EP0423627B1 - Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid - Google Patents
Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid Download PDFInfo
- Publication number
- EP0423627B1 EP0423627B1 EP90119546A EP90119546A EP0423627B1 EP 0423627 B1 EP0423627 B1 EP 0423627B1 EP 90119546 A EP90119546 A EP 90119546A EP 90119546 A EP90119546 A EP 90119546A EP 0423627 B1 EP0423627 B1 EP 0423627B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thf
- metal
- metals
- amorphous
- microcrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 69
- 239000002184 metal Substances 0.000 title claims abstract description 69
- 239000000843 powder Substances 0.000 title claims abstract description 45
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 23
- 239000000956 alloy Substances 0.000 title claims abstract description 23
- 150000002739 metals Chemical class 0.000 title claims abstract description 22
- 239000003960 organic solvent Substances 0.000 title claims abstract description 15
- 229910001092 metal group alloy Inorganic materials 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title description 16
- 230000001681 protective effect Effects 0.000 title description 14
- 239000000084 colloidal system Substances 0.000 title description 5
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 27
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 239000008139 complexing agent Substances 0.000 claims abstract description 14
- 239000005300 metallic glass Substances 0.000 claims abstract description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 176
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- 229910000531 Co alloy Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052987 metal hydride Inorganic materials 0.000 claims description 10
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 9
- 150000004681 metal hydrides Chemical class 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- -1 metals salts Chemical class 0.000 claims description 7
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 5
- 101100434024 Caenorhabditis elegans gar-3 gene Proteins 0.000 claims description 4
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 claims 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 6
- 150000001342 alkaline earth metals Chemical class 0.000 abstract description 4
- 125000005207 tetraalkylammonium group Chemical group 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 53
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 18
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 12
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 229910052593 corundum Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910001845 yogo sapphire Inorganic materials 0.000 description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 5
- 229910019032 PtCl2 Inorganic materials 0.000 description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910000640 Fe alloy Inorganic materials 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910002666 PdCl2 Inorganic materials 0.000 description 3
- 229910021634 Rhenium(III) chloride Inorganic materials 0.000 description 3
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 3
- LOIHSHVELSAXQN-UHFFFAOYSA-K trirhenium nonachloride Chemical compound Cl[Re](Cl)Cl LOIHSHVELSAXQN-UHFFFAOYSA-K 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000006887 Ullmann reaction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 2
- 239000011636 chromium(III) chloride Substances 0.000 description 2
- 235000007831 chromium(III) chloride Nutrition 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001913 cyanates Chemical class 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- LFAGQMCIGQNPJG-UHFFFAOYSA-N silver cyanide Chemical compound [Ag+].N#[C-] LFAGQMCIGQNPJG-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Inorganic materials [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 229910021582 Cobalt(II) fluoride Inorganic materials 0.000 description 1
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910021587 Nickel(II) fluoride Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001897 boron-11 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- AVMBSRQXOWNFTR-UHFFFAOYSA-N cobalt platinum Chemical compound [Pt][Co][Pt] AVMBSRQXOWNFTR-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M thiocyanate group Chemical group [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- UAIHPMFLFVHDIN-UHFFFAOYSA-K trichloroosmium Chemical compound Cl[Os](Cl)Cl UAIHPMFLFVHDIN-UHFFFAOYSA-K 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/002—Making metallic powder or suspensions thereof amorphous or microcrystalline
Definitions
- the present invention relates to a process for the production of finely divided, microcrystalline to amorphous metal or alloy powders or highly disperse colloids by reduction of metal salts with alkali or alkaline earth metal hydrides which are kept in solution in organic solvents by means of special complexing agents. Also wildly claims the use of the powders produced according to the invention in powder technology (Ullmanns Encycl. Techn. Chemistry, 4th edition Vol. 19, p. 563) or as catalysts in pure or supported form (Ullmanns Encycl. Techn. Chemistry, 9. Edition, vol. 13, p. 517; further: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, p. 28 f.).
- the colloids produced according to the invention can be used to apply metals in the form of fine cluster particles to surfaces (JS Bradley, E. Hill, ME Leonowicz. HJ Witzke, J. Mol. Catal. 1987, 41, 59 and cited therein ) or use as homogeneous catalysts. (JP Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, JC Kappos, J. Am. Chem. Soc. 1985, 107, 6628; WF Maier, SJ Chertle, RS Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; PL Burk, RL Pruett, KS Campo, J. Mol. Catal. 1985, 33, 1 ).
- EP-0 379 062 A2 published on July 25, 1990, describes a process for producing acicular, non-sintered iron-metal pigments.
- These iron-metal pigments are produced by reducing iron oxide compounds in organic solvents with metal hydrides of metals from the first and second groups of the Periodic Table of the Elements, the metal hydrides being solvated with a carrier in the form of a carrier complex. This reaction becomes smooth at temperatures between 20 and 150 ° C in the presence of hydrogen from 1 to 200 bar to iron metal pigments.
- the present invention relates to colloidal solutions of metals and / or alloys which can be obtained by the process described above.
- Another aspect of the present invention comprises metal powders with a grain size of 0.01-200 »m, which can be obtained by the above method, which, according to their X-ray diffractogram, are microcrystalline to amorphous and have a boron content of less than 1% by weight.
- the invention also includes metal alloy powders and the use of the microcrystalline to amorphous metal or alloy powders in powder technology.
- metal hydrides of the first or second group of the PSE can be used with the help of organic boron or gallium complexing agents in the organic phase as reducing agents for metal salts without the use of a reducing H2 atmosphere, with boride- or gallium-free metals or metal alloys can be obtained in powder or colloidal form.
- the advantages of the process according to the invention are that the reduction process can be carried out under very mild conditions (-30 ° C. to + 150 ° C.) in organic solvents, and furthermore in the good separability of the metal or alloy powders from the generally soluble ones By-products, as well as in the microcrystallinity of the powder and the fact that the particle size distribution can be controlled depending on the reaction temperature.
- Another advantage arises from the fact that, under certain conditions (use of donor metal salt complexes and / or ammonium triorganohydroborates), colloidal solutions of metals or alloys are obtained in ethers or even pure hydrocarbons without the addition of further protective colloids.
- the elements of groups 5 to 12 and 14 of the PSE are preferably used as metals of the metal salts.
- metals of the mentioned groups of PSE are Sn, Cu, Ag, Au, Zn, Cd, Hg, Ta, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.
- Metal salts or compounds used are those which contain either inorganic or organic anions, preferably those which are solvated in the systems used as solvents, such as halides, cyanides, cyanates, thiocyanates and alcoholates and salts of organic acids.
- M-hydroxides, alcoholates, cyanides, cyanates and thiocyanates form, with the boron and gallium organic complexing agents, -at complexes of the type M [BR3 (anion)], M [BR n (OR ') 3 which are soluble in organic solvents -n (anion)] or M [GaR3 (anion)], M [GaR n (OR ') 3-n (anion)].
- the metal or alloy powder can be isolated according to the invention with particular advantage by simple filtration from the clear organic solution in pure form after the reaction has ended.
- M-halides generally do not form any such complexes; however, in many cases they remain dissolved in the organic solvent, for example THF, after the reaction. This applies in particular to CsF, LiCl, MgCl2, LiBr, MgBr2, LiI, NaI, and MgI2.
- the choice of the cation in the hydride is therefore decisive for the production of metal and alloy powders from corresponding metal halide compounds according to the invention.
- M-halides which precipitate from the organic solvent after the reaction according to the invention for example NaCl
- M-halides which precipitate from the organic solvent after the reaction according to the invention can be separated from the metal or alloy powder by washing with, for example, water.
- a characteristic of the process carried out according to the invention is that the organic boron or gallium complexing agent can be recovered in free form after the reaction or after the complexes by-products M (anion) x have been decomplexed.
- Powder metals with a grain size of 0.01 »m (example) to 200» m are obtained by the process according to the invention.
- the particle size distribution can be controlled by the reaction parameters. Given a combination of starting materials and The lower the reaction temperature, the finer the metal particles obtained according to the invention.
- the reaction of PtCl2 with Li (BEt3H) in THF at 80 ° C provides a platinum powder with a relatively broad particle size distribution from 5 to 100 »m (see Fig. 1).
- the same reaction at 0 ° C (Tab 2, No. 44) results in a platinum powder with a much narrower grain size distribution and a pronounced maximum at 15 »m (see Fig. 2).
- the metal powders produced according to the invention are microcrystalline to amorphous.
- Fig. 3 shows the powder diffractograms of Fe powder produced according to the invention (Tab. 2, No. 3) measured by CoK ⁇ radiation before and after thermal treatment of the sample at 450 ° C.
- the untreated original sample shows only a very broad line (Fig.3a), proof of the presence of microcrystalline to amorphous phases (HP Klug, LE Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974).
- a simple reduction of salts of various metals by the process according to the invention provides fine-particle two-metal and multi-metal alloys under mild conditions.
- the reduction of FeSO4 and CoCl2 with tetrahydroborate in aqueous solution describe J. v. Wontherghem, St. Morup et al. ( Nature, 1986, 322, p. 622 ).
- the result of this procedure is, according to the elementary composition and the saturation magnetization of 89 JT ⁇ 1kg ⁇ 1, an Fe / Co / B alloy with the composition Fe44Co19B37.
- single-phase two-component and multi-component systems in microcrystalline to amorphous form can be freely combined by reducing the salts of main and sub-group elements, non-ferrous and / or noble metals.
- it is possible according to the invention with particular advantage by reducing metal salts and / or which have been drawn onto carrier materials insofar as they do not react with hydroethyl borates (for example Al2O3, SiO2 or organic polymers)
- hydroethyl borates for example Al2O3, SiO2 or organic polymers
- metals and / or alloys in organic solvents can be obtained with particular advantage under certain conditions without the addition of a protective colloid in colloidal solution.
- the conversion of non-ferrous or noble metal salts (individually or as a mixture) with the tetraalkylammonium triorganohydroborates accessible according to German patent application P 39 01 027.9 (EP-A 0 379 062) leads to stable, transparent red, colloidal solutions of the metals at room temperature in THF .
- the metal salts are used in the form of donor complexes, the colloidal metals can also be prepared according to the invention with alkali metal or alkaline earth metal triorganohydroborates in THF or hydrocarbons (see Table 6, No. 15, 16).
- metal alloy powder It is washed again with 200 ml each of THF and pentane and, after drying in a high vacuum (10 ⁇ 3 mbar), 2.45 g of metal alloy powder are obtained (see Table 5, No. 4).
- Metal content of the sample 47.0% Fe, 47.1% Co Boron content of the sample: 0.0%
- the solution is removed and the Al2O3 carrier again dried in a high vacuum (10 ⁇ 3 mbar) for three hours.
- the impregnation is carried out again overnight with 330 ml FeCl3 / CoCl2 solution.
- the color of the solution no longer occurs.
- the solution is removed and the Al2O3 pellets are treated with 63.6 g (600 mmol) of LiBEt3H in 400 ml of THF at 23 ° C for 16 hours, the pellets turning black with evolution of H2.
- the reaction solution is removed and the pellets are washed with 300 ml of THF, THF / ethanol (2: 1), THF and dried in a high vacuum (10 -3 mbar) for four hours.
- Al2O3 pellets are obtained which are coated with an Fe / Co alloy only on the surface of the shell. Elemental analysis: 1.13% Fe, 0.50% Co
- 270 g of spherical, neutral aluminum oxide are swirled for 45 min at room temperature in a solution of 150 g (631.3 mmol) of NiCl2 ⁇ 6 H2O in 500 ml of ethanol, freed from the supernatant solution and at 24 h in a high vacuum (10 ⁇ 3 mbar) 250 ° C dried. After cooling, 1 l of 1.5 molar LiBEt3H solution in THF is added under a protective gas, and the clear reaction solution is separated off after 16 hours of swirling.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Vorliegende Erfindung betrifft ein Verfahren zur Herstellung von feinverteilten, mikrokristallinen bis amorphen Metall- bzw. Legierungspulvern oder hochdispersen Kolloiden durch Reduktion von Metallsalzen mit Alkali- oder Erdalkalimetallhydriden, die mittels spezieller Komplexbildner in organischen Solventien in Lösung gehalten werden. Beansprucht wild ferner die Anwendung der erfindungsgemäß hergestellten Pulver in der Pulvertechnologie (Ullmanns Encycl. Techn. Chemie, 4. Aufl. Bd. 19, S. 563) oder als Katalysatoren in reiner oder geträgerter Form (Ullmanns Encycl. Techn. Chemie, 9. Auflage, Bd. 13, S. 517; ferner: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, S. 28 f.). Die erfindungsgemäß hergestellten Kolloide lassen sich verwenden, um Metalle in Form feiner Clusterpartikel auf Oberflächen aufzubringen (J.S. Bradley, E. Hill, M.E. Leonowicz. H.J. Witzke, J. Mol. Catal. 1987, 41, 59 und dort zit. Lit.) oder als homogene Katalysatoren einsetzen. (J.P. Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, J.C. Kappos, J. Am. Chem. Soc. 1985, 107, 6628; W.F. Maier, S.J. Chertle, R.S. Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; P.L. Burk, R.L. Pruett, K.S. Campo, J. Mol. Catal. 1985, 33, 1).The present invention relates to a process for the production of finely divided, microcrystalline to amorphous metal or alloy powders or highly disperse colloids by reduction of metal salts with alkali or alkaline earth metal hydrides which are kept in solution in organic solvents by means of special complexing agents. Also wildly claims the use of the powders produced according to the invention in powder technology (Ullmanns Encycl. Techn. Chemistry, 4th edition Vol. 19, p. 563) or as catalysts in pure or supported form (Ullmanns Encycl. Techn. Chemistry, 9. Edition, vol. 13, p. 517; further: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, p. 28 f.). The colloids produced according to the invention can be used to apply metals in the form of fine cluster particles to surfaces (JS Bradley, E. Hill, ME Leonowicz. HJ Witzke, J. Mol. Catal. 1987, 41, 59 and cited therein ) or use as homogeneous catalysts. (JP Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, JC Kappos, J. Am. Chem. Soc. 1985, 107, 6628; WF Maier, SJ Chertle, RS Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; PL Burk, RL Pruett, KS Campo, J. Mol. Catal. 1985, 33, 1 ).
Neuere Methoden zur Darstellung feinster Metallpartikel bestehen in der Metallverdampfung (S.C. Davis und K.J. Klabunde, Chem. Rev. 1982, 82, 153 - 208), elektrolytischen Verfahren (N. Ibl, Chem. Ing. -Techn. 1964. 36, 601 - 609) sowie der Reduktion von Metallhalogeniden mit Alkalimetallen (R.D. Rieke, Organometallics, 1983, 2, 377) oder Anthracen-aktiviertem Magnesium (DE 35 41 633). Bekannt ist ferner die Reduktion von Metallsalzen mit Alkalimetallborhydriden in wäßriger Phase zu Metallboriden (N.N. Greewood, A. Earnshaw, Chemistry of the Elements, Pergamon Press 1986, S. 190). Die Korreduktion von Eisen- und Cobaltsalzen in Wasser führt zu einer Fe/Co/B-Legierung der Zusammensetzung Fe₄₄Co₁₉B₃₇ (J. v. Wonterghem, St. Morup, C.J.W. Koch, St.W. Charles, St. Wells, Nature, 1986, 322, 622).More recent methods for producing the finest metal particles consist of metal evaporation (SC Davis and KJ Klabunde, Chem. Rev. 1982, 82, 153 - 208 ), electrolytic processes (N. Ibl, Chem. Ing. -Techn. 1964. 36, 601 - 609 ) and the reduction of metal halides with alkali metals (RD Rieke, Organometallics, 1983, 2, 377 ) or anthracene-activated magnesium (DE 35 41 633). The reduction of metal salts with alkali metal borohydrides in the aqueous phase to metal borides is also known (NN Greewood, A. Earnshaw, Chemistry of the Elements, Pergamon Press 1986, p. 190). The reduction of iron and cobalt salts in water leads to an Fe / Co / B alloy with the composition Fe₄₄Co₁₉B₃₇ (J. v. Wonterghem, St. Morup, CJW Koch, St.W. Charles, St. Wells, Nature, 1986, 322, 622 ).
In der am 25. Juli 1990 veröffentlichten EP-0 379 062 A2 wird ein Verfahren zur Herstellung von nadelförmigen, unversinterten Eisen-Metallpigmenten beschrieben. Die Herstellung dieser Eisen-Metallpigmente erfolgt durch Reduktion von Eisenoxidverbindungen in organischen Solventien mit Metallhydriden von Metallen der ersten und zweiten Gruppe des Periodensystems der Elemente, wobei die Metallhydride mit einem Träger in Form eines Trägerkomplexes solvatisiert sind. Diese Reaktion wird bei Temperaturen zwischen 20 und 150°C in Anwesenheit von Wasserstoff von 1 bis 200 bar glatt zu Eisen-Metallpigmenten.EP-0 379 062 A2, published on July 25, 1990, describes a process for producing acicular, non-sintered iron-metal pigments. These iron-metal pigments are produced by reducing iron oxide compounds in organic solvents with metal hydrides of metals from the first and second groups of the Periodic Table of the Elements, the metal hydrides being solvated with a carrier in the form of a carrier complex. This reaction becomes smooth at temperatures between 20 and 150 ° C in the presence of hydrogen from 1 to 200 bar to iron metal pigments.
Gegenstand der Erfindung ist in einer ersten Ausführungsform ein Verfahren zur Herstellung von hochdispersen, mikrokristallinen bis amorphen Metallen und/oder Legierungen in Form von Pulvern, dadurch gekennzeichnet, daß man in einem wasserfreien inerten organischen Lösungsmittel, ausgewählt aus THF, Diglyme und Kohlenwasserstoffen, Metallsalze mit Metall-Hydriden der 1. und 2. Gruppe des Periodensystems der Elemente (PSE), die mit Komplexbildnern der allgemeinen Formel BR₃, BRn(OR')3-n bzw. GaR₃, GaRn(OR')3-n, wobei R, R' für C₁ bis C₆-Alkyl, Phenyl oder Aralkyl und n für 0, 1 oder 2 steht, in Lösungen gehalten werden, oder mit Tetraalkylammoniumtriorganoboraten der Formel NR''₄ (BR₃H) oder NR''₄(BRn(OR')3-n) (R = C₁-C₆-Alkyl, Ar-C₁-C₆-alkyl; R' = C₁-C₆-Alkyl, Aryl, Aryl-C₁-C₆-alkyl; R'' = C₁-C₆-Alkyl, Aryl, Aryl-C₁-C₆-alkyl, Tri-C₁-C₆-alkylsilyl, n = 0, 1, 2) ohne Anwendung von Wasserstoff umsetzt.The invention relates in a first embodiment to a process for the production of highly disperse, microcrystalline to amorphous metals and / or alloys in the form of powders, characterized in that metal salts are used in an anhydrous inert organic solvent selected from THF, diglyme and hydrocarbons Metal hydrides of the 1st and 2nd group of the Periodic Table of the Elements (PSE) with complexing agents of the general formula BR₃, BR n (OR ') 3-n or GaR₃, GaR n (OR') 3-n , wherein R, R 'is C₁ to C₆-alkyl, phenyl or aralkyl and n is 0, 1 or 2, are kept in solutions, or with tetraalkylammonium triorganoborates of the formula NR''₄ (BR₃H) or NR''₄ (BR n ( OR ') 3-n ) (R = C₁-C₆-alkyl, Ar-C₁-C₆-alkyl; R' = C₁-C₆-alkyl, aryl, aryl-C₁-C₆-alkyl; R '' = C₁-C₆ -Alkyl, aryl, aryl-C₁-C₆-alkyl, tri-C₁-C₆-alkylsilyl, n = 0, 1, 2) without using hydrogen.
In einem weiteren Aspekt betrifft die vorliegende Erfindung kolloidale Lösungen von Metallen und/oder Legierungen, die nach dem oben bezeichneten Verfahren erhältlich sind. Ein weiterer Aspekt der vorliegenden Erfindung umfaßt Metallpulver mit einer Korngröße von 0.01 - 200 »m, die nach dem obigen Verfahren erhältlich sind, die ausweislich ihres Röntgendiffraktogramms mikrokristallin bis amorph sind und einen Borgehalt von weniger als 1 Gew.-% aufweisen. Analog zu den Metallpulvern umfaßt die Erfindung auch Metallegierungspulver sowie die Verwendung der mikrokristallinen bis amorphen Metall- bzw. Legierungspulver in der Pulvertechnologie.In a further aspect, the present invention relates to colloidal solutions of metals and / or alloys which can be obtained by the process described above. Another aspect of the present invention comprises metal powders with a grain size of 0.01-200 »m, which can be obtained by the above method, which, according to their X-ray diffractogram, are microcrystalline to amorphous and have a boron content of less than 1% by weight. Analogous to the metal powders, the invention also includes metal alloy powders and the use of the microcrystalline to amorphous metal or alloy powders in powder technology.
Bevorzugte Ausführungsformen sind den abhängigen Ansprüchen zu entnehmen.Preferred embodiments can be found in the dependent claims.
Es wurde nun überraschend gefunden, daß sich Metallhydride der ersten oder zweiten Gruppe des PSE mit Hilfe von bor- bzw. galliumorganischen Komplexbildnern in organischer Phase als Reduktionsmittel für Metallsalze ohne Verwendung von einer reduzierenden H₂-Atmosphäre einsetzen lassen, wobei borid- bzw. galliumfreie Metalle oder Metallegierungen in Pulver- oder kolloidaler Form erhalten werden.It has now surprisingly been found that metal hydrides of the first or second group of the PSE can be used with the help of organic boron or gallium complexing agents in the organic phase as reducing agents for metal salts without the use of a reducing H₂ atmosphere, with boride- or gallium-free metals or metal alloys can be obtained in powder or colloidal form.
Die Vorteile des erfindungsgemäßen Verfahrens bestehen darin, daß der Reduktionsprozeß unter sehr milden Bedingungen (-30°C bis +150°C) in organischen Solventien durchgeführt werden kann, ferner in der guten Abtrennbarkeit der Metall- bzw. Legierungspulver von den in der Regel löslichen Nebenprodukten, sowie in der Mikrokristallinität der Pulver und der Tatsache, daß sich die Teilchengrößenverteilung in Abhängigkeit von der Reaktionstemperatur steuern läßt. Ein weiterer Vorteil ergibt sich daraus, daß unter bestimmten Voraussetzungen (Einsatz von Donator-Metallsalzkomplexen und/oder Ammoniumtriorganohydroboraten) ohne Zusatz weiterer Schutzkolloide in Ethern oder sogar reinen Kohlenwasserstoffen kolloidale Lösungen von Metallen bzw. Legierungen erhalten werden.The advantages of the process according to the invention are that the reduction process can be carried out under very mild conditions (-30 ° C. to + 150 ° C.) in organic solvents, and furthermore in the good separability of the metal or alloy powders from the generally soluble ones By-products, as well as in the microcrystallinity of the powder and the fact that the particle size distribution can be controlled depending on the reaction temperature. Another advantage arises from the fact that, under certain conditions (use of donor metal salt complexes and / or ammonium triorganohydroborates), colloidal solutions of metals or alloys are obtained in ethers or even pure hydrocarbons without the addition of further protective colloids.
Als Metalle der Metallsalze werden bevorzugt die Elemente der Gruppen 5 bis 12 und 14 des PSE eingesetzt. Beispiele von Metallen der genannten Gruppen des PSE sind Sn, Cu, Ag, Au, Zn, Cd, Hg, Ta, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.The elements of
Als Metallsalze bzw. -verbindungen verwendet man solche, die entweder anorganische oder organische Anionen erhalten, vorzugsweise jene, die in den als Lösungsmittel verwendeten Systemen solvatisiert werden wie Halogenide, Cyanide, Cyanate, Thiocyanate sowie Alkoholate und Salze organischer Säuren. Als Reduktionsmittel verwendet man Metallhydride der allgemeinen Formel MHx (x = 1,2) der 1. bzw. 2. Gruppe des PSE, welche mit einem Komplexbildner der allgemeinen Formel BR₃, BRn(OR')3-n bzw. GaR₃, GaRn(OR')3-n (R,R' = Alkyl C₁ bis C₆, Phenyl, Aralkyl; n = 0,1,2) umgesetzt sind (R. Köster in: Methoden der Organischen Chemie (Houben-Weyl-Müller) 4. Aufl., Bd. XIII/3b, S. 798 ff., Thieme, Stuttgart 1983). Soweit sie nicht ihrerseits mit Metallhydriden reagieren, eignen sich für das erfindungsgemäße Verfahren die genannten Arten organischer Solventien, z.B. Ether, Aliphaten, Aromaten sowie Mischungen verschiedener Lösungsmittel. Die Umsetzung der Metallhydride mit den Komplexbildnern zwecks Solvatisierung inorganischen Lösungsmitteln kann erfindungsgemäß mit besonderem Vorteil in situ, ggf. unter Einsatz eines stöchiometrischen Unterschusses an Komplexbildner, durchgeführt werden.Metal salts or compounds used are those which contain either inorganic or organic anions, preferably those which are solvated in the systems used as solvents, such as halides, cyanides, cyanates, thiocyanates and alcoholates and salts of organic acids. The reducing agents used are metal hydrides of the general formula MH x (x = 1.2) of the 1st or 2nd group of the PSE, which are combined with a complexing agent of the general formula BR₃, BR n (OR ') 3-n or GaR₃, GaR n (OR ') 3-n (R, R' = alkyl C₁ to C₆, phenyl, aralkyl; n = 0.1.2) are implemented (R. Köster in: Methods of Organic Chemistry (Houben-Weyl-Müller ) 4th ed., Vol. XIII / 3b, p. 798 ff., Thieme, Stuttgart 1983). If they do not in turn react with metal hydrides, the types of organic solvents mentioned, for example ethers, aliphatics, aromatics and mixtures of different solvents, are suitable for the process according to the invention. The implementation of the metal hydrides with the complexing agents for the purpose of solvation inorganic According to the invention, solvents can be carried out with particular advantage in situ, if appropriate using a stoichiometric deficit in complexing agents.
Während der Umsetzung der Metallsalze gehen die komplexgebundenen Hydride in Salze vom Typ M(Anion)x (M = Ammonium-, Alkali- oder Erdalkalikation; x = 1,2) über. M-Hydroxide, -Alkoholate, -Cyanide, -Cyanate und -Thiocyanate bilden mit den bor- und galliumorganischen Komplexbildnern in organischen Solventien lösliche -at-Komplexe vom Typ M[BR₃(Anion)], M[BRn(OR')3-n(Anion)] bzw. M[GaR₃(Anion)], M[GaRn(OR')3-n(Anion)]. Da die Umsetzungsprodukte der Hydride vermöge dieser -at-Komplexbildung in Lösung bleiben, läßt sich erfindungsgemäß nach Beendigung der Reaktion das Metall- bzw. Legierungspulver mit besonderem Vorteil durch einfache Filtration von der klaren organischen Lösung in reiner Form isolieren. M-Halogenide bilden im Zuge der erfindungsgemäßen Umsetzung in der Regel keine solchen -at-Komplexe; sie bleiben jedoch nach der Reaktion in vielen Fällen im organischen Solvens, beispielsweise THF, gelöst. Dies gilt insbesondere für CsF, LiCl, MgCl₂, LiBr, MgBr₂, LiI, NaI, sowie MgI₂. Für die erfindungsgemäße Herstellung von Metall- und Legierungspulvern aus entsprechenden Metallhalogen-Verbindungen ist daher zur Vereinfachung der Aufarbeitung die Wahl des Kations im Hydrid ausschlaggebend. Es sollte so gewählt werden, daß es mit dem jeweiligen Halogen ein im organischen Solvens lösliches Halogenid bildet. Alternativ lassen sich M-Halogenide, die nach der erfindungsgemäßen Umsetzung aus dem organischen Solvens ausfallen, z.B. NaCl, durch Auswaschen mit z.B. Wasser vom Metall- bzw. Legierungspulver abtrennen. Kennzeichen des erfindungsgemäß durchgeführten Verfahrens ist, daß der bor- bzw. galliumorganische Komplexbildner nach der Umsetzung in freier Form oder nach Entkomplexierung der Nebenprodukte M(Anion)x wiedergewonnen werden kann.During the conversion of the metal salts, the complex-bound hydrides change into salts of the type M (anion) x (M = ammonium, alkali or alkaline earth metal; x = 1.2). M-hydroxides, alcoholates, cyanides, cyanates and thiocyanates form, with the boron and gallium organic complexing agents, -at complexes of the type M [BR₃ (anion)], M [BR n (OR ') 3 which are soluble in organic solvents -n (anion)] or M [GaR₃ (anion)], M [GaR n (OR ') 3-n (anion)]. Since the reaction products of the hydrides remain in solution by virtue of this complex formation, the metal or alloy powder can be isolated according to the invention with particular advantage by simple filtration from the clear organic solution in pure form after the reaction has ended. In the course of the reaction according to the invention, M-halides generally do not form any such complexes; however, in many cases they remain dissolved in the organic solvent, for example THF, after the reaction. This applies in particular to CsF, LiCl, MgCl₂, LiBr, MgBr₂, LiI, NaI, and MgI₂. In order to simplify the workup, the choice of the cation in the hydride is therefore decisive for the production of metal and alloy powders from corresponding metal halide compounds according to the invention. It should be chosen so that it forms a halide which is soluble in the organic solvent with the respective halogen. Alternatively, M-halides which precipitate from the organic solvent after the reaction according to the invention, for example NaCl, can be separated from the metal or alloy powder by washing with, for example, water. A characteristic of the process carried out according to the invention is that the organic boron or gallium complexing agent can be recovered in free form after the reaction or after the complexes by-products M (anion) x have been decomplexed.
Nach dem erfindungsgemäßen Verfahren erhält man Pulvermetalle der Korngröße 0,01 »m (Beispiel) bis 200 »m (Tab. 2, Nr. 45). Die Teilchengrößenverteilung läßt sich durch die Reaktionsparameter steuern. Bei gegebener Kombination von Ausgangsmaterialien und Lösungsmittel sind die erfindungsgemäß erhaltenen Metallpartikel umso feiner je tiefer die Reaktionstemperatur ist. So liefert die Umsetzung von PtCl₂ mit Li(BEt₃H) in THF bei 80°C (Tab. 2, Nr. 45) ein Platinpulver mit relativ breiter Korngrößenverteilung von 5 bis 100 »m (siehe Abb. 1). Die gleiche Umsetzung bei 0°C (Tab 2, Nr. 44) ergibt ein Platinpulver mit wesentlich engerer Korngrößenverteilung und einem ausgeprägtem Maximum bei 15 »m (vgl. Abb. 2).Powder metals with a grain size of 0.01 »m (example) to 200» m (Tab. 2, No. 45) are obtained by the process according to the invention. The particle size distribution can be controlled by the reaction parameters. Given a combination of starting materials and The lower the reaction temperature, the finer the metal particles obtained according to the invention. Thus, the reaction of PtCl₂ with Li (BEt₃H) in THF at 80 ° C (Tab. 2, No. 45) provides a platinum powder with a relatively broad particle size distribution from 5 to 100 »m (see Fig. 1). The same reaction at 0 ° C (
Die erfindungsgemäß hergestellten Metallpulver sind ausweislich ihrer Röntgendiffraktogramme mikrokristallin bis amorph. Abb. 3 zeigt die mittels CoKα-Strahlung gemessenen Pulverdiffraktogramme von erfindungsgemäß hergestelltem Fe-Pulver (Tab. 2, Nr. 3) vor und nach thermischer Behandlung der Probe bei 450°C. Die unbehandelte Originalprobe zeigt lediglich eine sehr breite Linie (Abb. 3a), ein Beweis für das Vorliegen von mikrokristallinen bis amorphen Phasen (H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974). Nach 3-stündiger Behandlung der Probe bei 450°C beobachtet man infolge Rekristallisation eine scharfe Linie bei einem Streuwinkel 2 ϑ von 52,4° bei einem Netzgitterebenenabstand von D = 2,03 Å, der für das kubisch flächen-zentrierte Gitter von α-Fe charakteristisch ist. (Abb. 3b).According to their X-ray diffractograms, the metal powders produced according to the invention are microcrystalline to amorphous. Fig. 3 shows the powder diffractograms of Fe powder produced according to the invention (Tab. 2, No. 3) measured by CoK α radiation before and after thermal treatment of the sample at 450 ° C. The untreated original sample shows only a very broad line (Fig.3a), proof of the presence of microcrystalline to amorphous phases (HP Klug, LE Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974). After treatment of the sample at 450 ° C for 3 hours, a sharp line is observed as a result of recrystallization at a
Eine einfache Korreduktion von Salzen verschiedener Metalle nach dem erfindungsgemäßen Verfahren liefert unter milden Bedingungen feinteilige Zwei- und Mehrmetall-Legierungen. Die Korreduktion von FeSO₄ und CoCl₂ mit Tetrahydroborat in wäßriger Lösung beschreiben J. v. Wontherghem, St. Morup et al. (Nature, 1986, 322, S. 622). Das Resultat dieser Arbeitsweise ist laut Elementarzusammensetzung sowie Sättigungsmagnetisierung von 89 JT⁻¹kg⁻¹ eine Fe/Co/B - Legierung der Zusammensetzung Fe₄₄Co₁₉B₃₇. Nach Tempern dieses Produktes bei 452°C steigt die Sättigungsmagnetisierung zwar auf 166 JT⁻¹kg⁻¹ an, bleibt jedoch weit unterhalb des für eine Fe₇₀Co₃₀-Legierung erwarteten Wertes von 240 JT⁻¹kg⁻¹, was nach Angaben der Autoren auf die Anwesenheit von Bor in legierter oder separater Phase zurückzuführen ist. Die erfindungsgemäße Korreduktion von FeCl₃ mit CoCl₂ (Molverhältnis 1 : 1; siehe Beispiel Tab. 5, Nr. 4) in THF-Lösung mit LiH/BEt₃ liefert demgegenüber laut Elementaranalyse ein borfreies Pulver der Zusammensetzung Fe₅₀Co₅₀. Der Beweis für das Vorliegen einer mikrokristallinen bis amorphen Fe/Co-Legierung folgert aus Röntgendiffraktogrammen des erfindungsgemäß erhaltenen Pulvers vor und nach thermischer Behandlung (Abb. 4). Vor der Wärmebehandlung zeigt das Diffraktogramm nur eine sehr breite, diffuse Linie (a) was für schwach kristalline bis amorphe Phasen charakteristisch ist. Nach der Wärmebehandlung (3Std. bei 450°C) beobachtet man im Diffraktogramm eine schaffe Linie (b) bei einem Streuwinkel 2 ϑ von 52,7° bei einem Netzgitterebenenabstand von D = 2,02 Å, der einer kristallisierten Fe/Co-Legierung entspricht.A simple reduction of salts of various metals by the process according to the invention provides fine-particle two-metal and multi-metal alloys under mild conditions. The reduction of FeSO₄ and CoCl₂ with tetrahydroborate in aqueous solution describe J. v. Wontherghem, St. Morup et al. ( Nature, 1986, 322, p. 622 ). The result of this procedure is, according to the elementary composition and the saturation magnetization of 89 JT⁻¹kg⁻¹, an Fe / Co / B alloy with the composition Fe₄₄Co₁₉B₃₇. After tempering this product at 452 ° C, the saturation magnetization increases to 166 JT⁻¹kg⁻¹, but remains far below the expected value for a Fe₇₀Co₃₀ alloy of 240 JT⁻¹kg⁻¹, which, according to the authors, indicates the presence of boron in an alloyed or separate phase. The inventive reduction of FeCl₃ with CoCl₂ (molar ratio 1: 1; see example Tab. 5, No. 4) in THF solution with LiH / BEt₃ provides, in contrast, according to elemental analysis, a boron-free powder of the composition Fe₅₀Co₅₀. The evidence for the presence of a microcrystalline to amorphous Fe / Co alloy is deduced from X-ray diffractograms of the powder obtained according to the invention before and after thermal treatment (Fig. 4). Before the heat treatment, the diffractogram shows only a very broad, diffuse line (a), which is characteristic of weakly crystalline to amorphous phases. After the heat treatment (3 hours at 450 ° C), a clear line (b) is observed in the diffractogram at a
Um nachzuweisen, daß die Legierungsbildung bereits während des erfindungsgemäßen Reduktionsprozesses erfolgt und keinesfalls nachträglich durch die Wärmebehandlung induziert wird, wurde ein 1 : 1 -Gemenge von erfindungsgemäß hergestelltem, amorphem Fe- und Co-Pulver vor und nach der Wärmebehandlung bei 450°C vermessen (Abb. 5). Das unbehandelte Gemenge zeigt wiederum eine diffuse Linie (a). Nach 3 Std. bei 450°C erwächst jedoch daraus die Überlagerung zweier Sets von Linien (b) für kubisch raumzentriertes Fe (x) sowie hexagonales bzw. kubisch flächenzentriertes Co (o). Ein Vergleich von Abb. 4 und 5 belegt, daß bereits bei der erfindungsgemäßen Korreduktion eine mikrokristalline bis amorphe Legierung gebildet wird, die erst bei Wärmebehandlung rekristallisiert.In order to demonstrate that the alloy formation already takes place during the reduction process according to the invention and is in no case subsequently induced by the heat treatment, a 1: 1 amount of amorphous Fe and Co powder produced according to the invention was measured before and after the heat treatment at 450 ° C ( Fig. 5). The untreated batch again shows a diffuse line (a). After 3 hours at 450 ° C, however, this results in the superposition of two sets of lines (b) for cubic body-centered Fe (x) and hexagonal or cubic face-centered Co (o). A comparison of Figs. 4 and 5 shows that a microcrystalline to amorphous alloy is formed already in the reduction according to the invention, which recrystallizes only after heat treatment.
Erfindungsgemäß lassen sich einphasige Zwei- und Mehrstoffsysteme in mikrokristalliner bis amorpher Form durch Korreduktion der Salze von Haupt- und Nebengruppenelementen, Bunt- und/oder Edelmetallen frei kombinieren. Ebenso ist es erfindungsgemäß mit besonderem Vorteil möglich, durch Korreduktion von auf Trägermaterialien , soweit diese nicht mit Hydroethylboraten reagieren (z.B. Al₂O₃, SiO₂ oder organische Polymere) aufgezogenen Metallsalze und/oder Metallverbindungen oder Salzmischungen zu schalenförmigen amorphen Metallen und/oder Legierungen auf Trägern zu erzeugen. Amorphe Legierungen in reiner oder geträgerter Form sind als Katalysatoren von großem technischen Interesse.According to the invention, single-phase two-component and multi-component systems in microcrystalline to amorphous form can be freely combined by reducing the salts of main and sub-group elements, non-ferrous and / or noble metals. Likewise, it is possible according to the invention with particular advantage, by reducing metal salts and / or which have been drawn onto carrier materials insofar as they do not react with hydroethyl borates (for example Al₂O₃, SiO₂ or organic polymers) To produce metal compounds or salt mixtures to form shell-shaped amorphous metals and / or alloys on supports. Amorphous alloys in pure or supported form are of great technical interest as catalysts.
Mit besonderem Vorteil lassen sich sich erfindungsgemäß unter bestimmten Bedingungen Metalle und/oder Legierungen in organischen Lösungsmitteln ohne Zusatz eines Schutzkolloids in kolloidaler Lösung erhalten. Die Umsetzung von Bunt- oder Edelmetallsalzen (einzeln oder als Mischung) mit den nach der deutschen Patentanmeldung P 39 01 027.9 (EP-A 0 379 062) zugänglichen Tetraalkylammoniumtriorganohydroboraten führt bei Raumtemperatur in THF zu stabilen, in der Durchsicht roten, kolloidalen Lösungen der Metalle. Werden die Metallsalze in Form von Donatorkomplexen eingesetzt, lassen sich erfindungsgemäß die kolloidalen Metalle auch mit Alkali- bzw. Erdalkalimetalltriorganohydroboraten in THF- oder Kohlenwasserstoffen herstellen (siehe Tabelle 6, Nr. 15, 16).According to the invention, metals and / or alloys in organic solvents can be obtained with particular advantage under certain conditions without the addition of a protective colloid in colloidal solution. The conversion of non-ferrous or noble metal salts (individually or as a mixture) with the tetraalkylammonium triorganohydroborates accessible according to German patent application P 39 01 027.9 (EP-
Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.
1,34 g (10 mmol) AgCN werden in einem 500 ml-Kolben unter Schutzgas mit 2,38 g (10 mmol) Ca(BEt₃H)₂ gelöst in Diglyme (0,1 molar) versetzt und mit Diglyme auf ein Arbeitsvolumen von 250 ml aufgefüllt. Man rührt bei 23°C zwei Stunden und trennt das schwarze Metallpulver von der Reaktionslösung. Das Silberpulver wird mit je 200 ml THF, Ethanol, THF, Pentan gewaschen und im Hochvakuum (10⁻³ mbar) getrocknet. Man erhält 1,10 g Metallpulver (s. Tab. 1, Nr. 10).
Metallgehalt der Probe: 89,6% Ag
Oberfläche nach BET: 2,3 m²/g
Metal content of the sample: 89.6% Ag
BET surface area: 2.3 m² / g
Zu einer Lösung von 2,43 g (8,3 mmol) ReCl₃ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 3,8 g (36 mmol) LiBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Rheniumpulver getrennt und das Rheniumpulver mit je 200 ml THF, Ethanol, THF, Pentan gewaschen, und nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,50 g Metallpulver (s. Tab. 2, Nr. 35).
Metallgehalt der Probe: 95,4%
Oberfläche nach BET: 82,5 m²/gTo a solution of 2.43 g (8.3 mmol) of ReCl₃ in 200 ml of THF in a 500 ml flask, 3.8 g (36 mmol) of LiBEt₃H dissolved in THF (1 molar) at 23 ° C with stirring under protective gas dripped. After two hours, the clear reaction solution is separated from the rhenium powder and the rhenium powder is washed with 200 ml of THF, ethanol, THF, pentane, and after drying in a high vacuum (10⁻³ mbar), 1.50 g of metal powder is obtained (see Table 2 , No. 35).
Metal content of the sample: 95.4%
BET surface area: 82.5 m² / g
In einem 500 ml-Kolben werden 3,32 g (25,6 mmol) CoCl₂ unter Schutzgas mit 0,5 g (63 mmol) LiH, 0,62 g (6,3 mmol) Triethylboran und 250 ml THF versetzt und 16 Stunden unter Rühren auf Rückflußtemperatur erhitzt. Nach Abkühlen auf Raumtemperatur wird das Cobaltpulver von der Reaktionslösung getrennt und mit je 200 ml THF, Ethanol, THF, Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,30 g Metallpulver (s. Tab. 2, Nr. 10).
Metallgehalt der Probe: 95,8% Co
Oberfläche nach BET: 17,2 m²/gIn a 500 ml flask, 3.32 g (25.6 mmol) CoCl₂ under protective gas with 0.5 g (63 mmol) LiH, 0.62 g (6.3 mmol) triethylborane and 250 ml THF are added and 16 hours heated to reflux with stirring. After cooling to room temperature, the cobalt powder is separated from the reaction solution and washed with 200 ml of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 1.30 g of metal powder is obtained (see Tab. 2, No. 10).
Metal content of the sample: 95.8% Co
BET surface area: 17.2 m² / g
34,5 g (200 mmol) Diethylethoxigallium - Et₂GaOEt - werden in 400 ml THF mit 30,5 g (1270 mmol) NaH vier Stunden unter Schutzgas unter Rückfluß gekocht. Man erhält eine klare Lösung, die über eine D-4-Glasfritte vom überschüssigen NaH befreit wird.
Laut Protolyse mit Ethanol ergab sich eine 0,45 molare Lösung.34.5 g (200 mmol) diethylethoxigallium - Et₂GaOEt - are boiled in 400 ml THF with 30.5 g (1270 mmol) NaH for four hours under protective gas under reflux. A clear solution is obtained which is freed from excess NaH via a D-4 glass frit.
Protolysis with ethanol resulted in a 0.45 molar solution.
In eine Lösung von 1,91 g (10,76 mmol) PdCl₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 45 ml (20,25 mmol) der so erhaltenen Na(Et₂GaOEt)H-Lösung unter Rühren bei 40°C zugetropft. Nach zwei Stunden wird die klare Reaktionslösung vom Palladiumpulver abgetrennt, und das Palladiumpulver wird mit 2 x 200 ml H₂O, 200 ml THF und 200 ml Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,2 g Metallpulver (s. Tab. 2, Nr. 29).
Metallgehalt des Pulvers: 92,7% Pd
Metal content of the powder: 92.7% Pd
Zu einer Lösung von 2,15 g (10,3 mmol) RhCl₃ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 11,6 g (34 mmol) NBu₄(BEt₃H) gelöst in THF (0,5 molar) bei 23°C unter Rühren getropft. Nach acht Stunden wird in die schwarze Lösung 100 ml Wasser getropft und anschließend das Rhodiumpulver von der Reaktionslösung getrennt. Das Rhodiumpulver wird mit je 200 ml THF, H₂O, THF, Pentan gewaschen und im Hochvakuum (10⁻³ mbar) getrocknet. Man erhält 1,1 g Metallpulver (s. Tab. 3, Nr. 3).
Metallgehalt der Probe: 90,6%
Oberfläche nach BET: 58,8 m²/g
Metal content of the sample: 90.6%
BET surface area: 58.8 m² / g
Zu einer Lösung von 3,0 g (10 mmol) (NH₃)₂PtCl₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 3,05 g (25 mmol) NaBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Platinpulver getrennt und das Platinpulver mit je 200 ml THF, H₂O, THF, Pentan gewaschen, und nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,95 g Metallpulver (s. Tab. 4, Nr. 1).
Metallgehalt der Probe: 97,1% Pt
Metal content of the sample: 97.1% Pt
Zu einer unter Rückfluß kochenden Lösung von 2,04 g (15,7 mmol) CoCl₂ und 4,18 g (15,7 mmol) PtCl₂ in einem 500 ml-Kolben in 260 ml THF werden unter Schutzgas 9,54 g (90 mmol) LiBEt₃H, gelöst in 90 ml THF, unter Rühren getropft. Nach sieben Stunden Reaktionzeit läßt man auf 23°C abkühlen und trennt die klare Reaktionslösung von der Pulverlegierung, die mit je 250 ml THF, Ethanol, THF, Pentan gewaschen wird. Nach dem Trocknen im Hochvakuum (10⁻³ mbar) erhält man 3,96 g Metallegierungspulver (s. Tab. 5, Nr. 7).
Metallgehalt der Probe: 76,3% Pt, 21,6% Co
Borgehalt der Probe: 0,0%
Oberfläche nach BET: 18,3 m²/g
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 55,4° (47,4°) bei Netzgitterebenenabstand D von 1,93 Å (2,23 Å)To a refluxing solution of 2.04 g (15.7 mmol) of CoCl₂ and 4.18 g (15.7 mmol) of PtCl₂ in a 500 ml flask in 260 ml of THF, 9.54 g (90 mmol ) LiBEt₃H, dissolved in 90 ml THF, added dropwise with stirring. After a reaction time of seven hours, the mixture is allowed to cool to 23 ° C. and the clear reaction solution is separated from the powder alloy, which is washed with 250 ml of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 3.96 g of metal alloy powder are obtained (see Tab. 5, No. 7).
Metal content of the sample: 76.3% Pt, 21.6% Co
Boron content of the sample: 0.0%
BET surface area: 18.3 m² / g
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting
2,97 g (22,9 mmol) CoCl₂ und 3,79 g (23,4 mmol) FeCl₃ werden unter Schutzgas in einem 500 ml-Kolben mit 1,01 g (127 mmol) LiH, 1,25 g (12,7 mmol) Triethylboran und 350 ml THF versetzt. Es wird sechs Stunden auf 67°C erhitzt. Nach Abkühlen auf Raumtemperatur wird die Eisen-Cobalt-Pulverlegierung von der Reaktionslösung abgetrennt und mit 2 x 200 ml THF gewaschen. Anschließend wird mit 150 ml THF sowie 100 ml Ethanol bis zum Ende des Ausgasens gerührt. Man wäscht erneut mit je 200 ml THF und Pentan und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) 2,45 g Metallegierungspulver (s. Tab. 5, Nr. 4).
Metallgehalt der Probe: 47,0% Fe, 47,1% Co
Borgehalt der Probe: 0,0%
Oberfläche nach BET: 42,0 m²/g
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 52,7° bei Netzgitterebenenabstand D von 2,02 Å2.97 g (22.9 mmol) CoCl₂ and 3.79 g (23.4 mmol) FeCl₃ are under protective gas in a 500 ml flask with 1.01 g (127 mmol) LiH, 1.25 g (12, 7 mmol) triethylborane and 350 ml THF were added. It is heated to 67 ° C for six hours. After cooling to room temperature, the iron-cobalt powder alloy is separated from the reaction solution and washed with 2 x 200 ml THF. The mixture is then stirred with 150 ml of THF and 100 ml of ethanol until the outgassing has ended. It is washed again with 200 ml each of THF and pentane and, after drying in a high vacuum (10⁻³ mbar), 2.45 g of metal alloy powder are obtained (see Table 5, No. 4).
Metal content of the sample: 47.0% Fe, 47.1% Co
Boron content of the sample: 0.0%
BET surface area: 42.0 m² / g
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting
Eine Lösung von 9,1 g (56 mmol) FeCl₃ und 3,1 g (24 mmol) CoCl₂ in 2,5 l THF wird innerhalb von fünf Stunden bei 23°C zu 150 ml einer 1,7 molaren (255 mmol) Lösung von LiBEt₃H in THF unter Rühren getropft. Nach Rühren über Nacht wird die Eisen-Cobalt-Legierung von der klaren Reaktionslösung abgetrennt und 2 x mit je 200 ml THF gewaschen. Anschließend wird mit 300 ml Ethanol, dann mit einer Mischung aus 200 ml Ethanol und 200 ml THF bis zum Ende des Ausgasens gerührt. Man wäscht erneut 2 x mit je 200 ml THF und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) 5,0 g Metallegierungspulver (s. Tab. 5, Nr. 3)
Metallgehalt der Probe: 54,79% Fe, 24,45% Co
Borgehalt der Probe: 0,0%
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 52,5° (99,9°) bei Netzgitterebenenabstand D von 2,02 Å (1,17 Å)
Teilchengröße bestimmt nach REM-Aufnahme und Röntgendiffraktorgramm: 0,01 - 0,1 »m
Metal content of the sample: 54.79% Fe, 24.45% Co
Boron content of the sample: 0.0%
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting
Particle size determined according to SEM image and X-ray diffraction gram: 0.01 - 0.1 »m
1,58 g (10 mmol) CrCl₃ werden mit 11,25 g (33 mmol) NBu₄(BEt₃H) gelöst in THF, unter Schutzgas bei 23°C in weiteren 300 ml THF unter Rühren gelöst. Man erhält eine kolloide Chromlösung (s. Tab. 6, Nr. 2).
Py = Pyridin
COD = Cyclooctadien-1,5
Py = pyridine
COD = cyclooctadiene-1.5
11,5 g (70,89 mmol) FeCl₃ und 2,3 g (17,7 mmol) CoCl₂ werden in 1 l THF gelöst. In einer 1 l-Steilbrustflasche werden 50 g Al₂O₃ (SAS 350 Pellets, Rhône Poulenc) in 335 ml der oben dargestellten FeCl₃/CoCl₂-Lösung in THF über Nacht getränkt, wobei sich die grüne Lösung nahezu entfärbt. Das Lösungsmittel wird entfernt und der Träger im Hochvakuum (10⁻³ mbar) drei Stunden getrocknet. Die Tränkung wird mit weiteren 335 ml FeCl₃/CoCl₂-Lösung wiederholt, wobei man eine intensiv gelb gefärbte Lösung erhält. Die Lösung wird entfernt und die Al₂O₃-Träger erneut im Hochvakuum (10⁻³ mbar) drei Stunden getrocknet. Die Tränkung wird noch einmal mit 330 ml FeCl₃/CoCl₂-Lösung über Nacht durchgeführt. Es tritt keine Farbänderung der Lösung mehr auf. Die Lösung wird entfernt und die Al₂O₃-Pellets werden mit 63,6 g (600 mmol) LiBEt₃H in 400 ml THF bei 23°C, 16 Stunden behandelt, wobei sich die Pellets unter H₂-Entwicklung schwarz färben. Die Reaktionslösung wird entfernt und die Pellets werden mit je 300 ml THF, THF/Ethanol (2:1), THF gewaschen und im Hochvakuum (10⁻³ mbar) vier Stunden getrocknet. Man erhält Al₂O₃-Pellets, die nur an der Oberfläche schalenförmig mit einer Fe/Co-Legierung belegt sind.
Elementaranalye: 1,13% Fe, 0,50% Co11.5 g (70.89 mmol) FeCl₃ and 2.3 g (17.7 mmol) CoCl₂ are dissolved in 1 l THF. 50 g of Al₂O₃ (SAS 350 pellets, Rhône Poulenc) in 335 ml of the FeCl₃ / CoCl₂ solution shown above in THF are soaked overnight in a 1 liter steep breast bottle, the green solution almost becoming discolored. The solvent is removed and the carrier is dried in a high vacuum (10 -3 mbar) for three hours. The impregnation is repeated with a further 335 ml of FeCl₃ / CoCl₂ solution, giving an intensely yellow colored solution. The solution is removed and the Al₂O₃ carrier again dried in a high vacuum (10⁻³ mbar) for three hours. The impregnation is carried out again overnight with 330 ml FeCl₃ / CoCl₂ solution. The color of the solution no longer occurs. The solution is removed and the Al₂O₃ pellets are treated with 63.6 g (600 mmol) of LiBEt₃H in 400 ml of THF at 23 ° C for 16 hours, the pellets turning black with evolution of H₂. The reaction solution is removed and the pellets are washed with 300 ml of THF, THF / ethanol (2: 1), THF and dried in a high vacuum (10 -3 mbar) for four hours. Al₂O₃ pellets are obtained which are coated with an Fe / Co alloy only on the surface of the shell.
Elemental analysis: 1.13% Fe, 0.50% Co
Umsetzungen von Ni(OH)₂ mit Na(BEt₃H) in THF ergeben z.B. laut ¹¹B-NMR-Spektrum (¹¹B-Signal bei 1 ppm) in Lösung Na(BEt₃OH). Aus diesem in der Reaktionslösung vorliegenden -at-Komplex erhält man durch Hydrolyse mit HCl/THF den Komplexbildner BEt₃ laut gaschromatographischer Analyse in 97,6%iger Ausbeute zurück. Zu einer Lösung von 1.85 g (20 mmol) Ni(OH)₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 5 g (41 mmol) NaBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Nickelpulver getrennt und mit je 200 ml THF, Ethanol, THF, Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,15 g Metallpulver.
Metallgehalt der Probe: 94,7% Ni
Oberfläche nach BET: 29,7 m²/gReactions of Ni (OH) ₂ with Na (BEt₃H) in THF, for example according to ¹¹B-NMR spectrum (¹¹B signal at 1 ppm) in solution Na (BEt₃OH). From this -at complex present in the reaction solution, the complexing agent BEt₃ is obtained by hydrolysis with HCl / THF according to gas chromatographic analysis in 97.6% yield. To a solution of 1.85 g (20 mmol) of Ni (OH) ₂ in 200 ml of THF in a 500 ml flask, 5 g (41 mmol) of NaBEt₃H dissolved in THF (1 molar) at 23 ° C. are added dropwise under stirring under stirring. After two hours, the clear reaction solution is separated from the nickel powder and washed with 200 ml each of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 1.15 g of metal powder is obtained.
Metal content of the sample: 94.7% Ni
BET surface area: 29.7 m² / g
Zu der vom Nickelpulver abgetrennten klaren Reaktionslösung wird unter Schutzgas und Rühren innerhalb 20 Minuten 11,7 ml einer 3,5 molaren (41 mmol) Lösung von HCl in THF zugetropft, wobei nach kurzem Aufschäumen und leichter Erwärmung ein weißer Niederschlag (NaCl) ausfällt. Die Reaktionsmischung wird mit Na₂CO₃ neutralisiert und über eine D-3-Glasfritte filtriert. Man erhält 222,5 g klares Filtrat das laut gaschromatographischer Analyse 1,76% (3,92 g = 40 mmol) BEt₃ enthält. Somit werden 97,5% des Trägers BEt₃, bezogen auf eingesetzten Trägerkomplex, wiedergewonnen.11.7 ml of a 3.5 molar (41 mmol) solution of HCl in THF are added dropwise to the clear reaction solution, separated from the nickel powder, under protective gas and with stirring, a white precipitate (NaCl) precipitating out after brief foaming and slight heating. The reaction mixture is neutralized with Na₂CO₃ and filtered through a D-3 glass frit. This gives 222.5 g of clear filtrate which, according to gas chromatographic analysis, contains 1.76% (3.92 g = 40 mmol) of BEt₃. Thus, 97.5% of the carrier BEt₃, based on the carrier complex used, are recovered.
Zu der unter Schutzgas in Beispiel 2 abgetrennten Lösung werden 1,62 g (10 mmol) FeCl₃ gegeben. Nach Abreaktion wird die Lösung destilliert. Man erhält 206 g klares Destillat, das laut gaschromatographischer Analyse 1,63% (3,36 g = 34,3 mmol) BEt₃ enthält. Somit werden 95,2% des Trägers BEt₃, bezogen auf den eingesetzten Trägerkomplex, wiedergewonnen.1.62 g (10 mmol) are added to the solution separated off under protective gas in Example 2 Given FeCl₃. After the reaction has ended, the solution is distilled. 206 g of clear distillate are obtained which, according to gas chromatographic analysis, contains 1.63% (3.36 g = 34.3 mmol) of BEt₃. Thus, 95.2% of the carrier BEt₃, based on the carrier complex used, are recovered.
270 g kugelförmiges, neutrales Aluminiumoxid werden bei Raumtemperatur in einer Lösung von 150 g (631,3 mmol) NiCl₂ · 6 H₂O in 500 ml Ethanol 45 min umgeschwenkt, von der überstehenden Lösung befreit und 24 h im Hochvakuum (10⁻³ mbar) bei 250°C getrocknet. Nach Abkühlen versetzt man unter Schutzgas mit 1 l 1,5 molarer LiBEt₃H-Lösung in THF und trennt nach 16 h Umschwenken die klare Reaktionslösung ab. Man wäscht mit je 1,5 l THF, THF/Ethanol-Gemisch (1 : 1), THF und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) kugelförmiges Aluminiumoxid mit 2,5% schälenförmig aufgebrachtem Ni-Metall. Durch Wiederholen der Prozedur kann unter Erhalt der Schalenform der Ni-Gehalt erhöht werden.270 g of spherical, neutral aluminum oxide are swirled for 45 min at room temperature in a solution of 150 g (631.3 mmol) of NiCl₂ · 6 H₂O in 500 ml of ethanol, freed from the supernatant solution and at 24 h in a high vacuum (10⁻³ mbar) 250 ° C dried. After cooling, 1 l of 1.5 molar LiBEt₃H solution in THF is added under a protective gas, and the clear reaction solution is separated off after 16 hours of swirling. It is washed with 1.5 l each of THF, THF / ethanol mixture (1: 1), THF and, after drying in a high vacuum (10⁻³ mbar), spherical aluminum oxide with 2.5% peel-shaped Ni metal is obtained. By repeating the procedure, the Ni content can be increased while maintaining the shell shape.
270 g kugelförmiges, neutrales Aluminiumoxid werden bei Raumtemperatur mit einer Lösung von 200 g (841,7 mmol) NiCl₂ · 6 H₂O in 500 ml destilliertem Wasser 16 h getränkt. Nach Trocknen in Hochvakuum (250°C, 24 h) setzt man, wie in Beispiel 9 beschrieben, mit LiBEt₃H um und erhält nach Aufarbeitung ein mit Nickel durchtränktes Aluminiumoxid mit einem Ni-Gehalt von 4,4%. Durch Wiederholen der Prozedur kann der Ni-Gehalt erhöht werden.270 g of spherical, neutral aluminum oxide are soaked at room temperature with a solution of 200 g (841.7 mmol) of NiCl₂ · 6 H₂O in 500 ml of distilled water for 16 h. After drying in a high vacuum (250 ° C., 24 h), as described in Example 9, the reaction is carried out with LiBEt₃H and, after working up, an aluminum oxide impregnated with nickel with a Ni content of 4.4% is obtained. The Ni content can be increased by repeating the procedure.
Claims (14)
- Process for producing highly dispersed, microcrystalline to amorphous metals and/or alloys in the form of powders, characterized in that in an anhydrous organic solvent selected from THF, diglyme and hydrocarbons, metal salts are reacted in the absence of hydrogen with metal hydrides of the first and second group of the periodic table of the elements (PSE) which are kept in solution by means of complexing agents of the general formula of BR₃, BRn(OR')3-n, respectively GaR₃, GaRn(OR')3-n, wherein R, R' represent C₁- to C₆-alkyl, phenyl or aralkyl and n represents 0, 1 or 2, or are reacted with tetraalkylammoniumtriorganoborates of the formula NR''₄ (BR₃H) or NR''₄ [BRn(OR')3-nH] ( R = C₁-C₆- alkyl; aryl-C₁-C₆-alkyl; R' = C₁-C₆-alkyl, aryl-C₁-C₆-alkyl; R'' = C₁-C₆- alkyl, aryl-C₁-C₆-alkyl, tri-C₁-C₆-alkylsilyl; n = 0, 1, 2).
- Process for producing metals or alloys which are colloidally dissolved in THF and/or hydrocarbons, characterized in thata) donor complexes of salts of nonferrous metals and/or noble metals are reacted individually or in a mixture either with tetraalkylammoniumtriorganoborates according to claim 1, or with alkaline- and/or alkaline earth metal-triorganohydroborates in THF and/or hydrocarbons, orb) salts of nonferrous metals and/or noble metals are reacted individually or in a mixture with tetraalkylammoniumtriorganoborates according to claim 1 in THF.
- Process according to claim 1 or 2, characterized in that as metals salts, individually or in a mixture, those of the 5. to 12. and 14. group of the PSE, dissolved and/or suspended in organic solvents, are applied and that they are reacted at -30 °C to +150 °C, preferably at 0 °C to +80 °C, with metal hydrides MHx (x = 1, 2) of the 1. and 2. group, respectively, of the PSE in the presence of the complexing agent.
- Process according to claim 1 or 3, characterized in that the metals salts are used in the form of donor complexes.
- Process according to claim 1 to 4, characterized in that the metals salts are reacted with the metal hydrides and a reduced amount of the complexing agent.
- Process according to claims 1 to 5, characterized in that the complexing agent is regenerated by acidifying in the form of BR₃ and BRn(OR')3-n, respectively.
- Process according to claims 1 to 6, characterized in that the reaction is carried out in the presence of carrier materials.
- Process according to claims 2 and 7, characterized in that the metals and/or alloys which are colloidally dissolved in THF or hydrocarbons, are produced in the presence of inorganic or organic carrier materials and/or are bound by adsorption to these carriers.
- Colloidal solutions of metals and/or alloys, obtainable according to the claims 2, 7 and 8, in THF and/or hydrocarbons.
- Metal powders, obtainable according to claim 1 or 2, having a grain size of 0,01-200 »m which are according to their X-ray diffraction analysis microcrystalline to amorphous, and having a boron content of less than 1 percent by weight.
- Metal alloy powders, obtainable according to claim 1 or 2, having a grain size of 0,01-200 »m which are according to their diffuse X-ray diffraction analysis microcrystalline to amorphous, and having a boron content of less than 1 percent by weight.
- Use of the microcrystalline to amorphous metal powders and metal alloy powders, respectively, according to the claims 10 and 11 in powder technology.
- Use of the microcrystalline to amorphous Pt-powders having a grain size of 2-200 »m, obtainable according to the claims 1 or 2, for powder-metallurgical coating of glass and ceramic materials.
- Use of the microcrystalline to amorphous Fe/Ni/Co-alloys, obtainable according to the claims 1 or 2, for powder-metallurgical sealing of glass materials.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3934351 | 1989-10-14 | ||
DE3934351A DE3934351A1 (en) | 1989-10-14 | 1989-10-14 | METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0423627A1 EP0423627A1 (en) | 1991-04-24 |
EP0423627B1 true EP0423627B1 (en) | 1995-04-19 |
Family
ID=6391482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90119546A Expired - Lifetime EP0423627B1 (en) | 1989-10-14 | 1990-10-12 | Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid |
Country Status (9)
Country | Link |
---|---|
US (2) | US5308377A (en) |
EP (1) | EP0423627B1 (en) |
JP (1) | JPH03134106A (en) |
AT (1) | ATE121330T1 (en) |
CA (1) | CA2027257C (en) |
DE (2) | DE3934351A1 (en) |
DK (1) | DK0423627T3 (en) |
ES (1) | ES2070970T3 (en) |
IE (1) | IE67173B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19756880A1 (en) * | 1997-12-19 | 1999-07-01 | Degussa | Anode catalyst for fuel cells with polymer electrolyte membranes |
US7713910B2 (en) | 2004-10-29 | 2010-05-11 | Umicore Ag & Co Kg | Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3934351A1 (en) * | 1989-10-14 | 1991-04-18 | Studiengesellschaft Kohle Mbh | METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS |
US5507973A (en) * | 1991-04-26 | 1996-04-16 | Board Of Regents Of The University Of Nebraska | Highly reactive zerovalent metals from metal cyanides |
US5330687A (en) * | 1991-08-01 | 1994-07-19 | Board Of Regents Of The University Of Nebraska | Preparation of functionalized polymers utilizing a soluble highly reactive form of calcium |
US5384078A (en) * | 1991-08-01 | 1995-01-24 | Board Of Regents Of The University Of Nebraska | Soluble highly reactive form of calcium and reagents thereof |
AU2682492A (en) * | 1991-09-25 | 1993-04-27 | Research Corporation Technologies, Inc. | The sonochemical synthesis of amorphous metals |
DE59603454D1 (en) * | 1995-05-26 | 1999-12-02 | Goldschmidt Ag Th | Process for the production of X-ray amorphous and nanocrystalline metal powder |
FR2768638B1 (en) * | 1997-09-23 | 1999-12-17 | Centre Nat Rech Scient | ULTRAFINE POLYMETALLIC PARTICLES, THEIR PREPARATION AND THEIR USE FOR HYDROGENATION OF OLEFINS OR FOR THE COUPLING OF AROMATIC HALOGEN DERIVATIVES |
DE19806167A1 (en) * | 1998-02-14 | 1999-08-19 | Studiengesellschaft Kohle Mbh | Precious metal-protected, anti-corrosive magnetic nanocolloids |
DE19821968A1 (en) * | 1998-05-18 | 1999-11-25 | Studiengesellschaft Kohle Mbh | Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation |
US6262129B1 (en) * | 1998-07-31 | 2001-07-17 | International Business Machines Corporation | Method for producing nanoparticles of transition metals |
DE19853123A1 (en) * | 1998-11-18 | 2000-05-25 | Degussa | Process for the selective catalytic hydrogenation of fatty acids |
US8497131B2 (en) * | 1999-10-06 | 2013-07-30 | Becton, Dickinson And Company | Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules |
US7192778B2 (en) * | 1999-10-06 | 2007-03-20 | Natan Michael J | Surface enhanced spectroscopy-active composite nanoparticles |
US6835332B2 (en) * | 2000-03-13 | 2004-12-28 | Canon Kabushiki Kaisha | Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery |
KR100358853B1 (en) * | 2000-04-04 | 2002-10-31 | 광주과학기술원 | Method of preparing platinum alloy electrode catalysts for direct methanol fuel cell using anhydrous metal chloride |
DE10024776C1 (en) | 2000-05-19 | 2001-09-06 | Goldschmidt Ag Th | Zinc treated with metal hydride is used in organometallic synthesis, especially synthesis of cyclopropane derivatives and zinc organyl compounds and in Reformatsky and analogous reactions |
US6861263B2 (en) | 2001-01-26 | 2005-03-01 | Surromed, Inc. | Surface-enhanced spectroscopy-active sandwich nanoparticles |
US7282710B1 (en) | 2002-01-02 | 2007-10-16 | International Business Machines Corporation | Scanning probe microscopy tips composed of nanoparticles and methods to form same |
US6897650B2 (en) * | 2002-02-11 | 2005-05-24 | International Business Machines Corporation | Magnetic-field sensor device |
DE10227779A1 (en) * | 2002-06-21 | 2004-01-08 | Studiengesellschaft Kohle Mbh | Monodisperse, magnetic nanocolloids of adjustable size and process for their production |
JP4647906B2 (en) * | 2003-12-15 | 2011-03-09 | 日本板硝子株式会社 | Method for producing metal carrier and metal carrier. |
WO2005056222A1 (en) * | 2003-12-15 | 2005-06-23 | Nippon Sheet Glass Co., Ltd. | Metal nanocolloidal liquid, method for producing metal support and metal support |
JP2006218346A (en) * | 2005-02-08 | 2006-08-24 | Honda Motor Co Ltd | Hydrogen adsorbent material and its production method |
US20070122620A1 (en) * | 2005-11-02 | 2007-05-31 | General Electric Company | Nanoparticle-based imaging agents for x-ray / computed tomography and methods for making same |
US9149545B2 (en) * | 2005-11-02 | 2015-10-06 | General Electric Company | Nanoparticle-based imaging agents for X-ray/computed tomography and methods for making same |
WO2007059514A2 (en) * | 2005-11-15 | 2007-05-24 | Oxonica, Inc. | Sers-based methods for detection of bioagents |
US8409863B2 (en) | 2005-12-14 | 2013-04-02 | Becton, Dickinson And Company | Nanoparticulate chemical sensors using SERS |
US7723100B2 (en) | 2006-01-13 | 2010-05-25 | Becton, Dickinson And Company | Polymer coated SERS nanotag |
US20090155811A1 (en) * | 2006-01-27 | 2009-06-18 | Oxonica, Inc. | Lateral Flow Immunoassay With Encapsulated Detection Modality |
EP2044402B2 (en) * | 2006-07-24 | 2016-11-30 | Becton Dickinson and Company | Apparatus and method for performing an assay using magnetic particles |
US8003883B2 (en) * | 2007-01-11 | 2011-08-23 | General Electric Company | Nanowall solar cells and optoelectronic devices |
US7977568B2 (en) * | 2007-01-11 | 2011-07-12 | General Electric Company | Multilayered film-nanowire composite, bifacial, and tandem solar cells |
EP2060323A1 (en) | 2007-11-12 | 2009-05-20 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Methods of preparing, optionally supported, ordered intermetallic palladium gallium compounds, the compounds as such, and their use in catalysis |
US8772886B2 (en) * | 2010-07-26 | 2014-07-08 | Avalanche Technology, Inc. | Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer |
EP3363538B1 (en) | 2017-02-20 | 2024-07-24 | Technische Universität Berlin | A method of preparing a mesoporous carbon composite material comprising metal nanoparticles and use thereof as catalyst |
EP4173701A1 (en) | 2021-10-29 | 2023-05-03 | Technische Universität Berlin | Method for producing metal-containing spherical porous carbon particles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0379062A2 (en) * | 1989-01-14 | 1990-07-25 | Studiengesellschaft Kohle mbH | Acicular magnetic iron pigments with an adjustable coercive force, and process for their production; Fe metal pigments for magnetic recording with an adjustable coercive force |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180835A (en) * | 1962-07-17 | 1965-04-27 | California Research Corp | Stable metal sols and method for producing the same |
GB1047933A (en) * | 1962-09-12 | 1966-11-09 | Exxon Research Engineering Co | Catalysts |
DE2011936C3 (en) * | 1969-03-15 | 1979-04-19 | Stamicarbon B.V., Geleen (Niederlande) | Process for producing acicular, submicroscopic, permanently magnetizable particles |
US3672867A (en) * | 1970-12-07 | 1972-06-27 | Du Pont | Submicron ferromagnetic alloy particles containing cobalt,boron,and zinc |
US3814696A (en) * | 1972-06-19 | 1974-06-04 | Eastman Kodak Co | Colloidal metal in non-aqueous media |
US4096316A (en) * | 1973-08-18 | 1978-06-20 | Fuji Photo Film Co., Ltd. | Method of producing magnetic material with alkaline borohydrides |
US4080177A (en) * | 1975-04-17 | 1978-03-21 | Winston Boyer | Colloidal magnesium suspension in critical low concentration in jet fuel |
JPS6018902A (en) * | 1983-07-13 | 1985-01-31 | Toyota Motor Corp | Preparation of magnetic fluid |
US4537625A (en) * | 1984-03-09 | 1985-08-27 | The Standard Oil Company (Ohio) | Amorphous metal alloy powders and synthesis of same by solid state chemical reduction reactions |
US4624797A (en) * | 1984-09-17 | 1986-11-25 | Tdk Corporation | Magnetic fluid and process for preparing the same |
DE3513132A1 (en) * | 1985-04-12 | 1986-10-23 | Peter Dr. 4000 Düsseldorf Faber | Electrochemically active nickel mass |
US4877647A (en) * | 1986-04-17 | 1989-10-31 | Kansas State University Research Foundation | Method of coating substrates with solvated clusters of metal particles |
JPS6475601A (en) * | 1987-09-18 | 1989-03-22 | Tanaka Precious Metal Ind | Fine composite silver-palladium powder and production thereof |
EP0363552B1 (en) * | 1988-07-27 | 1993-10-13 | Tanaka Kikinzoku Kogyo K.K. | Process for preparing metal particles |
EP0417253A1 (en) * | 1989-04-04 | 1991-03-20 | Sri International | Low temperature method of forming materials using one or more metal reactants and a halogen-containing reactant to form one or more reactive intermediates |
US5034313A (en) * | 1989-04-28 | 1991-07-23 | Eastman Kodak Company | Metastable metal colloids and preparation |
DE3934351A1 (en) * | 1989-10-14 | 1991-04-18 | Studiengesellschaft Kohle Mbh | METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS |
-
1989
- 1989-10-14 DE DE3934351A patent/DE3934351A1/en not_active Withdrawn
-
1990
- 1990-10-10 CA CA002027257A patent/CA2027257C/en not_active Expired - Fee Related
- 1990-10-10 US US07/595,345 patent/US5308377A/en not_active Expired - Lifetime
- 1990-10-12 JP JP2275116A patent/JPH03134106A/en active Pending
- 1990-10-12 DE DE59008929T patent/DE59008929D1/en not_active Expired - Fee Related
- 1990-10-12 ES ES90119546T patent/ES2070970T3/en not_active Expired - Lifetime
- 1990-10-12 IE IE366090A patent/IE67173B1/en not_active IP Right Cessation
- 1990-10-12 AT AT90119546T patent/ATE121330T1/en not_active IP Right Cessation
- 1990-10-12 EP EP90119546A patent/EP0423627B1/en not_active Expired - Lifetime
- 1990-10-12 DK DK90119546.1T patent/DK0423627T3/en active
-
1993
- 1993-08-26 US US08/112,509 patent/US5580492A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0379062A2 (en) * | 1989-01-14 | 1990-07-25 | Studiengesellschaft Kohle mbH | Acicular magnetic iron pigments with an adjustable coercive force, and process for their production; Fe metal pigments for magnetic recording with an adjustable coercive force |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19756880A1 (en) * | 1997-12-19 | 1999-07-01 | Degussa | Anode catalyst for fuel cells with polymer electrolyte membranes |
US7713910B2 (en) | 2004-10-29 | 2010-05-11 | Umicore Ag & Co Kg | Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith |
US8017548B2 (en) | 2004-10-29 | 2011-09-13 | Umicore Ag & Co. Kg | Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith |
Also Published As
Publication number | Publication date |
---|---|
CA2027257C (en) | 2001-05-29 |
US5580492A (en) | 1996-12-03 |
DK0423627T3 (en) | 1995-09-04 |
EP0423627A1 (en) | 1991-04-24 |
DE59008929D1 (en) | 1995-05-24 |
DE3934351A1 (en) | 1991-04-18 |
CA2027257A1 (en) | 1991-04-15 |
IE903660A1 (en) | 1991-04-24 |
ES2070970T3 (en) | 1995-06-16 |
IE67173B1 (en) | 1996-03-06 |
ATE121330T1 (en) | 1995-05-15 |
US5308377A (en) | 1994-05-03 |
JPH03134106A (en) | 1991-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0423627B1 (en) | Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid | |
DE1467175C3 (en) | Zeolite molecular sieve | |
DE60037881T2 (en) | PROMOVED POROUS CATALYST | |
EP0490156B1 (en) | Process for manufacturing active, reversible, H2 accepting magnesium hydride-magnesium-hydrogen storage system | |
DE102007038045B4 (en) | Process for the production of a palladium / carbon catalyst | |
DE60123753T2 (en) | METHOD FOR THE PRODUCTION OF SILICON DIOXIDE CARRIERED COBALT CATALYSTS AND THEIR USE | |
DE3404702A1 (en) | PLATINUM AND / OR PALLADIUM-CONTAINING ORGANOPOLYSILOXANE-AMMONIUM COMPOUNDS, METHOD FOR THEIR PRODUCTION AND USE | |
DE3347677C2 (en) | Process for producing a catalyst | |
DE3347676C2 (en) | ||
EP0112548A2 (en) | Process for producing active systems for the storage of hydrogen by hydrides of magnesium | |
DE19745905A1 (en) | Supported catalysts with high sintering stability and process for their production | |
WO2005087374A1 (en) | Preparation of metal/metal oxide supported catalysts by precursor chemical nanometallurgy in defined reaction chambers of porous supports using organometallic and/or inorganic precursors and reductants containing metal | |
DE2748210A1 (en) | PARTICLES OF ALLOYS OF PLATINUM METALS WITH NON-PLATINUM METALS, METHOD FOR THEIR MANUFACTURE AND THEIR USE | |
DE69024884T2 (en) | Process for the production of fine copper powder | |
US4454246A (en) | Highly dispersed supported group VIII noble metal phosphorus compounds | |
DE69203455T2 (en) | METHOD FOR COATING SILICA BALLS. | |
EP1299191B1 (en) | Metallic nickel hydrogenation catalysts, production and use thereof | |
DE3687447T2 (en) | METHOD FOR PRODUCING FINE DISTRIBUTED METAL POWDERS. | |
DE102006013794A1 (en) | Preparing colloidal nano-catalyst, useful e.g. to synthesis methanol, comprises thermally treating a ligand stabilized complex of an ion of catalytically active metal in an solvent, and adding a precursor compound of an activator compound | |
WO2009000526A1 (en) | Colloidal catalyst, and method for the production thereof | |
DE1297792B (en) | Process for the catalytic cracking of a hydrocarbon oil | |
DE4336829A1 (en) | Process for producing doped supported metal catalysts from an organic or inorganic support material and use thereof | |
AT287156B (en) | THREE-DIMENSIONAL, CRYSTALLINE, ZEOLITHIC MOLECULAR SCREEN FOR THE REFINEMENT OF HYDROCARBONS | |
EP0976450A1 (en) | Supported bimetallic copper-rhodium catalysts with high sintering stability and process for their preparation | |
EP4353869A2 (en) | Particulate inorganic material provided with elemental silver and elemental ruthenium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19910518 |
|
17Q | First examination report despatched |
Effective date: 19930405 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL |
|
REF | Corresponds to: |
Ref document number: 121330 Country of ref document: AT Date of ref document: 19950515 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59008929 Country of ref document: DE Date of ref document: 19950524 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2070970 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950710 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970919 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19970924 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19970925 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970926 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19971003 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971010 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19971021 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981012 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981012 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 19981013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 |
|
BERE | Be: lapsed |
Owner name: STUDIENGESELLSCHAFT KOHLE M.B.H. Effective date: 19981031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990501 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990501 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20001102 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020925 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021009 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021017 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051012 |