EP0424280A1 - Circuit électronique de commande d'un moteur vibrant alimenté en courant continu - Google Patents

Circuit électronique de commande d'un moteur vibrant alimenté en courant continu Download PDF

Info

Publication number
EP0424280A1
EP0424280A1 EP90420426A EP90420426A EP0424280A1 EP 0424280 A1 EP0424280 A1 EP 0424280A1 EP 90420426 A EP90420426 A EP 90420426A EP 90420426 A EP90420426 A EP 90420426A EP 0424280 A1 EP0424280 A1 EP 0424280A1
Authority
EP
European Patent Office
Prior art keywords
coil
signal
chopper
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90420426A
Other languages
German (de)
English (en)
Other versions
EP0424280B1 (fr
Inventor
Alain Kobilsek
Dominique Villard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merlin Gerin SA
Original Assignee
Merlin Gerin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merlin Gerin SA filed Critical Merlin Gerin SA
Publication of EP0424280A1 publication Critical patent/EP0424280A1/fr
Application granted granted Critical
Publication of EP0424280B1 publication Critical patent/EP0424280B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3005Charging means
    • H01H3/3021Charging means using unidirectional coupling

Definitions

  • the invention relates to an electronic circuit for controlling a vibrating motor comprising a control coil, means for controlling the passage of current in the coil causing, when a control signal from the vibrating motor is applied to them, alternately the power supply. current from the coil during an active period and non-supply of the coil during a rest period.
  • a device for arming a spring of a control mechanism of a breaking device in particular an electrical switch or circuit breaker, as described, for example, in French patent 2,593,323
  • the control coil of the vibrating motor is supplied by a periodic current.
  • a rectified alternating current is applied to the coil.
  • the object of the invention is to provide an electronic circuit for controlling a vibrating motor supplied from a DC supply voltage, the supply voltage possibly varying relatively considerably within different ranges.
  • the means for controlling the flow of current through the coil comprise a static switch, connected in series with the coil across a continuous supply voltage and comprising an electrode control connected to the output of a chopper, said chopper producing a binary signal making the static switch conductive during said active period, the control means also comprising means for controlling the duration of the active period to the current passing through the coil.
  • control means comprise a measuring resistor arranged in series with the static switch and the coil, and a comparator receiving on a first input a signal representative of the voltage across the measurement resistance and on a second input a reference signal, and whose output is applied to a servo input of the chopper so as to control a transition the output signal of the chopper from its active period to its rest period when the current passing through the coil reaches a predetermined value.
  • the coil 10 for controlling a vibrating motor (not shown) of a known type is supplied from a DC voltage source V1.
  • the coil 10 is connected in series with a transistor T, preferably of the MOS type, and a measurement resistor R1 between the terminals 12 and 14 of the power source. The coil 10 is therefore supplied only when the transistor T is made conductive by the control circuit.
  • the coil 10 is supplied with a periodic signal, the transistor T being, in the presence of a control signal from the vibrating motor, made alternately conductive and non-conductive and the palette of the vibrating motor being attracted by the coil when the transistor T is conductive and returned by a spring when the transistor is blocked.
  • a switch 16 normally open, connecting the DC voltage source V1 to a circuit 18 supplying the control circuit, is closed in the presence of the vibrating motor control signal.
  • the switch 16 and its control can be achieved by any suitable means.
  • the supply circuit 18 supplies a chopper 20 with a stabilized DC voltage V2.
  • the chopper 20 comprises an astable multivibrator producing a signal A intended to be applied to the gate of the transistor T.
  • the signal A is a binary type signal passing alternately from a high state to a low state and vice versa, with a certain duty cycle .
  • a conventional multivibrator (fig. 2) comprises an operational amplifier 22, supplied by the voltage V2, and whose non-inverting input receives a reference voltage (signal B) taking two distinct states as a function of the output voltage.
  • this reference voltage is obtained by means of a voltage divider constituted by two resistors R2 and R3, in series across the supply voltage V2, the non-inverting input being, moreover, connected to the output A1 of the amplifier 22 by a resistor R4.
  • the inverting input of the operational amplifier is connected to ground by a capacitor C1 and to the output A1 of the amplifier by a resistor R5.
  • a limiting resistor R6 connects the output of amplifier 22 to the gate of transistor T.
  • the durations of the high and low states of such an astable circuit are fixed, proportional respectively to the durations of charge and discharge of the capacitor C1.
  • the stabilized supply voltage V2 being fixed, for example equal to 15 V, the increase in the supply voltage V1 of the vibrating motor within a determined range can lead to harmful overheating. Indeed, the duration of the passage of the current in the coil 10 being fixed, independently of the value of the voltage V1, the current crossing the coil is all the more important as the voltage V1 is important.
  • the duration of the high state of the output signal A of the chopper 20 is controlled by the current passing through the coil 10.
  • the voltage C across the measurement resistor R1 ( fig.1), representative of this current, is applied to a servo input of the chopper 20.
  • voltage C is applied to the non-inverting input of an operational amplifier 24, supplied by voltage V2 and whose inverting input is connected to a voltage of Cref reference.
  • V2 supplied by voltage V2 and whose inverting input is connected to a voltage of Cref reference.
  • the latter is obtained by means of a voltage divider constituted by two resistors R7 and R8 in series between the ground and the voltage V2.
  • the output of the operational amplifier 24 is connected to the anode of a diode D1, the cathode of which is connected to the inverting input of the operational amplifier 22.
  • FIG. 3 illustrates the waveforms obtained at various points of the chopper according to FIG. 2.
  • V2 15 V and the resistors R2, R3 and R4 are identical, so that the signal B applied to the non-inverting input of the amplifier 22 passes from a low reference value (5V ) to a high reference value (10V) when the signal A1 passes respectively from its low state (0V) to its high state (15V).
  • the chopper then operates normally, as in the absence of servo-control: signal E, corresponding to the voltage across the capacitor, which is at its maximum reference value (10V) at the start (t0, t2, t4, t6, t8) of the rest period (T1) of the control signal A1, tends to 0 with a predetermined time constant R5 C1 (discharge of C1).
  • FIG. 3 shows the signals C obtained during the period T2 respectively with a supply voltage V1 close to the nominal voltage (24V) (t1-t2), with a voltage V1 lower than this nominal voltage (t5- t6) and with a voltage V1 greater than this nominal voltage (t3-t4 and t7-t8).
  • the end of the active period T2 is therefore determined by the moment when the current passing through the coil 10 reaches a predetermined peak value Ic, that is to say when the voltage C reaches the reference voltage Cref.
  • This active period T2 nevertheless remains always less than the period T2max obtained when the astable multivibrator operates without slaving.
  • a protection and discharge circuit is arranged in parallel on the transistor T and the resistor R1 so as to limit the overvoltages at the terminals of the transistor and to rapidly discharge the coil 10 when the transistor is blocked. It is indeed essential to protect the transistor against overvoltages created by a rapid variation of the current in the coil and to quickly evacuate the energy stored in the coil so that a spring recalls the palette of the vibrating motor during the rest period (T1).
  • Such a circuit is preferably constituted (fig. 1) by a diode D2 of the Transil type arranged in series with a power resistor R9 between the drain of the transistor T and the ground.
  • the same control circuit can be used for different ranges of supply voltage to the coil (10).
  • four ranges of DC voltage are generally used: 24-30V, 48-60V, 100-125V and 220-250V.
  • Each voltage range is associated with a vibrating motor having a coil whose resistance varies from one range to another.
  • the measurement resistance R1 is determined, taking into account the resistance of the coil, so as to allow correct servoing in all the ranges.
  • the invention is not limited to the particular embodiment shown.
  • the chopper 20 could be supplied permanently, the supply voltage V1 being applied to the coil only in the presence of a signal for controlling the vibrating motor.
  • the functions of cutting by the MOS transistor (T) and of measuring the current by the resistor R1 can be fulfilled by a MOS transistor with internal current measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

La bobine (10) du moteur vibrant est alimentée par une tension continue (V1) et disposée en série avec un transistor (T) aux bornes de la tension d'alimentation (V1). Le transistor (T) est commandé par le signal (A) de sortie d'un hâcheur (20) asservi au courant parcourant la bobine de manière à permettre un fonctionnement correct du circuit de commande pour des plages étendues de tension d'alimentation.

Description

  • L'invention concerne un circuit électronique de commande d'un moteur vibrant comportant une bobine de commande, des moyens de commande du passage du courant dans la bobine provoquant, lorsqu'un signal de commande du moteur vibrant leur est appliqué, alternativement l'alimentation en courant de la bobine pendant une période active et la non-alimentation de la bobine pendant une période de repos.
  • Dans un dispositif d'armement d'un ressort d'un mécanisme de commande d'un appareil de coupure, notamment un interrupteur ou un disjoncteur électrique, tel que décrit, par exemple, dans le brevet français 2.593.323, la bobine de commande du moteur vibrant est alimentée par un courant périodique. Dans ce dispositif, en présence d'un signal de commande, un courant alternatif redressé est appliqué à la bobine.
  • L'invention a pour but un circuit électronique de commande d'un moteur vibrant alimenté à partir d'une tension d'alimentation continue, la tension d'alimentation pouvant varier de façon relativement importante à l'intérieur de différentes plages.
  • Selon l'invention, ce but est atteint par le fait que les moyens de commande du passage du courant dans la bobine comportent un interrupteur statique, connecté en série avec la bobine aux bornes d'une tension d'alimentation continue et comportant une électrode de commande connectée à la sortie d'un hâcheur, ledit hâcheur produisant un signal binaire rendant l'interrupteur statique conducteur pendant ladite période active, les moyens de commande comportant également des moyens d'asservissement de la durée de la période active au courant passant dans la bobine.
  • Selon un mode de réalisation préférentiel de l'invention les moyens d'asservissement comportent une résistance de mesure disposée en série avec l'interrupteur statique et la bobine, et un comparateur recevant sur une première entrée un signal représentatif de la tension aux bornes de la résistance de mesure et sur une seconde entrée un signal de référence, et dont la sortie est appliquée à une entrée d'asservissement du hâcheur de manière à commander une transition du signal de sortie du hâcheur de sa période active à sa période de repos lorsque le courant traversant la bobine atteint une valeur prédéterminée.
  • D'autres avantages et caratéristiques ressortiront plus clairement de la description qui va suivre d'un mode de mise en oeuvre de l'invention, donné à titre d'exemple non limitatif et représenté aux dessins annexés, sur lesquels :
    • La figure 1 représente un circuit de commande selon l'invention
    • La figure 2 illustre un mode de réalisation particulier du hâcheur asservi du circuit selon la figure 1
    • La figure 3 représente diverses formes d'onde obtenues en différents points du circuit selon les figures 1 et 2.
  • La bobine 10 de commande d'un moteur vibrant (non représenté) de type connu (par exemple FR-A- 2.593.323) est alimentée à partir d'une source de tension continue V1. Comme représenté sur la figure 1 la bobine 10 est connectée en série avec un transistor T, de préférence de type MOS, et une résistance de mesure R1 entre les bornes 12 et 14 de la source d'alimentation. La bobine 10 n'est donc alimentée que lorsque le transistor T est rendu conducteur par le circuit de commande.
  • Pour permettre le fonctionnement du moteur vibrant la bobine 10 est alimentée par un signal périodique, le transistor T étant, en présence d'un signal de commande du moteur vibrant, rendu alternativement conducteur et non conducteur et la palette du moteur vibrant étant attirée par la bobine lorsque le transistor T est conducteur et rappelée par un ressort lorsque le transistor est bloqué.
  • Un interrupteur 16, normalement ouvert, connectant la source de tension continue V1 à un circuit 18 d'alimentation du circuit de commande, est fermé en présence du signal de commande du moteur vibrant. L'interrupteur 16 et sa commande peuvent être réalisés par tous moyens appropriés.
  • Le circuit d'alimentation 18 alimente un hâcheur 20 avec une tension continue V2 stabilisée. Le hâcheur 20 comporte un multivibrateur astable produisant un signal A destiné à être appliqué sur la grille du transistor T. Le signal A est un signal de type binaire passant alternativement d'un état haut à un état bas et réciproquement, avec un certain rapport cyclique. Un multivibrateur classique (fig.2) comporte un amplificateur opérationnel 22, alimenté par la tension V2, et dont l'entrée non-inverseuse reçoit une tension de référence (signal B) prenant deux états distincts en fonction de la tension de sortie. Sur la figure 2, cette tension de référence est obtenue au moyen d'un diviseur de tension constitué par deux résistances R2 et R3, en série aux bornes de la tension d'alimentation V2, l'entrée non-inverseuse étant, de plus, connecté à la sortie A1 de l'amplificateur 22 par une résistance R4. L'entrée inverseuse de l'amplificateur opérationnel est connectée à la masse par un condensateur C1 et à la sortie A1 de l'amplificateur par une résistance R5. Une résistance de limitation R6 connecte la sortie de l'amplificateur 22 à la grille due transistor T.
  • Les durées des états haut et bas d'un tel circuit astable sont fixes, proportionnelles respectivement aux durées de charge et de décharge du condensateur C1.
  • La tension d'alimentation stabilisée V2 étant fixe, par exemple égale à 15 V, l'augmentation de la tension d'alimentation V1 du moteur vibrant à l'intérieur d'une plage déterminée peut conduire à des échauffements préjudiciables. En effet, la durée du passage du courant dans la bobine 10 étant fixe, indépendamment de la valeur de la tension V1, le courant traversant la bobine est d'autant plus important que la tension V1 est importante.
  • Pour permettre un fonctionnement correct, malgré une plage de tension V1 étendue, la durée de l'état haut du signal A de sortie du hâcheur 20 est asservie au courant traversant la bobine 10. La tension C aux bornes de la résistance R1 de mesure (fig.1), représentative de ce courant, est appliquée sur une entrée d'asservissement du hâcheur 20.
  • Dans le mode de réalisation particulier du hâcheur représenté à la figure 2, la tension C est appliquée sur l'entrée non-­inverseuse d'un amplificateur opérationnel 24, alimenté par la tension V2 et dont l'entrée inverseuse est connectée à une tension de référence Cref. Sur la figure 2, cette dernière est obtenue au moyen d'un diviseur de tension constitué par deux résistances R7 et R8 en série entre la masse et la tension V2. La sortie de l'amplificateur opérationnel 24 est connectée à l'anode d'une diode D1, dont la cathode est reliée à l'entrée inverseuse de l'amplificateur opérationnel 22.
  • La figure 3 illustre les formes d'onde obtenues en divers points du hâcheur selon la figure 2.
  • A titre d'exemple, V2 = 15 V et les résistances R2, R3 et R4 sont identiques, de sorte que le signal B appliqué à l'entrée non-­inverseuse de l'amplificateur 22 passe d'une valeur de référence basse (5V) à une valeur de référence haute (10V) lorsque le signal A1 passe respectivement de son état bas (0V) à son état haut (15V).
  • Lorsque A1 est à l'état bas (t0-t1, t2-t3, t4-t5, t6-t7), le transistor T est bloqué et aucun courant ne circule dans la bobine 10 et dans la résistance de mesure R1. Le signal C, représentatif du courant, est nul et, en conséquence, inférieur à la référence Cref. Le signal D de sortie de l'amplificateur opérationnel 24 est à l'état bas (0V) et la diode D1 est non conductrice. Le hâcheur fonctionne alors normalement, comme en l'absence d'asservissement : le signal E, correspondant à la tension aux bornes du condensateur, qui est à sa valeur de référence maximale (10V) en début (t0, t2, t4, t6, t8) de la période de repos (T1) du signal A1 de commande, tend vers 0 avec une constante de temps prédéterminée R5 C1 (décharge de C1).
  • Lorsque le signal E atteint 5V, valeur de référence basse du signal B, aux instants t1, t3, t5 et t7, la sortie A1 de l'amplificateur opérationnel 22 bascule et prend sa valeur haute (15V). Le signal B passe alors à sa valeur de référence haute (10V), l'hystérèsis des valeurs de référence ne permettant pas un nouveau basculement du signal A1 tant que le signal E n'a pas atteint sa valeur de référence maximale (10V). Le condensateur C1 se charge à travers la résistance R5, la tension E à ses bornes tendant vers 15V (valeur de A1) avec une constante de temps fixe R5 C1. Pendant la période active (T2) du signal A1, où celui-ci est à l'état haut, le transistor T est conducteur et un courant traverse la bobine 10 et la résistance de mesure R1. Ce courant et le signal C, qui le représente, augmentent pendant la période T2, d'autant plus rapidement que la tension d'alimentation V1 est plus élevée. Pour une plage de tension prédéterminée, à titre d'exemple 24-30V, la tension V1 peut varier très largement, par exemple de 19 à 34,5V. On a représenté sur la figure 3, les signaux C obtenus pendant la période T2 respectivement avec une tension d'alimentation V1 proche de la tension nominale (24V) (t1-t2), avec une tension V1 inférieure à cette tension nominale (t5-t6) et avec une tension V1 supérieure à cette tension nominale (t3-t4 et t7-t8). Plus la tension d'alimentation V1 est élevée plus le temps nécessaire au signal C pour atteindre la valeur de référence Cref est faible.
  • Lorsque la tension d'alimentation V1 est suffisamment basse (t5-­t6) pour que la tension E atteigne sa valeur de référence maximale (10V) avant que le signal C atteigne la valeur de référence Cref à laquelle il est comparé, le signal D reste à sa valeur basse et la diode D1 reste bloquée. Il n'y a alors pas asservissement du hâcheur 22 et la période T2 est égale à une valeur T2max fixe.
  • Par contre, lorsque la tension d'alimentation V1 est suffisamment élevée (t1-t2, t3-t4, t7-t8) un courant crête Ic prédéterminé, correspondant à la tension de référence Cref, traverse la bobine 10 avant la fin de la période active normale T2max du circuit astable. La tension C atteignant la tension de référence Cref, le signal D de sortie de l'amplificateur opérationnel 24 passe à sa valeur haute (environ 15V), rendant conductrice la diode D1 et chargeant très rapidement le condensateur C1 à une valeur (tension D moins la chute de tension dans la diode D1, soit environ 13V) supérieure à la valeur de référence maximale (10V) du signal E, entraînant le basculement à zéro du signal A1.
  • La fin de la période active T2 est donc déterminée par le moment où le courant traversant la bobine 10 atteint une valeur crête prédéterminée Ic, c'est-à-dire où la tension C atteint la tension de référence Cref. Cette période active T2 reste néanmoins toujours inférieure à la période T2max obtenue lorsque le multivibrateur astable fonctionne sans asservissement.
  • Dès que le signal A1 passe à 0, le transistor T se bloque et le courant traversant la résistance R1 s'annule ramenant à zéro le signal C et , en conséquence, le signal D et bloquant de nouveau la diode D1.
  • Un circuit de protection et de décharge est disposé en parallèle sur le transistor T et la résistance R1 de manière à limiter les surtensions aux bornes du transistor et à décharger rapidement la bobine 10 lors du bloquage du transistor. Il est en effet indispensable de protéger le transistor contre les surtensions crées par une variation rapide du courant dans la bobine et d'évacuer rapidement l'énergie emmaganisée dans la bobine pour qu'un ressort rappelle la palette du moteur vibrant pendant la période de repos (T1).
  • Un tel circuit est de préférence constituée (fig.1) par une diode D2 de type Transil disposée en série avec une résistance R9 de puissance entre le drain du transistor T et la masse.
  • Ces composants sont choisis de manière à ce que la tension maximale développée aux bornes du circuit de protection et de décharge soit inférieure à la tension maximale supportable par le transistor et à ce que l'échauffement maximum dû aux commutations du courant soit inférieur à la tenue thermique des composants.
  • Le même circuit de commande est utilisable pour différentes plages de tension d'alimentation de la bobine (10). A titre d'exemple quatre plages de tension continue sont généralement utilisées : 24-30V, 48-60V, 100-125V et 220-250V. A chaque plage de tension est associé un moteur vibrant ayant une bobine dont la résistance varie d'une plage à l'autre. La résistance de mesure R1 est déterminée, tenant compte de la résistance de la bobine, de manière à permettre un asservissement correct dans toutes les plages.
  • L'invention n'est pas limitée en mode particulier de réalisation représenté. En particulier, le hâcheur 20 pourrait être alimenté en permanence, la tension d'alimentation V1 n'étant appliquée à la bobine qu'en présence d'un signal de commande du moteur vibrant. Par ailleur, les fonctions de découpage par le transistor MOS (T) et de mesure du courant par la résistance R1 peuvent être remplies par un transistor MOS à mesure de courant interne.

Claims (7)

1 - Circuit électronique de commande d'un moteur vibrant comportant une bobine de commande (10), des moyens (16,18,20,T) de commande du passage du courant dans la bobine provoquant, lorsqu'un signal de commande du moteur vibrant leur est appliqué, alternativement l'alimentation en courant de la bobine pendant une période active (T2) et la non-alimentation de la bobine pendant une période de repos (T1), circuit caractérisé en ce que les moyens de commande du passage du courant dans la bobine comportent un interrupteur statique (T), connecté en série avec la bobine (10) aux bornes d'une tension d'alimentation continue (V1) et comportant une électrode de commande connectée à la sortie d'un hâcheur (20), ledit hâcheur produisant un signal binaire (A) rendant l'interrupteur statique (T) conducteur pendant ladite période active (T2), les moyens de commande comportant également des moyens (R1, 24, D1) d'asservissement de la durée de la période active au courant passant dans la bobine.
2- Circuit selon la revendication 1, caractérisé en ce que les moyens d'asservissement comportent une résistance de mesure (R1) disposée en série avec l'interrupteur statique (T) et la bobine (10), et un comparateur (24) recevant sur une première entrée un signal (C) représentatif de la tension aux bornes de la résistance de mesure (R1) et sur une seconde entrée un signal de référence (Cref), et dont la sortie est appliquée à une entrée d'asservissement du hâcheur de manière à commander une transition du signal (A) de sortie du hâcheur de sa période active (T2) à sa période de repos (T1) lorsque le courant traversant la bobine atteint une valeur prédéterminée.
3 - Circuit selon la revendication 2, caractérisé en ce que le hâcheur (20) est un multivibrateur astable comportant une première entrée (+) sur laquelle est appliqué un signal (B) de référence asservi à la sortie (A1) et une seconde entrée (E), formant ladite entrée d'asservissement, connectée par un condensateur (C1) à la masse et par une résistance (R5) à la sortie du multivibrateur, les moyens d'asservissement comportant une diode (D1) connectée entre la sortie du comparateur et l'entrée d'asservissement du hâcheur.
4 - Circuit selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte un circuit d'alimentation stabilisé (18) disposé en série aux bornes de la tension d'alimentation continue (V1) avec un interrupteur (16) contrôlé par le signal de commande du moteur vibrant.
5 - Circuit selon l'une des revendications 1 à 4, caractérisé en que l'interrupteur statique (T) est un transistor de type MOS.
6 - Circuit selon la revendication 5, caractérisé en ce qu'il comporte un circuit de protection disposé en parallèle sur le transistor (T).
7 - Circuit selon la revendication 6, caractérisé en ce que le circuit de protection comporte, en série, une diode de type Transil (D2) et une résistance de décharge de puissance (R9)
EP19900420426 1989-10-17 1990-10-03 Circuit électronique de commande d'un moteur vibrant alimenté en courant continu Expired - Lifetime EP0424280B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR89136665 1989-10-17
FR8913665A FR2653275B1 (fr) 1989-10-17 1989-10-17 Circuit electronique de commande d'un moteur vibrant alimente en courant continu.

Publications (2)

Publication Number Publication Date
EP0424280A1 true EP0424280A1 (fr) 1991-04-24
EP0424280B1 EP0424280B1 (fr) 1994-08-03

Family

ID=9386548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900420426 Expired - Lifetime EP0424280B1 (fr) 1989-10-17 1990-10-03 Circuit électronique de commande d'un moteur vibrant alimenté en courant continu

Country Status (3)

Country Link
EP (1) EP0424280B1 (fr)
DE (1) DE69011269D1 (fr)
FR (1) FR2653275B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720193A1 (fr) * 1994-12-28 1996-07-03 Schneider Electric Sa Dispositif électrique de commande d'ouverture et de fermeture d'un interrupteur ou d'un disjoncteur
WO2000058983A1 (fr) * 1999-03-29 2000-10-05 Siemens Energy & Automation, Inc. Module de commande electrique utilise avec un disjoncteur d'un operateur d'energie emmagasinee
EP2551881A1 (fr) * 2011-07-25 2013-01-30 ABB Technology AG Actionneur pour disjoncteur
EP2763155A1 (fr) * 2013-02-01 2014-08-06 General Electric Company Organe de commande électrique pour disjoncteur et procédé associé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505214B (zh) * 2014-12-19 2016-08-24 安阳凯地电磁技术有限公司 一种大推力低温升无噪音交流电磁铁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870931A (en) * 1974-02-04 1975-03-11 Sun Chemical Corp Solenoid servomechanism
DE3112621A1 (de) * 1981-03-30 1982-10-21 Elektroteile GmbH, 7772 Uhldingen-Mühlhofen "schaltungsanordnung zur ansteuerung von elektromagneten"
GB2127186A (en) * 1982-09-10 1984-04-04 Bosch Gmbh Robert Pulsed regulation of current flow in coil circuit
GB2185631A (en) * 1986-01-17 1987-07-22 Merlin Gerin Spring loading device of an automatic circuit breaker by a oscillating armature electromagnet
US4720762A (en) * 1986-12-29 1988-01-19 Motorola, Inc. Current drive circuit
DE3701985A1 (de) * 1987-01-23 1988-08-04 Knorr Bremse Ag Vorschaltelektronik fuer ein gleichspannungserregbares geraet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870931A (en) * 1974-02-04 1975-03-11 Sun Chemical Corp Solenoid servomechanism
DE3112621A1 (de) * 1981-03-30 1982-10-21 Elektroteile GmbH, 7772 Uhldingen-Mühlhofen "schaltungsanordnung zur ansteuerung von elektromagneten"
GB2127186A (en) * 1982-09-10 1984-04-04 Bosch Gmbh Robert Pulsed regulation of current flow in coil circuit
GB2185631A (en) * 1986-01-17 1987-07-22 Merlin Gerin Spring loading device of an automatic circuit breaker by a oscillating armature electromagnet
US4720762A (en) * 1986-12-29 1988-01-19 Motorola, Inc. Current drive circuit
DE3701985A1 (de) * 1987-01-23 1988-08-04 Knorr Bremse Ag Vorschaltelektronik fuer ein gleichspannungserregbares geraet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MACHINE DESIGN. vol. 59, no. 26, 12 novembre 1987, CLEVELAND US pages 151 - 152; CARLISLE: "MOSFET REGULATES SOLENOID CURRENT" *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720193A1 (fr) * 1994-12-28 1996-07-03 Schneider Electric Sa Dispositif électrique de commande d'ouverture et de fermeture d'un interrupteur ou d'un disjoncteur
FR2729005A1 (fr) * 1994-12-28 1996-07-05 Schneider Electric Sa Dispositif electrique de commande d'ouverture et de fermeture d'un interrupteur ou d'un disjoncteur
WO2000058983A1 (fr) * 1999-03-29 2000-10-05 Siemens Energy & Automation, Inc. Module de commande electrique utilise avec un disjoncteur d'un operateur d'energie emmagasinee
EP2551881A1 (fr) * 2011-07-25 2013-01-30 ABB Technology AG Actionneur pour disjoncteur
WO2013013984A1 (fr) * 2011-07-25 2013-01-31 Abb Technology Ag Procédé pour entraîner un actionneur d'un disjoncteur et actionneur pour disjoncteur
CN103703535A (zh) * 2011-07-25 2014-04-02 Abb技术有限公司 用于驱动断路器的致动器的方法以及用于断路器的致动器
CN103703535B (zh) * 2011-07-25 2016-05-04 Abb技术有限公司 用于驱动断路器的致动器的方法以及用于断路器的致动器
EP2763155A1 (fr) * 2013-02-01 2014-08-06 General Electric Company Organe de commande électrique pour disjoncteur et procédé associé
US9184014B2 (en) 2013-02-01 2015-11-10 General Electric Company Electrical operator for circuit breaker and method thereof

Also Published As

Publication number Publication date
DE69011269D1 (de) 1994-09-08
FR2653275B1 (fr) 1991-12-13
FR2653275A1 (fr) 1991-04-19
EP0424280B1 (fr) 1994-08-03

Similar Documents

Publication Publication Date Title
EP0326459B1 (fr) Déclencheur statique comportant un circuit de déclenchement instantané indépendant de la tension d'alimentation
EP0593660B1 (fr) Dispositif de detection du dysfonctionnement d'une charge telle qu'un magnetron
EP0240434B1 (fr) Circuit de protection d'alimentation à découpage
EP0448434B1 (fr) Redresseur susceptible de fonctionner avec au moins deux plages distinctes de tension alternative d'alimentation
FR2489885A1 (fr) Circuit d'excitation pour injecteur de carburant
EP0454597A1 (fr) Circuit de commande de grille par impulsion avec securité de court-circuit
CH628423A5 (fr) Circuit electrique pour l'allumage d'un detonateur.
FR2630271A1 (fr) Dispositif d'alimentation electrique sous tension elevee du circuit auxiliaire d'un vehicule automobile
EP0424280B1 (fr) Circuit électronique de commande d'un moteur vibrant alimenté en courant continu
FR2514553A1 (fr) Appareil electronique a circuit de commande de relais
EP0278193B1 (fr) Circuit de mesure de la composante continue du courant parcourant l'enroulement primaire du transformateur de sortie d'un onduleur
CH635688A5 (fr) Detecteur photo-electrique de la presence d'un objet.
EP0021867B1 (fr) Dispositif d'alimentation à découpage régulé contre les variations de tension d'entrée et de puissance de sortie, notamment pour récepteur de télévision
US4007398A (en) Automatic control device for an electronic flash apparatus
EP0768683B1 (fr) Circuit d'alimentation d'une bobine d'excitation d'un électro-aimant
CH640090A5 (fr) Dispositif de commande d'un moteur a courant continu.
EP0143048B1 (fr) Convertisseur continu-continu à inductance de charge commutée
FR2562737A1 (fr) Procede et circuit de commande d'un moteur pas a pas alimente par une tension continue
FR2712747A1 (fr) Dispositif d'alimentation d'une charge résistive à partir d'une batterie de stockage d'énergie d'un véhicule.
EP0881623A1 (fr) Circuit de commande d'une membrane vibrante
EP0454542A1 (fr) Dispositif de contrôle servant à mesurer l'efficacité d'une clôture électrique
FR2688033A1 (fr) Dispositif d'allumage a bobine.
EP0643310A1 (fr) Dispositif de contrôle de la décharge d'une pluralité de batteries montées en série
WO2003028198A1 (fr) Dispositif de mesure d'un courant hache
EP0356337A1 (fr) Dispositif de protection d'un modulateur à ligne à retard

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB IT LI SE

17P Request for examination filed

Effective date: 19911007

17Q First examination report despatched

Effective date: 19930310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19940803

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940803

Ref country code: GB

Effective date: 19940803

REF Corresponds to:

Ref document number: 69011269

Country of ref document: DE

Date of ref document: 19940908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941104

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971211

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: MERLIN GERIN

Effective date: 19981031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL