are being made to commercialize this method.
  • pitch there are two types of pitch that can be used as a starting material for the manufacture of carbon materials; isotropic pitch and anisotropic pitch.
  • Carbon fibers produced from isotropic pitch are inexpensive but they suffer from the disadvantage of low strength due to poor molecular orientation. Therefore, high-performance carbon products cannot be produced from isotropic pitch.
  • carbon fibers produced from anisotropic pitch called "mesophase pitch” have a higher degree of molecular orientation and exhibit improved mechanical properties in terms of strength and modulus of elasticity. Therefore, with a view to producing high-performance carbon fibers, extensive studies are being conducted on the production of mesophase pitch from catalytic cracked petroleum pitch, petroleum tar pitch or coal tar pitch.
  • This oriented structure is maintained without being disturbed during the stage of subsequent "stabilization” in which the surface of fibers is oxidized by gradual heating under an air current and during the stage of "carbonization” in which the stabilized fibers are heat-treated in an inert gas atmosphere at temperatures not lower than 1,000°C. It has been confirmed by many experiments that this effect contributes to the production of highly oriented, high-performance carbon fibers.
  • mesophase The portion of pitch which has an optically anisotropic phase (this portion is hereinafter referred to as "mesophase") is insoluble in polar solvents such as quinoline and pyridine and it has so far been considered that mesophase is identical to the component which is insoluble in polar solvents.
  • polar solvents such as quinoline and pyridine
  • mesophase is identical to the component which is insoluble in polar solvents.
  • mesophase contains both components which are insoluble in polar solvents and components which are soluble in said solvents.
  • mesophase means that portion of a phase which shows optical anisotropy when observed under a polarizing microscope, and the proportion taken by the area of this optically anisotropic phase under observation with a polarizing microscope shall be called “the content of mesophase”, or more simply “the mesophase content”.
  • the mesophase content of pitch is preferably at least 90%, more preferably 100%.
  • an increase in the mesophase content generally causes an increase in the softening point and viscosity of the pitch and renders it difficult to perform spinning with consistent results.
  • the high softening point and viscosity necessitate spinning at elevated temperatures but then the pitch is prone to thermal decomposition or condensation, and the resulting gases and infusible high-molecular weight substances make it difficult to continue spinning operations for a prolonged time with consistent results.
  • JP-A-136835/1983 shows a method in which isotropic pitch is heat-treated and the resulting mesophase is filtered off, with the remaining pitch being subjected to another heat treatment.
  • US-A-4,533,461 shows a method in which pitch is heat-treated to adjust the mesophase content to be within the range of 20-80%, followed by precipitation and recovery of the mesophase.
  • the mesophase content of mesophase pitch for use in the production of carbon materials has to be increased in order to provide high performance in such aspects as strength and modulus of elasticity.
  • the mesophase content of the pitch must also be increased for the purpose of facilitating spinning operations in the production of carbon fibers. Additional requirements include high heat stability during spinning operations, high stabilization reactivity of the spun fibers and high yield in carbonization. In the case of producing carbon materials, the yield of the carbon material produced by carbonization of the pitch must also be high.
  • the mesophase pitch for use in the production of carbon materials is required to satisfy the following conditions: (1) high mesophase content, (2) high heat stability during spinning operations, (3) high stabilization reactivity, and (4) high yield in carbonization.
  • mesophase pitch having a reasonable degree of polymerization and in which high proportions of the total carbon atoms were occupied by methyl groups and aromatic ring structures exhibits excellent performance and satisfies the four requirements set forth above. It is thus suitable for use in the production of high-performance carbon products and can be spun into fibers in an easy and consistent way. Furthermore, the spun fibers can be efficiently stabilized with the added advantage of high yield in subsequent carbonization.
  • the present invention has been accomplished on the basis of these findings.
  • a mesophase pitch for use in the production of carbon materials said pitch having an average molecular weight of at least 1,000 and a hydrogen-to-carbon atomic ratio of 0.5 - 1.0 with an aromatic carbon ratio (fa) being at least 0.7, a methylic carbon content of at least 4% of the total carbon atoms, a naphthenic (i.e. cycloparaffinic) carbon content of less than 7% of the total carbon atoms and at least 90% of an optically anisotropic phase.
  • mesophase pitch from a condensed polycyclic hydrocarbon that contained naphthenic (i.e. cycloparaffinic) carbon in an amount of at least 7% of the total carbon atoms. Since this pitch satisfied the four requirements described above, the inventors filed a patent application on it, which is now US-A-4,891,126. As a result of their continued studies on mesophase pitch, the present inventors found that when napthalene derivatives such as methylnaphthalene having at least one methyl group were polymerized, mesophase pitch that contained less than 7% napthenic carbon atoms and which yet exhibited high performance could be produced if the methylic carbon content is at least 4% of the total carbon atoms. In particular, this mesophase pitch has a higher stabilization reactivity than that described in US-A-4,891,126.
  • the average molecular weight of the mesophase pitch of the present invention is measured with a vapor pressure osmometer using chloroform as a solvent.
  • the solvent-soluble portion of the pitch dissolves in chloroform and its molecular weight is measured with a vapor pressure osmometer.
  • the insoluble portion is made soluble by performing a hydrogenation reaction under mild conditions using metallic lithium and ethylenediamine, and its molecular weight is measured with the same vapor presure osmometer. The results of the two measurements are used to determine the average molecular weight of the mesophase pitch.
  • the mesophase pitch of the present invention has an average molecular weight of at least 1,000, preferably 1,000 - 1,700, as measured by the above-described method. If the average molecular weight is less than about 1,000, the degree of polymerization that can be achieved is too low to produce pitch having high mesophase content.
  • the carbon and hydrogen contents of the mesophase pitch of the present invention are measured with an automatic analyzer (CHN coder) utilizing a detection technique that measures the thermal conductivity of combustion gases.
  • the aromatic carbon ratio (fa) is measured by an IR absorption technique and the methylic carbon content by NMR.
  • the hydrogen to carbon atomic ratio of the mesophase pitch for use in the production of carbon materials of the present invention is in the range of from 0.5 to 1.0, preferably from 0.6 to 1.0. If the atomic ratio of hydrogen to carbon is less than about 0.5, the resulting pitch suffers the problem of excessive dehydrogenation compared to polymerization and its softening point is so much increased as to render subsequent spinning and other processing operations difficult. If the hydrogen to carbon atomic ratio is higher than about 1.0, the resulting pitch has a low degree of orientation on account of insufficient degree of polymerization, and this makes it impossible to obtain carbon fibers or other carbon materials having desired performance in such aspects as strength and modulus of elasticity.
  • the aromatic carbon ratio (fa) is the ratio of the number of carbon atoms in aromatic ring structures to the total number of carbon atoms present.
  • the pitch of the present invention has an fa of at least 0.7, preferably between 0.75 and 0.87. If the value of fa is less than about 0.7, the molecules that constitute a mesophase do not have a high degree of planar structure and it is difficult to achieve consistent production of pitch having a high content of an optically anisotropic phase.
  • the methylic carbon content of the pitch of the present invention is at least 4%, preferably at least 5%, of the total carbon atoms present. If the methylic carbon content is less than about 4%, the stabilization reactivity is so low that it takes an unduly long time to complete the stabilizing treatment, with the increased chance of fusion occurring between stabilized fibers.
  • the optically anisotropic phase (mesophase) of the pitch of the present invention is measured with a polarizing microscope.
  • the pitch of the present invention has a mesophase content of at least 90%, preferably at least 95%. More preferably, substantially all of the pitch is composed of a mesophase. If the pitch has a mesophase content of less than about 90%, carbon fibers or other carbon materials that are formed of it will have only low performance in such aspects as strength and modulus of elasticity. From the spinning viewpoint, too, the mesophase content must be at least about 90%.
  • the mesophase pitch of the present invention can be produced by polymerizing naphthalene derivatives having at least one methyl group in the presence of hydrogen fluoride and boron trifluoride.
  • Illustrative naphthalene derivatives that can be used as the starting material include methylnaphthalene, dimethylnaphthalene and mixtures thereof. Materials containing these naphthalene derivatives are also usable and they include various petroleum fractions, the residual oil originating from petroleum processing steps, and coal tar fractions.
  • a hydrogen fluoride/boron trifluoride catalyst is used as a catalyst for polymerizing these naphthalene derivatives.
  • particularly suitable starting materials are those which have low contents of nitrogen-, sulfur- and oxygen-containing compounds, all being basic compounds that strongly bind to the hydrogen fluoride/boron trifluoride catalyst.
  • the polymerization catalyst is preferably used in such an amount that from 0.1 to 20 moles of hydrogen fluoride and from 0.05 to 1.0 mole of boron trifluoride are present per mole of the naphthalene derivative. Even if more than 20 moles of hydrogen fluoride or more than 1.0 mole of boron trifluoride is used, there will be no corresponding increase in the rate of reaction.
  • Hydrogen fluoride when used together with boron trifluoride (BF3), forms a strong protic acid, which reacts with the basic naphthalene derivative to form a complex.
  • the temperature for obtaining the desired mesophase by polymerization reaction ranges from 180 to 400°C, preferably from 250 to 320°C. If the temperature is higher than about 400°C, polymerization proceeds excessively and the resulting pitch will have an unduly high softening point. If the temperature is lower than about 180°C, mesophase pitch having a mesophase content of at least 90% is not attainable.
  • the time required to complete the polymerization reaction varies with the type of starting material used, the temperature and the amount of catalyst used, but it is typically within the range of from 5 to 300 minutes, preferably from 30 to 240 minutes.
  • the pressure for the polymerization reaction generally ranges from about 5 to about 100 bar, preferably from about 20 to about 50 bar.
  • the polymerization reaction is performed by mixing under agitation the starting material and the catalyst fed into a corrosion-resistant reactor equipped with a stirrer.
  • the procedures of reaction may be batchwise or continuous.
  • naphthalene derivative (Nd) fed as the starting material forms a complex when mixed with the catalyst and undergoes rapid polymerization to form a polymer in complex form according to the following scheme: HF + BF3 + (Nd) n ⁇ H+(Nd) n BF4 ⁇
  • the resulting polymer in complex form is in equilibrium as shown by equation (1), so after completion of the polymerization the volatile components, HF and BF3, are distilled off at the polymerization temperature and recovered as catalyst components. At the same time, some volatile fractions are recovered and the polymerized pitch is separated.
  • Catalyst separation by a batch system consists of holding the polymerization temperature after the polymerization reaction has been completed, and withdrawing HF and BF3 as a vapor phase from the reactor, with the polymer recovered as molten pitch.
  • the heating effected for this purpose may be indirect (external heating through a jacket, etc.) or direct (by introducing the heated vapor of a diluent such as benzene, toluene or halogenated hydrocarbon which are comparatively inert to the catalyst).
  • Catalyst separation may also be performed by a continuous method in a distillation column, with the inert diluent being refluxed, which is continuously supplied with the polymerization reaction solution so as to extract the HF and BF3 vapors from the top of the column, with the pitch being recovered from the bottom of the column in the form of a solution in the diluent.
  • the temperature necessary for recovering the catalyst is the same as the temperature for polymerization, whereas the pressure for the catalyst recovery is generally within the range of from about 0 to about 30 atmospheres, preferably from about 1 to about 5 atmospheres.
  • the pitch obtained by the procedure described above is characterized by high mesophase content and the presence of many carbon atoms in aromatic ring structures as well as in methyl groups.
  • This pitch also has a low softening point which is in the range of 200-250°C as measured by a micromelting point method.
  • the pitch described above is mesophase pitch which is substantially free of HF and BF3 and which has an anisotropic phase of at least about 90%. It can be used as a starting material for the production of carbon fibers and other carbon materials without being subjected to any special treatment.
  • this mesophase pitch can be readily spun into fibers at a spinning temperature of from about 280 to about 340°C.
  • the spun pitch fibers have such a high stabilization reactivity that they can be satisfactorily stabilized by heating up to a temperature of about 300°C at a rate of about 7°C/min under an air current. This ease of stabilization can be ascribed to the high content of methyl-derived carbon atoms in the pitch.
  • Carbon fibers may be produced from the pitch of the present invention by the following procedures: the pitch is first extruded through a nozzle (ca. 0.25 ⁇ m) in a nitrogen atmosphere at a pressure of from about 1 to about 3 bar and at a temperature of from about 280 to about 340°C and the filaments are wound up on a roll at a take-up speed of, say, about 500 m/min; then, the filaments are stabilized by heating from ambient temperature to a temperature between about 200 and about 350°C at a typical rate of from about 1 to about 7°C/min under an air current; finally, the stabilized fibers are carbonized or graphitized by heating to about 1,000°C or above at a typical rate of about 10°C/min in an inert gas stream such as nitrogen.
  • the mesophase pitch of the present invention has the following advantages.
  • the present invention offers great benefits to industry.
  • ⁇ -Methylnaphthalene (1 mole), HF (0.5 moles) and BF3 (0.2 moles) were charged into a 0.5-l acid-resistant autoclave, and after raising the temperature in the autoclave to 270°C, reaction was performed for 4 hours. Thereafter, the release valve on the autoclave was opened so that substantially all of the HF and BF3 charged could be recovered in a gaseous form at an atmospheric pressure. Thereafter, nitrogen was blown into the autoclave to remove the low-boiling point components. The yield of the pitch obtained was 76% of the weight of the ⁇ -methylnaphthalene supplied.
  • this pitch When observed with a polarizing microscope, this pitch was found to be 100% anisotropic mesophase pitch with a softening point of 240°C, an average molecular weight of 1360, a H/C atomic ratio of 0.65, and an aromatic carbon ratio (fa) of 0.82, with the methylic carbon content being 6% of the total carbon atoms.
  • the naphthenic carbon content of this pitch was 3% of the total carbon. All of these parameters except naphthenic carbon content were measured by the methods described hereinabove. The naphthenic carbon content was measured by an NMR spectrum technique.
  • This mesophase pitch could be spun into fibers at 310°C and at a take-up speed of 500 m/min without any fiber being broken during spinning.
  • the fibers could be readily stabilized by heating to 300°C at a rate of 7°C/min. The stabilized fibers were entirely free from fusion.
  • the stabilized fibers were heated to 1,000°C at a rate of 10°C/min in an inert gas atmosphere so as to produce carbon fibers having a diameter of 10 ⁇ m.
  • the yield in carbonization was 90%, and the carbon fibers produced had a tensile strength of 2747 N/mm2 (280 kgf/mm2) and a modulus of elasticity of 215.8 kN/mm2 (22 tf/mm2).
  • This mesophase pitch could be spun into fibers at 280°C and at a take-up speed of 500 m/min without any fiber being broken during spinning.
  • the fibers could be readily stabilized by heating to 280°C at a rate of 7°C/min. The stabilized fibers were entirely free from fusion.
  • the stabilized fibers were heated to 1,000°C at a rate of 10°C/min in an inert gas atmosphere so as to produce carbon fibers having a diameter of 8 ⁇ m.
  • the yield in carbonization was 90% and the carbon fibers produced had a tensile strength of 3139 N/mm2 (320 kgf/mm2) and a modulus of elasticity of 196,2 kN/mm2 (20 tf/mm2).
  • This mesophase pitch could be spun into fibers at 310°C and at a take-up speed of 500 m/min without any fiber being broken during spinning.
  • the fibers could be readily stabilized by heating to 270°C at a rate of 7°C/min. The stabilized fibers were entirely free from fusion.
  • the stabilized fibers were heated to 1,000°C at a rate of 10°C/min in an inert gas atmosphere so as to produce carbon fibers having a diameter of 10 ⁇ m.
  • the yield in carbonization was 90%, and the carbon fibers produced had a tensile strength of 2845 N/mm2 (290 kgf/mm2) and a modulus of elasticity of 225,6 kN/mm2 (23 tf/mm2).
  • ⁇ -Methylnaphthalene (1 mole), HF (3 moles) and BF3 (0.5 moles) were charged into a 3-l acid-resistant autoclave, and reaction was performed for 3 hours at a raised temperature of 80°C. Thereafter, the release valve on the autoclave was opened and gradual heating to 180-200°C was conducted at one atmosphere so that substantially all of the HF and BF3 charged could be recovered in a gaseous form. Thereafter, the pitch in molten state was withdrawn from the autoclave. This pitch had a softening point of 72°C and contained no mesophase.
  • This pitch was heat-treated first at 475°C for 50 minutes under one bar, then at 420°C for 30 minutes under a reduced pressure of 133.3 mbar, thereby obtaining 100% mesophase pitch (softening point, 250°C) in a yield of 50% based on ⁇ -methylnaphthalene.
  • the resulting mesophase pitch had an average molecular weight of 900, a H/C atomic ratio of 0.51, and an fa of 0.93, with the methylic and naphthenic carbon contents being 2% and 6%, respectively, of the total carbon atoms.
  • This pitch could be spun into fibers at a take-up speed of 300 m/min and at 360°C but not at a higher take-up speed of 500 m/min.
  • the pitch fibers obtained by spinning at a take-up speed of 300 m/min could not be stabilized by heating up to 270°C at a rate of 5°C/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Claims (8)

  1. Brai en mésophase à utiliser dans la production de matériaux de carbone, ledit brai ayant un poids moléculaire moyen d'au moins 1 000, un rapport atomique hydrogène à carbone de 0,5-1,0, un rapport du carbone aromatique d'au moins 0,7, une teneur en carbone méthylique d'au moins 4% des atomes totaux de carbone, une teneur en carbone naphténique de moins de 7% des atomes totaux de carbone et contenant au moins 90% d'une phase optiquement anisotrope.
  2. Brai en mésophase selon la revendication 1, où le poids moléculaire moyen est compris entre 1 000 et 1 700.
  3. Brai en mésophase selon la revendication 1 ou la revendication 2, où le rapport atomique hydrogène à carbone est compris entre 0,6 et 1,0.
  4. Brai en mésophase selon l'une quelconque des revendications précédentes, où le rapport du carbone aromatique est compris entre 0,75 et 0,87.
  5. Brai en mésophase selon l'une quelconque des revendications précédentes, où la teneur en carbone méthylique est d'au moins 5% des atomes totaux de carbone.
  6. Brai en mésophase selon l'une quelconque des revendications précédentes, qui a un point d'amollissement compris entre 200 et 250°C.
  7. Brai en mésophase selon l'une quelconque des revendications précédentes, qui contient au moins 95% d'une phase optiquement anisotrope.
  8. Brai en mésophase selon la revendication 7, où la teneur en phase optiquement anisotrope est sensiblement de 100%.
EP19900312978 1989-11-29 1990-11-29 Brai en phase méso pour la préparation d'objets en carbone Expired - Lifetime EP0430689B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP309482/89 1989-11-29
JP30948289 1989-11-29
JP27230090A JP2917486B2 (ja) 1989-11-29 1990-10-12 炭素材料用メソフェースピッチ
JP272300/90 1990-10-12

Publications (2)

Publication Number Publication Date
EP0430689A1 EP0430689A1 (fr) 1991-06-05
EP0430689B1 true EP0430689B1 (fr) 1994-04-06

Family

ID=26550133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900312978 Expired - Lifetime EP0430689B1 (fr) 1989-11-29 1990-11-29 Brai en phase méso pour la préparation d'objets en carbone

Country Status (2)

Country Link
EP (1) EP0430689B1 (fr)
DE (1) DE69007941T2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321559A (ja) * 1991-04-23 1992-11-11 Mitsubishi Gas Chem Co Inc 炭素材料用組成物および炭素複合材料とその製法
EP0575748B1 (fr) * 1992-06-19 1996-03-20 Mitsubishi Gas Chemical Company, Inc. Grains auto-adhésifs carbonés et articles en carbone à densité élevée dérivés de ces grains
JP3337043B2 (ja) * 1994-07-11 2002-10-21 三菱瓦斯化学株式会社 紡糸発煙性の改良されたピッチ及びその製造法
US5944980A (en) * 1996-09-06 1999-08-31 Mitsubishi Gas Chemical Company Co., Inc. Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1262007A (fr) * 1984-09-14 1989-09-26 Ikuo Seo Methode de production de fibres de carbone, et fibres ainsi obtenues
US4891126A (en) * 1987-11-27 1990-01-02 Mitsubishi Gas Chemical Company, Inc. Mesophase pitch for use in the making of carbon materials and process for producing the same

Also Published As

Publication number Publication date
EP0430689A1 (fr) 1991-06-05
DE69007941T2 (de) 1994-08-11
DE69007941D1 (de) 1994-05-11

Similar Documents

Publication Publication Date Title
EP0318843B1 (fr) Brai en phase méso pour la préparation d'articles en carbone et procédé de préparation dudit brai
US4184942A (en) Neomesophase formation
CA1164384A (fr) Methode d'obtention de brai mesophasique
EP0090475B1 (fr) Brai mésophase ayant des molécules elliptiques et procédé pour le produire
US4789455A (en) Process for producing pitch used as starting material for the making of carbon materials
US4341621A (en) Neomesophase formation
EP0034410B1 (fr) Procédé de préparation d'une base pour la fabrication d'objets façonnés en carbone
US4277325A (en) Treatment of pitches in carbon artifact manufacture
US5182010A (en) Mesophase pitch for use in the making of carbon materials
EP0594301A1 (fr) Procédé de fabrication de fibres de carbone activées à base de brai
CA1197205A (fr) Brai aromatique prepare a partir de la fraction moyenne du fond d'une unite de craquage catalytique
US4528087A (en) Process for producing mesophase pitch
US4431513A (en) Methods for producing mesophase pitch and binder pitch
US4756818A (en) A method for the production of a carbon fiber precursor
US4460454A (en) Process for producing pitch for using as raw material for carbon fibers
EP0430689B1 (fr) Brai en phase méso pour la préparation d'objets en carbone
US4758326A (en) Method of producing precursor pitches for carbon fibers
US4670129A (en) Pitch for production of carbon fibers
EP0072573B1 (fr) Procédé de préparation d'un brai utilisable comme matériau de base pour fibres de carbone et fibres de carbone préparés à partir de ce brai
JP2621253B2 (ja) 炭素材料用メソフェーズピッチの製造法
JPH0150272B2 (fr)
JP2917486B2 (ja) 炭素材料用メソフェースピッチ
JP2931593B2 (ja) 炭素材料用メソフェースピッチ
EP0865411B1 (fr) Brai auto-stabilisant pour la production de fibres de carbone
EP0514190B1 (fr) Procédé pour la fabrication de fibres de carbone à partir de brai ayant des caractéristiques de compression supérieures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19910824

17Q First examination report despatched

Effective date: 19921028

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69007941

Country of ref document: DE

Date of ref document: 19940511

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031126

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031211

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051129