EP0423273B1 - Verfahren und anordnung zur piezoelektrischen messung - Google Patents

Verfahren und anordnung zur piezoelektrischen messung Download PDF

Info

Publication number
EP0423273B1
EP0423273B1 EP90906044A EP90906044A EP0423273B1 EP 0423273 B1 EP0423273 B1 EP 0423273B1 EP 90906044 A EP90906044 A EP 90906044A EP 90906044 A EP90906044 A EP 90906044A EP 0423273 B1 EP0423273 B1 EP 0423273B1
Authority
EP
European Patent Office
Prior art keywords
signal
output
amplifier
inverting input
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90906044A
Other languages
English (en)
French (fr)
Other versions
EP0423273A1 (de
Inventor
Klaus-Christoph Harms
Peter W. Krempl
Josef Moik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL Gesellschaft fuer Verbrennungskraftmaschinen und Messtechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL Gesellschaft fuer Verbrennungskraftmaschinen und Messtechnik mbH filed Critical AVL Gesellschaft fuer Verbrennungskraftmaschinen und Messtechnik mbH
Publication of EP0423273A1 publication Critical patent/EP0423273A1/de
Application granted granted Critical
Publication of EP0423273B1 publication Critical patent/EP0423273B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S73/00Measuring and testing
    • Y10S73/04Piezoelectric

Definitions

  • the invention relates to a measuring method for determining or monitoring mechanical and / or physical quantities, wherein a sensor containing at least one piezoelectric transducer element is exposed to the quantity to be determined or monitored and an electrical sensor signal influenced by this quantity is evaluated as a measurement signal on a single signal line . Furthermore, the invention also relates to a measuring arrangement with a sensor containing at least one piezoelectric transducer element and a measuring amplifier connected to it via a single signal line including electrical feedback, as well as advantageous uses of such a measuring arrangement equipped according to the invention.
  • a piezoelectric sensor is known from AT-PS 276.810, which can be used, for example, to monitor the combustion process in the combustion chamber of an internal combustion engine.
  • the sensor is sealingly inserted into an indexing hole in the combustion chamber wall and a suitable measuring amplifier is connected to the signal output of the transducer, which evaluates the measurement signals generated by pressure fluctuations in the combustion chamber interior via the direct piezo effect from the piezoelectric transducer element.
  • the disadvantage of this known arrangement or the associated measuring method is that due to the resistances and leakage currents that are always present, the piezoelectric transducer elements can have relatively strong zero point shifts, so that measurements practically only involve dynamic pressure changes - or changes in quantities to be measured with a certain frequency - are reasonable and that no absolute or static measurements can be carried out accordingly. Furthermore, there is no possibility to check the correct functioning of the sensor in the measuring chain or to adjust so that there are always certain uncertainties with regard to the measurement result.
  • piezoelectric sensors are also known which are suitable for static or quasi-static measurements due to the type and arrangement of their transducer elements or the implementation of the measuring method and the type of evaluation of the measuring signals.
  • a piezoelectric sensor is known, with which different sizes, such as e.g., by changing the vibration behavior of a piezoelectric resonator arranged in the sensor, Temperature or pressure, can be determined or monitored.
  • Such sensors have a very high resolution, but usually only have a very low dynamic range because of the high count rates required for this.
  • the disadvantage remains that the function of the sensor in the measuring chain cannot be monitored or adjusted.
  • a piezoelectric sensor which contains transducer elements of the above-mentioned type combined for both static and dynamic measurements, which achieves high resolution and dynamics on the one hand and usability for static or quasi-static measurements on the other .
  • the measuring amplifiers required in each case must also be provided, connected, etc. for the two measuring processes that run separately, which increases the overall measuring effort and brings additional error possibilities.
  • the object of the present invention is to improve measuring methods and arrangements of the type mentioned in such a way that the disadvantages of the known methods and arrangements mentioned are avoided and that mechanical and / or physical variables of various types and frequency of change in a simple manner are particularly simple in terms of construction and measurement technology installed sensor can be determined or monitored can.
  • This design of the method takes advantage of the fact that the frequency of the excitation signal of a transducer element operated as a piezoelectric resonator is above - and usually far above - the frequency of changes in mechanical and / or physical quantities to be determined or monitored, so that the corresponding characteristic frequencies are separable in the measurement signal and can be evaluated separately to determine the two relevant signals.
  • a measuring amplifier can be built with a frequency output, where the respective resonance frequency of the connected piezoelectric transducer element can be read.
  • the evaluation of this resonance frequency makes it possible, for example, to read the pressure, provided that it has a specific pressure dependency, which corresponds to a static or quasi-static pressure measurement. If this resonance frequency has a clear temperature dependency, the temperature of the transducer elements can be measured or monitored directly in this way. It is also possible to simply consider this resonance frequency as significant for the functioning of the transducer element, with which it can be determined whether the respective measuring chain is still functioning properly.
  • the configuration of the measuring arrangement according to the invention accordingly provides that the sensor for operation in the two possible modes of operation on the one hand at low frequencies as a measuring element for a mechanical variable using the direct piezo effect and on the other hand at higher frequencies as a piezoelectric resonator using the inverse piezo effect for electrical excitation mechanical vibrations and the direct piezo effect for generating the piezoelectric reaction - is connected via a common, single signal line to the inverting input of a charge amplifier arranged in the measuring amplifier that the charge amplifier is further connected to the output of a signal generator and controlled by this with a frequency signal is, whose mean value is equal to the potential of the electrical feedback, and that the output fed back via a capacitor to the inverting input
  • an operational amplifier arranged in the charge amplifier it is connected on the one hand to the input of a high-pass filter, at the output of which a signal u HF dependent on the resonance characteristic can be tapped, and on the other hand to the input of a low-pass filter, at the output of
  • the charge amplifier thus acts as part of the resonance detector used to evaluate the reaction of the vibration excitation.
  • a suitable lower or upper cut-off bandpass can naturally also be used instead of high-pass and / or low-pass filters.
  • a higher-frequency excitation signal for excitation of the sensor to mechanical vibrations is supplied via the signal line, to which a signal of the same frequency subsequently generated by the piezoelectric reaction of the sensor and a signal from the sensor due to mechanical, low-frequency effects generated low-frequency signal are superimposed, the low-frequency portion of the measurement signal on the signal line being virtually short-circuited and the resulting short-circuit current being amplified for further signal processing and preferably integrated into a charge-proportional output signal.
  • either the higher-frequency component of the measurement signal on the signal line can be capacitively decoupled from the low-frequency component, or it can be provided that the higher-frequency excitation signal is impressed on the signal line in terms of voltage and the entire current through the Sensor, higher frequency and low frequency components, is used for further signal processing.
  • Both are simple and effective options for carrying out or improving the measuring method according to the invention, which ensure a clean separation of the relevant signals from the measuring signal, even when the frequency ranges for the two operating modes are close together.
  • the measuring arrangement according to the invention is designed in such a way that the frequency signal output of the signal generator is connected to the non-inverting input of the charge amplifier.
  • the invention provides that the frequency signal output of the signal generator is connected to the signal line of the sensor via an emitter follower, that a constant current source is switched on in the emitter and collector lines of the emitter follower transistor and that the collector of the emitter follower is switched on -Transistor is connected to the inverting input of the charge amplifier, for example also the non-inverting input can be at a resting potential, preferably at the potential of the electrical feedback, so that the collector potential of the emitter follower transistor is set to a value suitable for the operation of the transistor.
  • the difference between a reference signal in frequency and phase corresponding to the excitation signal and uninfluenced by the sensor and the measurement signal is formed, the excitation signal and the reference signal being mutually adjustable in their amplitudes .
  • the amplitude can also be adjusted so that the real part of the higher-frequency signal disappears.
  • the bandpass-filtered, higher-frequency signal can be actively fed back in phase, preferably with automatic tuning of the loop gain to a factor of 1.
  • An oscillator is thus realized by means of the resonance measurement itself, so that a separate signal generator or the like for the excitation of the transducer element is unnecessary.
  • the signal generator has a further frequency signal output, which - based on the signal at the non-inverting input of the charge amplifier u 1 - in frequency and phase same and adjustable in amplitude reference signal u2 leads and is connected to the non-inverting input of a reference charge amplifier that the inverting input is arranged in the reference charge amplifier
  • Operational amplifier is connected to the potential of the feedback via a capacitance and its output is fed back via a further capacitance, so that the output of the reference charge amplifier, which is passed through a further high-pass filter, as well as the output of the high-pass filter carrying the signal u HF , is connected to a differential amplifier Output a signal u D describing the resonance characteristic can be tapped.
  • the output of the low-pass filter carrying the signal u NF is connected to the input of a post-amplifier, at the output of which a processed signal u Q is available, which provides a clearer statement also with regard to the lower-frequency parts of the measurement signal enables.
  • the high-pass filtered output of the differential amplifier is connected to a synchronous demodulator, which is further connected to a unit for generating a phase reference, which in turn is connected to the signal generator, preferably to one of the frequency signal outputs thereof , And that the output of the synchronous demodulator is connected to the actual value input of a controller, which further has a setpoint input and a manipulated variable output, the latter being connected to one another with a tuning unit for tuning the relative amplitudes of the two output signals u 1, u 2 of the signal generator.
  • the measuring arrangement is expanded in principle by a controller for automatic tuning of the relative amplitudes of the two output signals u 1, u 2.
  • the phase reference is derived, for example, from one of the signals u 1 or u 2 the real part of u D is obtained and tuned to zero in the closed control loop.
  • the high-pass filtered output of the differential amplifier is connected to a further synchronous demodulator, that the further synchronous demodulator is connected to a phase reference unit, which in turn is connected to the frequency signal output of the signal generator designed as a VCO, that the output of the synchronous demodulator is connected to the input of a maximum controller, which is connected to the VCO for tuning the VCO, which preferably can also be roughly tuned independently of it.
  • the actual resonance measuring circuit is thus expanded to an oscillator.
  • the VCO Voltage Controlled Oscillator
  • the VCO Voltage Controlled Oscillator
  • the imaginary part of u D is obtained with the aid of the phase reference and fed to the maximum controller as the actual value.
  • a variant of the latter embodiment of the measuring arrangement is characterized in a further embodiment of the invention in that the signal generator is designed as a VCO, the frequency signal output of which is also connected to the non-inverting input of an operational amplifier arranged in a reference charge amplifier, the inverting input of which via an adjustable capacitance at the potential of the feedback and a further capacitance is fed back to its output, that the output of the reference charge amplifier as well as the output of the charge amplifier itself is connected to a differential amplifier, that the high-pass filtered output of the differential amplifier is connected to a synchronous demodulator, to which the output signal is also connected the frequency signal output of the VCO connected phase reference unit is supplied and its output is connected to the actual value input of a controller, and that the white ters also has a setpoint input controller has a manipulated variable output, which is connected to a frequency control input of the VCO.
  • the signal generator is designed as a VCO, the frequency signal output of which is also connected to the non-inverting input of an operational amplifier
  • the measuring amplifier is thus designed for operation as a charge amplifier on the one hand and as an oscillator for a frequency on the other hand. It is based on the automatic controller mentioned above Adjustment of the relative amplitudes of the two output signals of the signal generator is dispensed with and instead provided for the necessary adjustment to be made when the circuit is started up and not to be re-adjusted during operation.
  • the tuning criterion that the real part of u D should be zero can be used to generate the frequency for which this condition is met.
  • the pre-tuning can be carried out manually or computer-controlled on the basis of a preliminary analysis of the resonance characteristic of the transducer element obtained with the aid of the resonance detector, so that the frequency is a resonance frequency of the piezoelectric transducer element. Possible components to be matched are one or more of the capacities mentioned and, under certain circumstances, also a separate tunable capacitance parallel to the piezoelectric transducer element.
  • the signal generator is realized by means of active feedback of the signal u HF available at the output of the high-pass filter designed as a bandpass filter to the non-inverting input of the charge amplifier and the non-inverting input of a reference charge amplifier. that the output of the reference charge amplifier as well as the output of the charge amplifier is connected to a differential amplifier, the output of which is fed to the bandpass filter and the low-pass filter, and that a 90 ° phase-rotating element and preferably an automatic gain control unit (AGC) are switched on in the active feedback.
  • AGC automatic gain control unit
  • the resonance detector which is initially tuned manually, for example, with the aid of a capacitance, supplies a maximum output signal in the case of resonance of the piezoelectric transducer element, the phase of which is rotated by 90 ° with respect to the exciting signal. In order to meet the feedback condition for undamped vibrations, the output signal must also be rotated by 90 ° phase.
  • the loop gain is regulated to the value 1 via the AGC unit.
  • the bandpass filter is used to select a resonance within a certain frequency band. As in the other embodiments, the low-frequency signal of the charge amplifier can be tapped via the low-pass filter.
  • the measuring arrangement according to the invention When using the measuring arrangement according to the invention, for example in connection with an accelerometer permanently installed in an aircraft, it is possible to carry out a remote query, for example from a control station, in order to determine whether the entire measuring chain is still in order, that is to say whether one is concerned with the particular one Measured values can also actually leave the load.
  • a measuring arrangement according to the invention for determining or monitoring mechanical and / or physical quantities via the lower-frequency parts of the measuring signal on the signal line while simultaneously monitoring the function of the sensor via the higher-frequency parts of the measuring signal characterized resonance behavior, the sensor having a single transducer element that contains at least one piezo element.
  • a measuring arrangement of the type described here for the simultaneous determination or monitoring of at least two different mechanical and / or physical quantities, the sensor having at least two separate transducer elements which are optimized for the respective task.
  • These two transducer elements can be connected electrically and / or mechanically either in parallel or in series, the respective optimal arrangement resulting from the measurement task.
  • the frequency signal output of the signal generator is at the non-inverting input of an operational amplifier, the output of which is connected to the gate of an FET, which in turn is fed back via source to the inverting input of the operational amplifier and with a constant current source and with the signal line the sensor is connected so that the inverting input of the charge amplifier is connected to the drain of the FET and to a further constant current source, it also being possible for the non-inverting input of the charge amplifier to be at a quiescent potential or potential of the electrical Repatriation lies.
  • the signal generator has a further frequency signal output which is at the non-inverting Input of a reference operational amplifier is located, the output of which is connected to the gate of a further FET, which in turn is fed back via source to the inverting input of the reference operational amplifier and is connected to a constant current source and to a capacitor which is at the potential of the feedback, that the inverting input of a reference charge amplifier is connected to the drain of the further FET and to a further constant current source, and that furthermore the outputs of charge amplifier on the one hand and reference charge amplifier on the other are supplied on the side of a differential voltage amplifier, the output of which lies at the input of the high-pass and low-pass filters.
  • the frequency signal output of the signal generator is at the non-inverting input of an operational amplifier, the output of which is connected to the gate of an FET, which in turn is fed back via source to the inverting input of the operational amplifier and is connected to a constant current source and to the signal line of the sensor that the signal generator has a further frequency signal output, which is at the non-inverting input of a reference operational amplifier, the output of which is connected to the gate of a further FET, which in turn is connected via source to the inverting one Input of the reference operational amplifier is fed back and connected to a further constant current source and to a capacitor which is at the potential of the electrical feedback, and that the drain connections of the two FETs are fed to a differential current amplifier whose current output is at the inverting input of the non-inverting input at the potential of the electrical feedback Charge amplifier is connected.
  • the signal subtraction or difference formation can be carried out not only with a differential voltage amplifier, as previously mentioned, but also with a differential current amplifier, for example with a current mirror circuit.
  • a differential voltage amplifier as previously mentioned
  • a differential current amplifier for example with a current mirror circuit.
  • a common one instead of the two charge amplifiers for the currents of the sub-branches, a common one can also be used for the differential current.
  • the signal generator is realized by means of an active feedback of the signal available at the output of the high-pass filter designed as a bandpass to the non-inverting input of an operational amplifier and the non-inverting input of a reference operational amplifier that the output of these two Operational amplifier has at the gate of an FET, the source of which is connected to a separate constant current source and is fed back to the inverting input of the respective operational amplifier, the signal line of the sensor being additionally connected to the source in the case of the operational amplifier and an additional one in the case of the reference operational amplifier Connection from source via an adjustable capacitance to the potential of the electrical feedback is that the drain connections of the two FETs have a differential current amplifier and i / u converter are supplied, the output of which is connected on the one hand to a bandpass filter and on the other hand via a resistor to the inverting input of the charge amplifier, an automatic gain control unit (AGC) preferably being switched on in the feedback between the bandpass and non-invert
  • a differential current amplifier is again used here, but a proportional voltage signal is now generated from the differential current.
  • This can be amplified, for example, via an integrator, after which the signal which is proportional to the charge and thus to the mechanical input signal is again available via the low-pass filter stands.
  • the voltage signal at the output of the differential current amplifier can be used to operate the circuit as a freely oscillating oscillator with closed feedback.
  • the AGC unit in turn ensures compliance with the amplitude condition (loop gain equal to 1), the phase condition (phase difference in the loop equal to zero) also being met in the case of resonance of the piezoelectric transducer element.
  • the bandpass filter is used to select the desired resonance frequency of the transducer element. In this embodiment, the frequency signal characterizing the resonance frequency of the transducer can be tapped, for example, after the bandpass filter.
  • a driver stage generating frequency signals for the two operational amplifiers which are in phase opposition to the two operational amplifiers can also be connected between the automatic gain control unit and the non-inverting inputs of the two operational amplifiers, and a current addition circuit can be provided instead of the differential current amplifier.
  • the required subtraction is thus not carried out as described above by the formation of the differential current of the currents generated from the two signals in phase, but by the generation of signals in phase opposition and by subsequent addition of the resulting currents.
  • the current-voltage converter can be constructed, for example, with the aid of an operational amplifier fed back via a resistor.
  • the two opposite phase voltage signals can be generated with the aid of a differential amplifier with symmetrical outputs.
  • the driver stage has an additional unit for amplitude matching of the two antiphase frequency signals, that the high-pass filtered output of the charge amplifier is connected to a synchronous demodulator, which is also connected to a unit for generating a Phase reference is connected, which in turn is connected to one of the non-inverting inputs of the two operational amplifiers, and that the output of the synchronous demodulator is connected to the actual value input of a controller, which further has a setpoint input and a manipulated variable output, the latter with the unit to Amplitude matching is connected.
  • the result is a precision oscillator and charge amplifier for the piezoelectric transducer element, the tuning of the circuit again taking place automatically with the aid of amplitude matching of the antiphase frequency signals, which is controlled by a controller which compares the setpoint zero with the actual value supplied by a synchronous rectifier.
  • a controller which compares the setpoint zero with the actual value supplied by a synchronous rectifier.
  • the fine adjustment of the phase condition and, in connection with the AGC unit, the adjustment of the amplitude condition takes place because of the positive feedback of the circuit only at the resonance frequency of the piezoelectric transducer element, which is selected via the bandpass filter mentioned.
  • FIG. 2 shows the basic circuit of a charge amplifier with a connected piezoelectric transducer element 1.
  • the signal line 2 is connected to the inverting input (-) of an operational amplifier 5, the non-inverting input (+) of which is at the potential of the feedback and the output 6 of which has a capacitance C r the inverting input is fed back.
  • the voltage available at the output 6 of the operational amplifier 5 and thus of the charge amplifier is therefore proportional to the size of the mechanical action on the piezoelectric transducer element 1 (as long as no misunderstandings can arise, the terms “operational amplifier” and “charge amplifier” are related below used simultaneously with the component marked 5 - the same also applies to the expression "sensor” and "transducer element”).
  • FIG. 3 shows the basic circuit of a resonance detector, with a signal generator 7, the actual detector 8 and a capacitance C o , the piezoelectric transducer element 1 being operated here as a resonator with the capacitance C o in a voltage divider.
  • the low-frequency signal u NF of the "charge amplifier” and the higher-frequency signal u HF for the "resonance detector” can be obtained from the output signal of the amplifier 5.
  • FIG. 5 now shows an addition to the circuit shown in FIG. 4 in order to obtain a clearer output signal which is more characteristic of the resonances of the transducer element.
  • the signal generator 7 has a further frequency signal output, which - based on the non-inverting input (+) of the charge amplifier (or the operational amplifier 5 in the charge amplifier) lying signal u 1 - the same in frequency and phase and adjustable in amplitude Reference signal u2 leads and is connected to the non-inverting input (+) of a reference charge amplifier 11.
  • the inverting input (-) of the operational amplifier 12 arranged in the reference charge amplifier 11 is connected to the potential of the feedback via a capacitance C2 and fed back to its output 13 via a further capacitance C1.
  • the output of the low-pass filter 10 carrying the signal u NF is connected to the input of a post-amplifier 16, at the output of which a processed signal u Q is available.
  • the post-amplified signal u Q of the "charge amplifier” can be measured, which is proportional to the mechanical quantity acting.
  • FIG. 6 shows the expansion of the circuit according to FIG. 5 (symbolized by the box 18) by a controller for automatic tuning of the measuring circuit.
  • the high-pass filtered output of the differential amplifier (signal u D ) is connected to a synchronous demodulator 19, which is further connected to a unit 20 for generating a phase reference, which in turn is connected to the signal generator (7 in FIG. 5), preferably to one of the Frequency signal outputs thereof.
  • the output of the synchronous demodulator 19 is connected to the actual value input 21 of a controller 22, which also has a setpoint input 23 and a manipulated variable output 24. This manipulated variable output 24 can be, for example, directly at the input 17 shown in FIG.
  • a tuning unit (not shown) for tuning the relative amplitudes of the two output signals u 1, u 2 of the signal generator.
  • the real part of u D is obtained in the synchronous demodulator 19 with the aid of the phase reference mentioned and is adjusted to zero in the closed control loop.
  • Fig. 7 shows the expansion of the resonance measuring circuit to an oscillator.
  • the upper part of the illustration corresponds essentially to a combination of FIGS. 5 and 6, with the difference between the illustration and FIG. 5 being that only the sequence of differential amplification and filtering is interchanged.
  • Identical or at least functionally identical components are again provided with the reference numerals previously used.
  • the high-pass filtered output of the differential amplifier 15 (signal u D ) is connected to a further synchronous demodulator 25, which in turn is connected to a phase reference unit 26.
  • the phase reference unit 26 is in turn connected to the frequency signal output 27 of the connected as a VCO (Voltage Controlled Oscillator) signal generator 7.
  • the output of the synchronous demodulator 25 is connected to the input 28 of a maximum regulator 29, which is connected to the VCO (7) for fine tuning, which can preferably be independently coarsely tuned via an input 30.
  • controller 22 acts on a separate tuning unit 31 for amplitude tuning of the two signals u 1 and u 2, which is supplied to the frequency signal output 27 of the VCO.
  • the signal generator 7 is again designed as a VCO, whose frequency signal output 27 is also connected to the non-inverting input (+) of the operational amplifier 12 arranged in the reference charge amplifier 11.
  • the inverting input (-) of this operational amplifier 12 has an adjustable capacitance C2 at the potential of the feedback and is fed back via the capacitance C1 to the output 13.
  • the output 13 of the reference charge amplifier 11, like the output 6 of the actual charge amplifier 5, is in turn connected to a differential amplifier 15.
  • the output of the differential amplifier 15 is connected to a synchronous demodulator 19 via a high-pass filter 14, as in FIG. 7;
  • the output signal u Q is again obtained via the low-pass filter 10.
  • the synchronous demodulator 19 is also supplied with the output signal of a phase reference unit 20 which is also connected to the frequency signal output 27 of the VCO.
  • the output of the synchronous demodulator 19 is connected to the actual value input 21 of a controller 22, which additionally has a setpoint input 23 and is connected via a manipulated variable output 24 to a frequency controller input of the VCO.
  • the circuit according to FIG. 8 thus treats a variant of the measuring amplifier for operation as a charge amplifier on the one hand and as an oscillator for a frequency on the other hand.
  • the controller 22 according to FIG. 6 for automatic tuning of the measuring circuit is dispensed with and instead provision is made for the necessary tuning when the circuit is started up and not re-tuned during operation, the tuning criterion (namely that the real part of u D is zero) is) used to generate the frequency for which this condition is met.
  • the pre-tuning can be carried out manually or computer-controlled on the basis of a previous analysis of the resonance characteristic of the piezoelectric transducer element 1 obtained with the aid of the resonance detector, so that the frequency is a resonance frequency of this element.
  • one or more of the capacitances shown as well as a capacitance not entered here (tunable) parallel to the piezoelectric transducer element 1 are suitable as components to be tuned.
  • Fig. 9 shows a measuring arrangement according to the invention with a measuring amplifier as a charge amplifier and as an oscillator with direct feedback, without an intermediate VCO.
  • the actual signal generator is realized here by means of an active feedback of the signal u HF available at the output of the high-pass filter 14 designed as a bandpass filter to the non-inverting input (+) of the charge amplifier 5 and the non-inverting input (+) of the reference charge amplifier 11.
  • the output 13 of the reference charge amplifier like the output 6 of the charge amplifier 5, is in turn connected to a differential amplifier 15, the output of which is fed to the bandpass filter (14) and the low-pass filter 10.
  • a 90 ° phase-rotating element 32 and an automatic gain control unit (AGC) 33 are switched on in the active feedback.
  • the tuned resonance detector for example by hand with the aid of the capacitance C2, supplies a maximum output signal in the case of resonance of the piezoelectric transducer element 1, the phase of which is 90 ° with respect to the exciting one Signal u F is rotated.
  • the output signal is additionally phase-shifted in the link 32 by 90 °.
  • the loop gain is regulated to the required value 1 via the gain control unit 33.
  • the bandpass filter (14) is used to select a resonance within a certain frequency band.
  • the low-frequency signal u Q of the charge amplifier can in turn be tapped via the low-pass filter 10.
  • the frequency signal output 27 of the signal generator 7 is connected to the signal line 2 of the sensor or transducer element 1 via an emitter follower 34.
  • a constant current source 36 is switched on in each of the emitter and collector lines of the emitter follower transistor 35.
  • the collector 37 of the emitter follower transistor 35 is connected to the inverting input (-) of the charge amplifier 5, the non-inverting input (+) of which has the potential for feedback.
  • the two constant current sources 36 serve to define the DC operating point of the transistor 35.
  • the high-pass filter 14 and the low-pass filter 10 are also used here for the separation into the two signals u NF and u HF .
  • FIG. 11 shows an embodiment known per se for the constant current sources 36 as a precision constant current source.
  • the internal resistance of such a power source can be made extremely large (much larger than a G ⁇ ).
  • FIG. 12 now shows the expansion of the circuit 10 to a resonance detector, the sensitivity to the resonance characteristic of which is significantly increased by subtractive compensation of the parallel capacitance of the transducer element 1.
  • the frequency signal output (signal u1) of the signal generator 7 is at the non-inverting input (+) of an operational amplifier 40, the output 41 of which is connected to the gate of an FET 42, which in turn is fed back via source to the inverting input (-) of the operational amplifier 40 and with one Constant current source 36 and with the signal line 2 of the sensor or converter element 1 is connected.
  • the inverting input (-) of the charge amplifier 5 is connected to the drain of the FET 42 and to a further constant current source 36 - the non-inverting input (+) of the charge amplifier 5 is at a quiescent potential u o , so that the drain potential of the FET 42 is also on it suitable value for the operation of the FET 42 is set.
  • the signal generator 7 has a further frequency signal output (signal u2), which is located at the non-inverting input (+) of a reference operational amplifier 43, the output 44 of which is connected to the gate of a further FET 45.
  • This FET 45 is fed back via source to the inverting input (-) of the reference operational amplifier 43 and connected to a constant current source 36 and to a capacitor C2 which is at the potential of the feedback.
  • the inverting input (-) of a reference charge amplifier 11 is connected to the drain of the further FET 45 and to a further constant current source 36.
  • the non-inverting input (+) of the reference charge amplifier 11 is at the same quiescent potential u o as in the charge amplifier 5, so that the drain potential is also set to this value suitable for the operation of the FET 45.
  • the outputs of charge amplifier 5 on the one hand and reference charge amplifier 11 on the other hand are fed to a differential voltage amplifier 15, the output of which is in turn at the input of a high-pass filter and a low-pass filter (14, 10).
  • the signal generator 7 has a further frequency signal output (u2), which is at the non-inverting input (+) of a reference operational amplifier 50, the output of which is connected to the gate of a further FET 47, which in turn is connected via source to the inverting input (- ) of the reference operational amplifier 50 is connected back and connected to a further constant current source 36 and to a capacitor C2 lying on the other hand at the potential of the electrical feedback.
  • the drain connections of the two FETs 46, 47 are fed to a differential current amplifier 48, the current output 49 of which is connected to the inverting input (-) of the charge amplifier 5, which has the non-inverting input (+) and has potential for electrical feedback.
  • the actual signal generator is by means of an active feedback of the signal available at the output of the high-pass filter 14, which is again designed as a bandpass filter u F realized on the non-inverting input (+) of an operational amplifier 49 and on the non-inverting input (+) of a reference operational amplifier 50.
  • the output of these two operational amplifiers 49, 50 is in turn located at the gate of an FET 46, 47, the source of which is in each case connected to a separate constant current source 36 and is fed back to the inverting input (-) of the respective operational amplifier 49, 50.
  • the signal line 2 of the converter element 1 in the sensor is additionally connected to the source of the FET 46; in the case of the reference operational amplifier 50 there is also a connection from source via an adjustable capacitance C2 to the potential of the electrical feedback.
  • the drain connections of the two FETs 46, 47 are in turn fed to a differential current amplifier 48 ', which here additionally comprises an i / u converter.
  • the output of the amplifier 48 ' is connected on the one hand to the bandpass filter 14 and on the other hand via a resistor R o to the inverting input (-) of the charge amplifier 5.
  • An automatic gain control unit (AGC) 33 is switched on in the feedback between bandpass 14 and non-inverting inputs (+) of the two operational amplifiers 49, 50.
  • the differential current amplifier 14 like the one in FIG. 13, also contains a differential current amplifier, except that a proportional voltage signal is now generated from the differential current.
  • this is amplified by an integrator, so that the low-pass filter 10 again provides the signal u Q , which is proportional to the charge and thus to the mechanical input signal.
  • the voltage signal at the output of the differential current amplifier 48 ' is used to operate the circuit as a free-running oscillator with closed feedback.
  • the bandpass filter 14 in turn is used to select the desired resonance frequency of the transducer element 1.
  • the frequency signal u F - the resonance frequency of the transducer element 1 - can be tapped, for example, after the bandpass filter 14.
  • the embodiment according to FIG. 15 differs from that according to FIG. 14 essentially only in that between the automatic gain control unit (AGC) 33 and the non-inverting inputs (+) of the two operational amplifiers 49, 50 generates a frequency signal which is antiphase for the two operational amplifiers Driver stage 51 is turned on, and that a current addition circuit 52 is now provided instead of the differential current amplifier 48 '.
  • AGC automatic gain control unit
  • the subtraction required for the reference measurement is thus carried out according to FIG. 15 not as shown in FIG. 14 by forming the differential current of the currents i 1 and u 2 generated from the two in-phase signals u 1 and u 2, but by generating counter-phase signals u 1 and u 2 and adding the resulting currents i1 and i2.
  • the current-voltage converter in the circuit 52 is realized with the aid of an operational amplifier 53 fed back via a resistor R K.
  • the generation of the opposite-phase signals u 1 and u 2 can take place, for example, with the aid of a differential amplifier with symmetrical outputs.
  • FIG. 16 shows an extension of the measuring arrangement according to FIG. 15.
  • the driver stage 51 ' here has an additional unit (not shown) for amplitude matching of the two antiphase frequency signals u 1 and u 2.
  • the high-pass filtered output (high-pass filter 14 ') is connected to a synchronous demodulator 19, which is further connected again to a unit 20 for generating a phase reference, which in turn is connected to the non-inverting input (+) of the operational amplifier 49.
  • the output of the synchronous demodulator 19 is connected to the actual value input 21 of a controller 22, which also has a setpoint input 23 and a manipulated variable output 24, the latter being connected to the unit for amplitude adjustment in the driver stage 51 '.
  • the circuit shown in FIG. 16 is a precision oscillator and charge amplifier for the piezoelectric transducer element 1 in the corresponding sensor, with the outputs u F for the resonance frequency and u Q for the charge signal.
  • the tuning of the arrangement takes place automatically as described above with reference to FIGS. 6 and 7 with the aid of an amplitude adjustment of u 1 and u 2. This tuning is controlled by the controller 22, which has the setpoint zero with that of the synchronous demodulator compares the actual value delivered.
  • this one converter element 1 is used for operating the sensor in both possible operating modes.
  • the only essential deviation from FIG. 17 is two piezoelectric transducer elements 1 which are connected in parallel and which can be optimized independently of one another for the respective operation.
  • one of the transducer elements 1 can be optimized for operation as a resonator by special design of its piezo elements or holders thereof, while the other transducer element 1 is optimized for operation using the direct piezo effect.
  • two piezoelectric transducer elements 1, which are now electrically connected in series, are again provided, which are arranged with a capacitance C electrically in parallel in the housing 55 of the sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Amplifiers (AREA)

Abstract

Ein zumindest ein piezoelektrisches Wandlerelement (1) enthaltender Sensor wird über eine gemeinsame, einzige Signalleitung (2) in beiden möglichen Betriebsarten - einerseits bei niedrigen Frequenzen als Messelement für eine mechanische Grösse unter Ausnutzung des direkten Piezoeffektes und andererseits bei höheren Frequenzen als piezoelektrischer Resonator unter Ausnutzung des inversen Piezoeffektes zur elektrischen Anregung mechanischer Schwingungen und des direkten Piezoeffektes zur Erzeugung der piezoelektrischen Rückwirkung - betrieben. Aus dem Messsignal auf der Signalleitung (2) wird ein höherfrequentes, die Resonanzcharakteristik beschreibendes Signal (uHF, uF) und ein niederfrequenteres, die mechanische Einwirkung beschreibendes Signal (uNF, uQ) erzeugt. Damit kann beispielsweise unmittelbar während einer Messung mit dem Sensor die einwandfreie Funktion desselben samt dem zugehörigen Messverstärker überwacht oder aber eine gleichzeitige Messung von zwei unterschiedlichen Grössen vorgenommen werden.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Meßverfahren zur Bestimmung bzw. Überwachung von mechanischen und/oder physikalischen Größen, wobei ein zumindest ein piezoelektrisches Wandlerelement enthaltender Sensor der zu bestimmenden bzw. überwachenden Größe ausgesetzt und ein von dieser Größe beeinflußtes elektrisches Sensorsignal auf einer einzigen Signalleitung als Meßsignal ausgewertet wird. Weiters betrifft die Erfindung auch eine Meßanordnung, mit einem zumindest ein piezoelektrisches Wandlerelement enthaltenden Sensor und einem damit über eine einzige Signalleitung samt elektrischer Rückführung in Verbindung stehenden Meßverstärker, sowie vorteilhafte Verwendungen einer derartigen, erfindungsgemäß ausgestatteten Meßanordnung.
  • Stand der Technik
  • Verfahren und Anordnungen der genannten Art sind in vielfältigstem Zusammenhang bekannt und in steigendem Ausmaß in Verwendung. So ist aus der AT-PS 276.810 ein piezoelektrischer Sensor bekannt, der beispielsweise zur Überwachung des Verbrennungsvorganges im Brennraum einer Brennkraftmaschine einsetzbar ist. Zu diesem Zwecke wird der Sensor abdichtend in eine Indizierbohrung der Brennraumwand eingesetzt und ein geeigneter Meßverstärker an den Signalausgang des Meßwertaufnehmers angeschlossen, der die bei Druckschwankungen im Brennrauminneren über den direkten Piezoeffekt vom piezoelektrischen Wandlerelement erzeugten Meßsignale auswertet. Der Nachteil dieser bekannten Anordnung bzw. des zugehörigen Meßverfahrens besteht darin, daß aufgrund der immer vorhandenen Widerstände und Leckströme die piezoelektrischen Wandlerelemente relativ starke Nullpunktverschiebungen aufweisen können, sodaß Messungen praktisch nur von dynamischen Druckänderungen - bzw. von Änderungen von zu messenden Größen mit einer bestimmten Frequenz - sinnvoll durchführbar sind und daß entsprechend keine absoluten oder statischen Messungen ausgeführt werden können. Weiters besteht auch keine Möglichkeit den Sensor in der Meßkette hinsichtlich seiner korrekten Funktion zu überprüfen bzw. zu justieren, sodaß immer gewisse Unsicherheiten im Hinblick auf das Meßergebnis bestehen.
  • Weiters sind auch piezoelektrische Sensoren bekannt, welche aufgrund der Art und Anordnung ihrer Wandlerelemente bzw. der Durchführung des Meßverfahrens und der Art der Auswertung der Meßsignale zu statischen bzw. quasistatischen Messungen geeignet sind. So ist beispielsweise aus der AT-PS 353.506 ein piezoelektrischer Sensor bekannt, mit welchem über die Änderung des Schwingverhaltens eines im Sensor angeordneten piezoelektrischen Resonators verschiedene Größen, wie z.B. Temperatur oder Druck, bestimmt bzw. überwacht werden können. Derartige Sensoren haben eine sehr hohe Auflösung, besitzen aber wegen der dafür notwendigen hohen Zählraten üblicherweise nur eine sehr geringe Dynamik. Zusätzlich bleibt auch bei diesen Anordnungen bzw. Verfahren der Nachteil bestehen, daß der Sensor in der Meßkette nicht hinsichtlich seiner Funktion überwacht oder justiert werden kann.
  • Schließlich ist beispielsweise aus der AT-PS 369.900 auch ein piezoelektrischer Sensor bekannt, der Wandlerelemente der oben genannten Art sowohl für statische als auch für dynamische Messungen kombiniert enthält, womit hohe Auflösung und Dynamik einerseits und eine Verwendbarkeit für statische bzw. quasistatische Messungen andererseits erreicht ist. Nachteile ergeben sich dabei insofern, als der Sensor selbst durch die beiden Wandlerelemente samt unabhängigen Anspeisungen bzw. Signalleitungen relativ kompliziert aufgebaut sein muß und damit für viele Anwendungszwecke ausscheidet. Weiters müssen auch für die beiden separat ablaufenden Meßverfahren die jeweils erforderlichen Meßverstärker bereitgestellt, angeschlossen, usw., werden, was den Meßaufwand insgesamt erhöht und weitere Fehlermöglichkeiten bringt.
  • Aus der US-A-4 807 482 ist ein piezoelektrischer Sensor mit einer einzigen Signalleitung für ein einziger resultieren des Signal bekannt.
  • Darstellung der Erfindung
  • Aufgabe der vorliegenden Erfindung ist es, Meßverfahren und Anordnungen der genannten Art so zu verbessern, daß die angeführten Nachteile der bekannten Verfahren und Anordnungen vermieden werden und daß insbesonders auf konstruktiv und messtechnisch einfache Weise mechanische und/oder physikalische Größen verschiedenster Art und Änderungsfrequenz mit einem einfach aufgebauten Sensor bestimmt bzw. überwacht werden können.
  • Dies wird gemäß der vorliegenden Erfindung bei einem Meßverfahren der eingangs genannten Art dadurch erreicht, daß der Sensor über die gemeinsame, einzige Signalleitung samt elektrischer Rückführung in beiden möglichen Betriebsarten - einerseits bei niedrigen Frequenzen als Meßelement für eine mechanische Größe unter Ausnutzung des direkten Piezoeffektes und andererseits bei höheren Frequenzen als piezoelektrischer Resonator unter Ausnutzung des inversen Piezoeffektes zur elektrischen Anregung mechanischer Schwingungen und des direkten Piezoeffektes zur Erzeugung der piezoelektrischen Rückwirkung - betrieben wird und daß aus dem Meßsignal auf der Signalleitung ein höherfrequentes, die Resonanzcharakteristik beschreibendes Signal und ein niederfrequenteres, die mechanische Einwirkung beschreibendes, vorzugsweise ladungsproportionales Signal erzeugt wird. Damit ist im einfachsten Falle am piezoelektrischen Sensor selbst überhaupt keine konstruktive Änderung erforderlich. Es wird mit dieser Verfahrensausgestaltung die Tatsache ausgenützt, daß die Frequenz des Anregungssignals eines als piezoelektrischer Resonator betriebenen Wandlerelements über - und zumeist weit über - den auftretenden Änderungsfrequenzen von zu bestimmenden bzw. zu überwachenden mechanischen und/oder physikalischen Größen liegt, sodaß die entsprechenden charakteristischen Frequenzen im Meßsignal trennbar und getrennt zur Ermittlung der beiden relevanten Signale auswertbar sind.
  • Es kann damit beispielsweise ein Meßverstärker gebaut werden, der einen Frequenzausgang hat, wo die jeweilige Resonanzfrequenz des angeschlossenen piezoelektrischen Wandlerelementes ablesbar ist. Über die Auswertung dieser Resonanzfrequenz kann man beispielsweise - soferne sie eine dezidierte Druckabhängigkeit hat - den Druck ablesen, was einer statischen bzw. quasistatischen Druckmessung entspricht. Sofern diese Resonanzfrequenz eine eindeutige Temperaturabhängigkeit hat, kann auf diese Weise unmittelbar die Temperatur der Wandlerelemente gemessen oder überwacht werden. Auch möglich ist es, diese Resonanzfrequenz einfach als für das Funktionieren des Wandlerelements signifikant zu betrachten, womit festgestellt werden kann, ob die jeweilige Meßkette noch einwandfrei funktioniert. Es ist dabei tatsächlich eine Aussage über die komplette Meßkette zu erhalten, da ja beispielsweise das Funktionieren des Ladungsverstärkers auch notwendig für das Funktioneren des Resonators ist - das heißt auch wenn der Meßverstärker oder ein Kabel defekt ist, ist dies an der wie oben beschrieben ermittelten Verschiebung der Resonanzfrequenz ablesbar.
  • Für den meßtechnisch einfachsten Fall, wenn nämlich die beiden angesprochenen Frequenzbereiche genügend weit auseinanderliegen, reicht für die Durchführung des Meßverfahrens eine Entkoppelung der beiden relevanten Signale im Meßsignal mit einer Induktivität und einer Kapazität (siehe auch Fig. 1 und zugehörige Beschreibung). Da jedoch beispielsweise bei Quarzdruckaufnehmern der untere Frequenzbereich der ersten Betriebsart bis nahe an den Frequenzbereich der zweiten Betriebsart heranreicht, genügt üblicherweise diese einfache L-C-Entkoppelung nicht. Die erfindungsgemäße Ausgestaltung der Meßanordnung sieht dementsprechend vor, daß der Sensor für den Betrieb in den beiden möglichen Betriebsarteneinerseits bei niedrigen Frequenzen als Meßelement für eine mechanische Größe unter Ausnutzung des direkten Piezoeffektes und andererseits bei höheren Frequenzen als piezoelektrischer Resonator unter Ausnutzung des inversen Piezoeffektes zur elektrischen Anregung mechanischer Schwingungen und des direkten Piezoeffektes zur Erzeugung der piezoelektrischen Rückwirkung - über eine gemeinsame, einzige Signalleitung mit dem invertierenden Eingang eines im Meßverstärker angeordneten Ladungsverstärkers in Verbindung steht, daß der Ladungsverstärker weiters mit dem Ausgang eines Signalgenerators in Verbindung steht und von diesem mit einem Frequenzsignal angesteuert ist, dessen Mittelwert gleich dem Potential der elektrischen Rückführung ist, und daß der über einen Kondensator auf den invertierenden Eingang rückgekoppelte Ausgang eines im Ladungsverstärker angeordneten Operationsverstärkers einerseits mit dem Eingang eines Hochpaßfilters, an dessen Ausgang ein von der Resonanzcharakteristik abhängiges Signal uHF abgreifbar ist, und andererseits mit dem Eingang eines Tiefpaßfilters, an dessen Ausgang ein niederfrequenteres Ladungsverstärkersignal uNF abgreifbar ist, in Verbindung steht. Damit wirkt der Ladungsverstärker als Teil des zur Auswertung der Rückwirkung der Schwingungsanregung dienenden Resonanzdetektors. Die Rückkopplungskapazität des Ladungsverstärkers bildet zusammen mit dem angeschlossenen piezoelektrischen Wandlerelement einen Spannungsteiler, der sowohl zur Schwingungsanregung als auch zur Detektion der piezoelektrischen Rückwirkung dient.
  • Hier, wie auch im folgenden, kann naturgemäß anstelle von Hochpaß- und/oder Tiefpaßfilter auch jeweils ein geeignete untere bzw. obere Grenzfrequenz aufweisender Bandpaß Verwendung finden.
  • In weiterer Ausgestaltung des Meßverfahrens ist demgemäß vorgesehen, daß über die Signalleitung ein höherfrequentes Anregungssignal zur Anregung des Sensors zu mechanischen Schwingungen geliefert wird, dem ein in der Folge durch die piezoelektrische Rückwirkung des Sensors erzeugtes Signal gleicher Frequenz und ein vom Sensor aufgrund mechanischer, niederfrequenterer Einwirkungen generiertes niederfrequentes Signal überlagert werden, wobei der niederfrequente Anteil des Meßsignal auf der Signalleitung virtuell kurzgeschlossen und der dabei auftretende Kurzschlußstrom zur weiteren Signalverarbeitung verstärkt und vorzugsweise zu einem ladungsproportionalen Ausgangssignal integriert wird.
  • Zur eigentlichen Signalverarbeitung kann im obigen Zusammenhang gemäß zwei alternativen Vorschlägen der Erfindung entweder der höherfrequente Anteil des Meßsignals auf der Signalleitung kapazitiv vom niederfrequenten Anteil entkoppelt werden, oder aber vorgesehen sein, daß das höherfrequente Anregungssignal auf der Signalleitung spannungsmäßig eingeprägt wird und der gesamte Strom durch den Sensor, höherfrequente und niederfrequente Anteile, zur weiteren Signalverarbeitung herangezogen wird. Beides sind einfache und wirkungsvolle Möglichkeiten zur Durchführung bzw. Verbesserung des erfindungsgemäßen Meßverfahrens, die eine saubere Trennung der relevanten Signale aus dem Meßsignal auch bei nahe zusammenliegenden Frequenzbereichen für die beiden Betriebsarten sicherstellen.
  • Für die erstgenannte Alternative ist die erfindungsgemäße Meßanordnung so ausgestaltet, daß der Frequenzsignal-Ausgang des Signalgenerators mit dem nichtinvertierenden Eingang des Ladungsverstärkers verbunden ist. Für die zweite Alternative ist erfindungsgemäß vorgesehen, daß der Frequenzsignal-Ausgang des Signalgenerators über einen Emitterfolger mit der Signalleitung des Sensors verbunden ist, daß in der Emitter- und in der Kollektorleitung des Emitterfolger-Transistors jeweils eine Konstantstromquelle eingeschaltet ist und daß der Kollektor des Emitterfolger-Transistors mit dem invertierenden Eingang des Ladungsverstärkers verbunden ist, wobei beispielsweise auch der nicht invertierende Eingang auf einem Ruhepotential, vorzugsweise auf Potential der elektrischen Rückführung, liegen kann, sodaß das Kollektorpotential des Emitterfolger-Transistors auf einen für den Betrieb des Transistors geeigneten Wert eingestellt wird.
  • In weiterer Ausgestaltung des erfindungsgemäßen Meßverfahrens ist vorgesehen, daß zur Bildung des höherfrequenten Signals die Differenz zwischen einem in Frequenz und Phase dem Anregungssignal entsprechenden, vom Sensor unbeeinflußten Referenzsignal und dem Meßsignal gebildet wird, wobei das Anregungssignal und das Referenzsignal in ihren Amplituden relativ zueinander abstimmbar sind. Dabei kann weiters die Amplitudenabstimmung so vorgenommen werden, daß der Realteil des höherfrequenten Signals verschwindet. Durch diese Verbesserungen des grundsätzlichen Meßverfahrens nach der vorliegenden Erfindung kann ein deutlicheres für die Resonanzen des Wandlerelementes charakteristisches Ausgangssignal gewonnen werden. Wenn der Realteil des höherfrequenten Signals durch die Amplitudenabstimmung zum Verschwinden gebracht wird, so erhält man die gewünschte Größe, die proportional zum dissipativen Teil der komplexwertigen Wandlerkapazität ist. Gleichzeitig kann man wie zuvor das nachverstärkte Signal des eigentlichen Ladungsverstärkers messen, welches proportional zur einwirkenden mechanischen Größe ist.
  • Zur Bereitstellung des zur Schwingungsanregung dienenden Frequenzsignals kann in weiterer Ausgestaltung des erfindungsgemäßen Meßverfahrens das bandpaßgefilterte höherfrequente Signal phasenrichtig aktiv rückgekoppelt werden, vorzugsweise unter automatischer Abstimmung der Schleifenverstärkung auf den Faktor 1. Damit wird mittels der Resonanz-Messung selbst ein Oszillator verwirklicht, sodaß ein separater Signalgenerator oder dergleichen für die Anregung des Wandlerelements überflüssig ist.
  • Zur Realisierung des oben beschriebenen "Referenz-Differenz"-Verfahrens ist in Ausgestaltung der erfindungsgemäßen Meßanordnung vorgesehen, daß der Signalgenerator einen weiteren Frequenzsignal-Ausgang aufweist, der - bezogen auf das am nichtinvertierenden Eingang des Ladungsverstärkers liegende Signal u₁ - ein in der Frequenz und Phase gleiches und in der Amplitude abstimmbares Referenzsignal u₂ führt und mit dem nichtinvertierenden Eingang eines Referenzladungsverstärkers verbunden ist, daß der invertierende Eingang eines im Referenzladungsverstärker angeordneten Operationsverstärkers über eine Kapazität mit dem Potential der Rückführung verbunden und über eine weitere Kapazität mit seinem Ausgang rückgekoppelt ist, daß der über ein weiteres Hochpaßfilter geführte Ausgang des Referenzladungsverstärkers ebenso wie der Ausgang des das Signal uHF führenden Hochpaßfilters mit einem Differenzverstärker verbunden ist, an dessen Ausgang ein die Resonanzcharakteristik beschreibendes Signal uD abgreifbar ist. Die in diesem Zusammenhang vorgenommene Subtraktion zwischen den beiden Signalen u₁ und u₂ kann nicht nur - wie mit vorausgesetzt gleichphasigen Signalen u₁ und u₂- mit einem Differenzverstärker durchgeführt werden, sondern natürlich auch - bei gegenphasigen Signalen u₁ und u₂ - mit einem Addierverstärker. Auch könnte weiters die Reihenfolge von Filterung und Subtraktion natürlich bedarfsweise vertauscht sein. Im Prinzip wird durch diese Ausgestaltung der Meßanordnung eine der hauptsächlichen Wirkungen des piezoelektrischen Wandlers, nämlich sich wie eine Kapazität zu verhalten, aus dem Meßsignal heraussubtrahiert, sodaß das durch die große Grundkapazität etwas verdeckte Schwingverhalten deutlicher hervorkommt.
  • Im letztgenannten Zusammenhang kann weiters noch vorgesehen sein, daß der das Signal uNF führende Ausgang des Tiefpaßfilters mit dem Eingang eines Nachverstärkers verbunden ist, an dessen Ausgang ein aufbereitetes Signal uQ zur Verfügung steht, welches eine klarere Aussage auch hinsichtlich der niederfrequenteren Teile des Meßsignals ermöglicht.
  • Gemäß einer besonders bevorzugten weiteren Ausgestaltung dieser Meßanordnung ist vorgesehen, daß der hochpaßgefilterte Ausgang des Differenzverstärkers mit einem Synchrondemodulator in Verbindung steht, der weiters mit einer Einheit zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit dem Signalgenerator verbunden ist, vorzugsweise mit einem der Frequenzsignalausgänge davon, und daß der Ausgang des Synchrondemodulators mit dem Istwert-Eingang eines Reglers verbunden ist, der weiters einen Sollwerteingang und einen Stellgrößenausgang aufweist, welch letzterer mit einer Abstimmeinheit zur Abstimmung der relativen Amplituden der beiden Ausgangssignale u₁, u₂ des Signalgenerators aufeinander verbunden ist. Damit ist die Meßanordnung im Prinzip um einen Regler zur automatischen Abstimmung der relativen Amplituden der beiden Ausgangssignale u₁, u₂ erweitert. Im Synchrondemodulator wird mit Hilfe der z.B. aus einem der Signale u₁ oder u₂ abgeleiteten Phasenreferenz der Realteil von uD gewonnen und in der geschlossenen Regelschleife auf Null abgestimmt.
  • In weiterer Ausgestaltung der genannten Meßanordnung kann vorgesehen sein, daß der hochpaßgefilterte Ausgang des Differenzverstärkers mit einem weiteren Synchrondemodulator verbunden ist, daß der weitere Synchrondemodulator mit einer Phasenreferenzeinheit verbunden ist, welche ihrerseits mit dem Frequenzsignalausgang des als VCO ausgebildeten Signalgenerators in Verbindung steht, daß der Ausgang des Synchrondemodulators mit dem Eingang eines Maximumreglers verbunden ist, welcher zur Abstimmung des VCO, der vorzugsweise unabhängig davon auch grobabstimmbar ist, mit diesem in Verbindung steht. Damit ist die eigentliche Resonanz-Meßschaltung zu einem Oszillator erweitert. Mit Hilfe des Maximumreglers wird der VCO (Voltage Controled Oscillator) auf die Frequenz maximaler Verlustleistung, also auf die Resonanzfrequenz(en) des Wandlerelementes, eingestellt. Im zweiten Synchrondemodulator wird mit Hilfe der Phasenreferenz der Imaginärteil von uD gewonnen und als Istwert dem Maximumregler zugeführt.
  • Eine Variante zur letztgenannten Ausgestaltung der Meßanordnung ist in weiterer Ausbildung der Erfindung dadurch gekennzeichnet, daß der Signalgenerator als VCO ausgebildet ist, dessen Frequenzsignalausgang auch mit dem nichtinvertierenden Eingang eines in einem Referenzladungsverstärker angeordneten Operationsverstärkers verbunden ist, dessen invertierender Eingang über eine einstellbare Kapazität auf dem Potential der Rückführung hegt und über eine weitere Kapazität mit seinem Ausgang rückgekoppelt ist, daß der Ausgang des Referenzladungsverstärkers ebenso wie der Ausgang des Ladungsverstärkers selbst mit einem Differenzverstärker verbunden ist, daß der hochpaßgefilterte Ausgang des Differenzverstärkers mit einem Synchrondemodulator verbunden ist, dem das Ausgangssignal einer ebenfalls mit dem Frequenzsignalausgang des VCO verbundenen Phasenreferenzeinheit zugeführt ist und der mit seinem Ausgang mit dem Istwert-Eingang eines Reglers verbunden ist, und daß der weiters auch einen Sollwerteingang aufweisende Regler einen Stellgrößenausgang aufweist, der mit einem Frequenzregeleingang des VCO verbunden ist. Damit ist der Meßverstärker zum Betrieb als Ladungsverstärker einerseits und als Oszillator für eine Frequenz andererseits ausgebildet. Es ist auf den obenstehend angesprochenen Regler zur automatischen Abstimmung der relativen Amplituden der beiden Ausgangssignale des Signalgenerators verzichtet und statt dessen vorgesehen, die erforderliche Abstimmung bei der Inbetriebnahme der Schaltung vorzunehmen und während des Betriebes nicht nachzustimmen. Somit kann das Abstimmkriterium, daß der Realteil von uD gleich Null sein soll, zur Erzeugung jener Frequenz verwendet werden, für die diese Bedingung erfüllt ist. Die Vorabstimmung kann von Hand aus oder rechnergesteuert aufgrund einer vorausgehenden Analyse der mit Hilfe des Resonanzdetektors gewonnenen Resonanzcharakteristik des Wandlerelementes erfolgen, sodaß die Frequenz eine Resonanzfrequenz des piezoelektrischen Wandlerelementes ist. Als abzustimmende Bauteile kommen eine oder mehrere der genannten Kapazitäten sowie unter Umständen auch eine separate abstimmbare Kapazität parallel zum piezoelektrischen Wandlerelement in Frage.
  • Entsprechend einer erfindungsgemäßen Alternative zur oben an letzter Stelle besprochenen Meßanordnung ist vorgesehen, daß der Signalgenerator mittels einer aktiven Rückkopplung des am Ausgang des als Bandpaß ausgeführten Hochpaßfilters zur Verfügung stehenden Signals uHF an den nichtinvertierenden Eingang des Ladungsverstärkers sowie den nichtinvertierenden Eingang eines Referenzladungsverstärkers realisiert ist, daß der Ausgang des Referenzladungsverstärkers ebenso wie der Ausgang des Ladungsverstärkers mit einem Differenzverstärker verbunden ist, dessen Ausgang dem Bandpaß und dem Tiefpaßfilter zugeführt ist, und daß in der aktiven Rückkopplung ein 90°-phasendrehendes Glied und vorzugsweise eine automatische Verstärkungskontrolleinheit (AGC) eingeschaltet sind. Auf diese Weise ist der Meßverstärker als Ladungsverstärker und als Oszillator mit direkter Rückkoppelung, ohne zwischengeschalteten VCO ausgebildet. Der z.B. anfänglich von Hand aus mit Hilfe einer Kapazität abgestimmte Resonanzdetektor liefert im Resonanzfall des piezoelektrischen Wandlerelements ein maximales Ausgangssignal, dessen Phase um 90° gegenüber dem anregenden Signal verdreht ist. Um der Rückkopplungsbedingung für ungedämpfte Schwingungen zu genügen, muß das Ausgangssignal zusätzlich um 90° Phase gedreht werden. Über die AGC-Einheit wird die Schleifenverstärkung auf den Wert 1 geregelt. Das Bandpaßfilter dient zur Selektion einer Resonanz innerhalb eines bestimmten Frequenzbandes. Über das Tiefpaßfilter kann wie auch bei den anderen Ausführungsformen das niederfrequente Signal des Ladungsverstärkers abgegriffen werden.
  • Bei Verwendung der erfindungsgemäßen Meßanordnung beispielsweise im Zusammenhang mit einem in einem Flugzeug fest eingebauten Accelerometer, ist es möglich, beispielsweise von einer Kontrollstation aus eine Fernabfrage durchzuführen, um festzustellen, ob die gesamte Meßkette noch in Ordnung ist, also ob man sich auf die die jeweilige Belastung anzeigenden Meßwerte auch tatsächlich verlassen kann. In diesem Zusammenhang ist auch die vorteilhafte erfindungsgemäße Verwendung einer Meßanordnung der beschriebenen Art zur Bestimmung bzw. Überwachung von mechanischen und/oder physikalischen Größen über die niederfrequenteren Teile des Meßsignals auf der Signalleitung unter gleichzeitiger Überwachung der Funktion des Sensors über das durch die höherfrequenten Teile des Meßsignals charakterisierte Resonanzverhalten, wobei der Sensor ein einzelnes Wandlerelement aufweist, welches zumindest ein Piezoelement enthält, zu sehen.
  • Ebenso möglich ist aber nach einem weiteren Vorschlag der Erfindung die Verwendung einer Meßanordnung der hier beschriebenen Art zur gleichzeitigen Bestimmung bzw. Überwachung von zumindest zwei unterschiedlichen mechanischen und/oder physikalischen Größen, wobei der Sensor zumindest zwei separate auf die jeweilige Aufgabe optimierte Wandlerelemente aufweist. Diese beiden Wandlerelemente können elektrisch und/oder mechanisch entweder parallel oder in Serie geschaltet sein, wobei sich die jeweilige optimale Anordnung aus der Meßaufgabe ergibt. Es bleibt gegenüber dem Stand der Technik der Vorteil, daß es nach wie vor nur eine einzige Signalleitung gibt und daß die gesamte Meßanordnung auch für die Auswertung der beiden relevanten Signale aus dem Meßsignal gemeinsam und kompakt bleibt.
  • In weiterer Ausgestaltung der erfindungsgemäßen Meßanordnung ist vorgesehen, daß der Frequenzsignalausgang des Signalgenerators am nichtinvertierenden Eingang eines Operationsverstärkers hegt, dessen Ausgang mit dem Gate eines FET verbunden ist, der seinerseits über Source auf den invertierenden Eingang des Operationsverstärkers rückgekoppelt und mit einer Konstantstromquelle sowie mit der Signalleitung des Sensors verbunden ist, daß der invertierende Eingang des Ladungsverstärkers mit Drain des FET und mit einer weiteren Konstantstromquelle verbunden ist, wobei auch vorgesehen sein kann, daß der nicht invertierende Eingang des Ladungsverstärkers auf einem Ruhepotential, bzw. Potential der elektrischen Rückführung liegt. Damit ergibt sich in Analogie zu der oben beschriebenen Meßanordnung mit dem Emitterfolger zwischen Signalgenerator und Signalleitung des Sensors eine mit FET gesteuerte Anordnung, die insbesonders in einer erfindungsgemäßen Erweiterung vorteilhaft ist, gemäß welcher vorgesehen ist, daß der Signalgenerator einen weiteren Frequenzsignalausgang aufweist, der am nichtinvertierenden Eingang eines Referenz-Operationsverstärkers liegt, dessen Ausgang mit dem Gate eines weiteren FET verbunden ist, der seinerseits über Source auf den invertierenden Eingang des Referenz-Operationsverstärkers rückgekoppelt und mit einer Konstantstromquelle sowie mit einem andererseits auf Potential der Rückführung liegenden Kondensator verbunden ist, daß der invertierende Eingang eines Referenz-Ladungsverstärkers mit Drain des weiteren FET und mit einer weiteren Konstantstromquelle verbunden ist, und daß weiters die Ausgänge von Ladungsverstärker einerseits und Referenz-Ladungsverstärker andererseits einem Differenzspannungsverstärker zugeführt sind, dessen Ausgang am Eingang des Hochpaß- sowie des Tiefpaßfilters liegt. Damit ist entsprechend der Erweiterung des ursprünglich besprochenen Grundprinzips der erfindungsgemäßen Meßanordnung zu einem über einen Referenzteil realisierten Resonanzdetektor eine Anordnung geschaffen, deren Empfindlichkeit für die Resonanzcharakteristik durch subtraktive Kompensation der Parallelkapazität des Wandlerelements wesentlich gesteigert wird. Wenn die Abstimmung der beiden Zweige so vorgenommen wird, daß der Realteil des Signals durch die Subtraktion verschwindet, so erhält man die gewünschte Größe, die proportional zum dissipativen Teil der komplexwertigen Wandlerkapazität ist.
  • In weiterer Ausbildung der Erfindung kann unter Abwandlung der zuletzt beschriebenen Meßanordnung auch vorgesehen sein, daß der Frequenzsignalausgang des Signalgenerators am nichtinvertierenden Eingang eines Operationsverstärkers liegt, dessen Ausgang mit dem Gate eines FET verbunden ist, der seinerseits über Source auf den invertierenden Eingang des Operationsverstärkers rückgekoppelt und mit einer Konstantstromquelle sowie mit der Signalleitung des Sensors verbunden ist, daß der Signalgenerator einen weiteren Frequenzsignal-Ausgang aufweist, der am nichtinvertierenden Eingang eines Referenz-Operationsverstärkers hegt, dessen Ausgang mit dem Gate eines weiteren FET verbunden ist, der seinerseits über Source auf den invertierenden Eingang des Referenz-Operationsverstärkers zurückgekoppelt und mit einer weiteren Konstantstromquelle sowie mit einem andererseits auf Potential der elektrischen Rückführung liegenden Kondensator verbunden ist, und daß die Drain-Anschlüsse der beiden FETs einem Differenzstromverstärker zugeführt sind, dessen Stromausgang am invertierenden Eingang des mit seinem nichtinvertierenden Eingang auf Potential der elektrischen Rückführung liegenden Ladungsverstärkers angeschlossen ist. Daraus ist ersichtlich, daß die Signalsubtraktion bzw. Differenzbildung nicht nur wie bisher angesprochen mit einem Differenzspannungsverstärker, sondern auch mit einem Differenzstromverstärker, z.B. mit einer Stromspiegelschaltung, durchgeführt werden kann. Damit kann dann anstelle der beiden Ladungsverstärker für die Ströme der Teilzweige auch ein gemeinsamer für den Differenzstrom eingesetzt werden.
  • Nach einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß der Signalgenerator mittels einer aktiven Rückkopplung des am Ausgang des als Bandpaß ausgeführten Hochpaßfilters zur Verfügung stehenden Signals an den nichtinvertierenden Eingang eines Operationsverstärkers sowie den nichtinvertierenden Eingang eines Referenz-Operationsverstärkers realisiert ist, daß der Ausgang dieser beiden Operationsverstärker jeweils am Gate eines FET hegt, dessen Source jeweils an einer separaten Konstantstromquelle hegt und auf den invertierenden Eingang des jeweiligen Operationsverstärker rückgekoppelt ist, wobei im Falle des Operationsverstärkers zusätzlich die Signalleitung des Sensors mit Source verbunden ist und im Falle des Referenz-Operationsverstärkers zusätzlich eine Verbindung von Source über eine einstellbare Kapazität an das Potential der elektrischen Rückführung besteht, daß die Drain-Anschlüsse der beiden FETs einem Differenzstromverstärker und i/u-Konverter zugeführt sind, dessen Ausgang einerseits mit einem Bandpaßfilter und andererseits über einen Widerstand mit dem invertierenden Eingang des Ladungsverstärkers verbunden ist, wobei vorzugsweise in der Rückkopplung zwischen Bandpaß und nichtinvertierenden Eingängen der beiden Operationsverstärker eine automatische Verstärkungskontrolleinheit (AGC) eingeschaltet ist. Es ist hier also wiederum ein Differenzstromverstärker verwendet, wobei aber nun aus dem Differenzstrom ein proportionales Spannungssignal erzeugt wird. Dieses kann beispielsweise über einen Integrator verstärkt werden, wonach über den Tiefpaß wiederum das zur Ladung und damit zum mechanischen Eingangssignal proportionale Signal zur Verfügung steht. Andererseits kann das Spannungssignal am Ausgang des Differenzstromverstärkers dazu verwendet werden, um die Schaltung als frei schwingenden Oszillator mit geschlossener Rückkopplung zu betreiben. Die AGC-Einheit sorgt wiederum für die Einhaltung der Amplitudenbedingung (Schleifenverstärkung gleich 1), wobei im Resonanzfall des piezoelektrischen Wandlerelementes auch die Phasenbedingung (Phasenunterschied in der Schleife gleich Null) erfüllt ist. Das Bandpaßfilter dient zur Selektion der gewünschten Resonanzfrequenz des Wandlerelements. Bei dieser Ausgestaltung kann beispielsweise nach dem Bandpaßfilter, das die Resonanzfrequenz des Wandlers charakterisierende Frequenzsignal abgegriffen werden.
  • Im letztgenannten Zusammenhang kann nach einer anderen Weiterbildung der Erfindung auch zwischen die automatische Verstärkungskontrolleinheit und die nichtinvertierenden Eingänge der beiden Operationsverstärker eine für die beiden Operationsverstärker gegenphasige Frequenzsignale erzeugende Treiberstufe eingeschaltet und anstelle des Differenzstromverstärkers eine Stromadditionsschaltung vorgesehen sein. Damit wird die erforderliche Subtraktion nicht wie oben beschrieben durch die Bildung des Differenzstromes der aus den beiden gleichphasigen Signalen erzeugten Ströme durchgeführt, sondern durch das Erzeugen gegenphasiger Signale und durch anschließende Addition der resultierenden Ströme. Der Strom-Spannungs-Konverter kann beispielsweise mit Hilfe eines über einen Widerstand rückgekoppelten Operationsverstärkers aufgebaut sein. Die beiden angesprochenen gegenphasigen Spannungssignale können mit Hilfe eines Differenzverstärkers mit symmetrischen Ausgängen erzeugt werden.
  • Nach einer besonders bevorzugten weiteren erfindungsgemäßen Ausbildung der zuletzt beschriebenen Meßanordnung kann vorgesehen sein, daß die Treiberstufe eine zusätzliche Einheit zur Amplitudenabstimmung der beiden gegenphasigen Frequenzsignale aufweist, daß der hochpaßgefilterte Ausgang des Ladungsverstärkers mit einem Synchrondemodulator in Verbindung steht, der weiters mit einer Einheit zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit einem der nichtinvertierenden Eingänge der beiden Operationsverstärker in Verbindung steht, und daß der Ausgang des Synchrondemodulators mit dem Istwert-Eingang eines Reglers verbunden ist, der weiters einen Sollwert-Eingang und einen Stellgrößen-Ausgang aufweist, welch letzterer mit der Einheit zur Amplitudenabstimmung verbunden ist. Es ergibt sich damit ein Präszisionsoszillator und Ladungsverstärker für das piezoelektrische Wandlerelement, wobei die Abstimmung der Schaltung wiederum selbsttätig mit Hilfe einer Amplitudenabstimmung der gegenphasigen Frequenzsignale erfolgt, welche von einem Regler, der den Sollwert Null mit dem von einem Synchrongleichrichter gelieferten Istwert vergleicht, gesteuert wird. Auf diese Art wird eine grobe Einstellung der Phasenbedingung der Oszillatorschaltung erreicht. Die Feineinstellung der Phasenbedingung und, im Zusammenhang mit der AGC-Einheit, die Einstellung der Amplitudenbedingung erfolgt wegen der Mitkoppelung der Schaltung nur bei der Resonanzfrequenz des piezoelektrischen Wandlerelementes, die über das genannte Bandpaßfilter selektiert wird.
  • Beschreibung der Zeichnung
  • Die Erfindung wird im folgenden noch anhand der in der Zeichnung teilweise schematisch dargestellten Schaltbilder näher erläutert. Es zeigt:
    • Fig. 1 die einfachste Form der Auskoppelung eines höherfrequenten, die Resonanzcharakteristik eines piezoelektrischen Wandlerelementes beschreibenden Signals und eines niederfrequenteren, die mechanische Einwirkung auf dieses Wandlerelement beschreibenden Signals aus dem über eine einzige Signalleitung geführten Meßsignal,
    • Fig. 2 das Grundschaltbild eines piezoelektrischen Wandlerelements mit Ladungsverstärker,
    • Fig. 3 das Grundschaltbild eines Resonanzdetektors, der ein piezoelektrisches Wandlerelement mit einer Kapazität in einem Spannungsteiler betreibt,
    • Fig. 4 bis 10 und Fig. 12 bis 16 jeweils erfindungsgemäß ausgebildete Meßanordnungen,
    • Fig. 11 eine an sich bekannte Ausführungsform einer gemäß den Fig. 10 und 12 bis 16 verwendeten Konstantstromquelle und
    • Fig. 17 bis 19 jeweils ein Beispiel für einen Sensor zur Verwendung in einer erfindungsgemäßen Meßanordnung bzw. mit dem entsprechenden Meßverfahren.
  • Wie oben bereits ausgeführt wird gemäß der vorliegenden Erfindung ein Sensor mit zumindest einem piezoelektrischen Wandlerelement über eine gemeinsame, einzige Signalleitung (gleichzeitig) auf zwei Arten in Betrieb genommen:
    • 1.als eigentlicher Piezowandler, basieren auf dem direkten Piezoeffekt, wobei bei einer wirkenden mechanischen Größe (z.B. Kraft, Druck, Beschleunigung, usw.) am Ausgang ein elektrisches Ladungssignal erzeugt wird, und
    • 2.als Piezoresonator, basierend einerseits auf dem reziproken Piezoeffekt, der die elektrische Anregung des Wandlerelementes zu mechanischen Schwingungen ermöglicht, und andererseits auf dem direkten Piezoeffekt, aufgrund dessen eine piezoelektrische Rückwirkung auf das Anregungssignal erfolgt.

    Für die erste Betriebsart ist vorzugsweise ein Ladungsverstärker zur Auswertung vorgesehen, der einen (virtuellen) Kurzschluß am Wandlerelement erzeugt. In der zweiten Betriebsart darf das Wandlerelement nicht kurzgeschlossen sein, da es ja mit einem elektrischen Signal zu Schwingungen angeregt werden muß, damit die piezoelektrische Rückwirkung dieser Schwingungen auf das Anregungssignal meßbar wird. Beachtet man nun, daß die erste Betriebsart sinnvoll bei Frequenzen erfolgt, die unterhalb der für die zweite Betriebsart wichtigen Resonanzfrequenzen des Wandlerelementes hegen, so ergibt sich die Forderung nach einem Meßverstärker, der für niedrige Frequenzen als Ladungsverstärker wirkt und bei höheren Frequenzen das Wandlerelement zu Schwingungen anregt, deren piezoelektrische Rückwirkung auf das Anregungssignal meßbar sein muß.
  • Im einfachsten Fall, wenn nämlich die beiden Frequenzbereiche genügend weit auseinander hegen, reicht für die Erfüllung der obigen Forderung eine Entkoppelung der auf der gemeinsamen Signalleitung 2 vom Wandlerelement 1 kommenden Signale gemäß Fig. 1 mit einer Induktivität LK und einer Kapazität CK. Da jedoch z.B. bei Quarzdruckaufnehmern der Frequenzbereich der ersten Betriebsart bis nahe an den Frequenzbereich der zweiten Betriebsart heranreicht, genügt im Normalfall eine einfache L-C-Entkoppelung der beiden in Fig. 1 unabhängig dargestellten Auswertegeräte (Ladungsverstärker 3 und Resonanzdetektor 4) nicht.
  • Fig. 2 zeigt die Prinzipschaltung eines Ladungsverstärkers mit angeschlossenem piezoelektrischen Wandlerelement 1. Die Signalleitung 2 liegt am invertierenden Eingang (-) eines Operationsverstärkers 5, dessen nichtinvertierender Eingang (+) auf dem Potential der Rückführung liegt und dessen Ausgang 6 über eine Kapazität Cr auf den invertierenden Eingang rückgekoppelt ist. Die am Ausgang 6 des Operationsverstärkers 5 und damit des Ladungsverstärkers zur Verfügung stehende Spannung ist damit proportional der Größe der mechanischen Einwirkung auf das piezoelektrische Wandlerelement 1 (soweit sich keine Mißverständnisse ergeben können, sind im folgenden die Ausdrücke "Operationsverstärker" und "Ladungsverstärker" im Zusammenhang mit dem mit 5 bezeichneten Bauteil gleichzeitig verwendet - gleiches gilt übrigens auch für den Ausdruck "Sensor" und "Wandlerelement").
  • In Fig. 3 ist die Prinzipschaltung eines Resonanzdetektors dargestellt, mit einem Signalgenerator 7, dem eigentlichen Detektor 8 und einer Kapazität Co, wobei hier das piezoelektrische Wandlerelement 1 als Resonator mit der Kapazität Co in einem Spannungsteiler betrieben wird.
  • Fig. 4 zeigt nun die Prinzipschaltung einer erfindungsgemäßen Meßanordnung in einer einfachen Ausführung. Der Signalgenerator 7 steuert den nichtinvertierenden Eingang (+) des Operationsverstärkers 5 mit einem Frequenzsignal an, dessen Mittelwert gleich dem Massepotential ist. Der Operationsverstärker 5 liefert an seinem Ausgang 6 eine Überlagerung der Signale beider Betriebsarten, also (bis auf ein DC-Offset): u A = -Q C o + u₁ · (1 + C + jD C o )
    Figure imgb0001

    Dabei bedeutet:
  • uA ...
    Ausgangsspannung des Operationsverstärkers 5
    Co ...
    Rückkopplungskapazität
    Q ...
    vom Wandlerelement 1 abgegebene elektrische Ladung
    u₁ ...
    Frequenzsignal am nichtinvertierenden Eingang (+)
    C ...
    Realteil der komplexwertigen Wandlerkapazität; bedeutet in erster Näherung die elektrostatische Kapazität des Wandlers
    D ...
    Imaginärteil der komplexwertigen Wandlerkapazität;
    j ...
    imaginäre Einheit
  • Mit Hilfe eines Hochpaßfilters 9 und eines Tiefpaßfilters 10 können aus dem Ausgangssignal des Verstärkers 5 das niederfrequente Signal uNF des "Ladungsverstärkers" und das höherfrequente Signal uHF für den "Resonanzdetektor" gewonnen werden.
  • Fig. 5 zeigt nun eine Ergänzung der in Fig. 4 dargestellten Schaltung, um ein deutlicheres, für die Resonanzen des Wandlerelementes charakteristischeres Ausgangssignal zu gewinnen. Dazu weist der Signalgenerator 7 einen weiteren Frequenzsignal-Ausgang auf, der - bezogen auf das am nichtinvertierenden Eingang (+) des Ladungsverstärkers (bzw. des Operationsverstärkers 5 im Ladungsverstärker) liegende Signal u₁ - ein in der Frequenz und Phase gleiches und in der Amplitude abstimmbares Referenzsignal u₂ führt und mit dem nichtinvertierenden Eingang (+) eines Referenzladungsverstärkers 11 verbunden ist. Der invertierende Eingang (-) des im Referenzladungsverstärker 11 angeordneten Operationsverstärkers 12 ist über eine Kapazität C₂ mit dem Potential der Rückführung verbunden und über eine weitere Kapazität C₁ mit seinem Ausgang 13 rückgekoppelt. Der über ein weiters Hochpaßfilter 14 geführte Ausgang 13 des Referenzladungsverstärkers 11 ist ebenso wie der Ausgang 6 (über das Hochpaßfilter 9) mit einem Differenzverstärker 15 verbunden, an dessen Ausgang nun das die Resonanzcharakteristik des piezoelektrischen Wandlerelementes 1 beschreibende Signal uD abgreifbar ist.
  • Der das Signal uNF führende Ausgang des Tiefpaßfilters 10 ist mit dem Eingang eines Nachverstärkers 16 verbunden, an dessen Ausgang ein aufbereitetes Signal uQ zur Verfügung steht.
  • Mit V = Verstärkungsfaktor ergibt sich damit: u D = V · [u₁·(1+ C+jD C o ) - u₂ · (1+ C₂ C₁ )]
    Figure imgb0002
  • Nimmt man die Amplituden-Abstimmung am Eingang 17 des Signalgenerators 7 so vor, daß der Realteil von uD durch die Subtraktion verschwindet, so erhält man die gewünschte Größe, die proportional zum dissipativen Teil D der komplexwertigen Wandlerkapazität (C + jD) ist: Im (u D ) = u₁ · V · D C o
    Figure imgb0003
    Re(u D ) = 0    für ̲    u₁ · (1+ C C o ) = u₂ · (1+ C₂ C₁ )
    Figure imgb0004
  • Gleichzeitig kann man das nachverstärkte Signal uQ des "Ladungsverstärkers" messen, das proportional zur einwirkenden mechanischen Größe ist.
  • Fig. 6 zeigt die Erweiterung der Schaltung nach Fig. 5 (symbolisiert durch das Kästchen 18) durch einen Regler zur automatischen Abstimmung der Meßschaltung. Der hochpaßgefilterte Ausgang des Differenzverstärkers (Signal uD) steht mit einem Synchrondemodulator 19 in Verbindung, der weiters mit einer Einheit 20 zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit dem Signalgenerator (7 in Fig. 5) verbunden ist, vorzugsweise mit einem der Frequenzsignalausgänge davon. Der Ausgang des Synchrondemodulators 19 ist mit dem Istwert-Eingang 21 eines Reglers 22 verbunden, der weiters einen Sollwert-Eingang 23 und einen Stellgrößen-Ausgang 24 aufweist. Dieser Stellgrößen-Ausgang 24 kann beispielsweise unmittelbar am Eingang 17 gemäß Fig. 5 oder aber an einer nicht weiter dargestellten Abstimmeinheit zur Abstimmung der relativen Amplituden der beiden Ausgangssignale u₁, u₂ des Signalgenerators aufeinander, liegen. Im Synchrondemodulator 19 wird mit Hilfe der genannten Phasenreferenz der Realteil von uD gewonnen und in der geschlossenen Regelschleife auf Null abgestimmt.
  • Fig. 7 zeigt die Erweiterung der Resonanz-Meßschaltung zu einem Oszillator. Der obere Teil der Darstellung entspricht im wesentlichen einer Kombination der Fig. 5 und 6, wobei in Abweichung der Darstellung zu Fig. 5 hier lediglich die Reihenfolge von Differenzverstärkung und Filterung vertauscht ist. Gleiche bzw. zumindest funktionell gleiche Bauteile sind wiederum mit den bereits vorher verwendeten Bezugszeichen versehen.
  • Im unteren Teil der Darstellung gemäß Fig. 7 ist zu ersehen, daß der hochpaßgefilterte Ausgang des Differenzverstärkers 15 (Signal uD) mit einem weiteren Synchrondemodulator 25 verbunden ist, der seinerseits mit einer Phasenreferenzeinheit 26 in Verbindung steht. Die Phasenreferenzeinheit 26 ist wiederum ihrerseits mit dem Frequenzsignalausgang 27 des als VCO (Voltage Controlled Oscillator) ausgebildeten Signalgenerators 7 verbunden. Der Ausgang des Synchrondemodulators 25 ist mit dem Eingang 28 eines Maximumreglers 29 verbunden, der zur Feinabstimmung des VCO (7), der vorzugsweise über einen Eingang 30 unabhängig grob abstimmbar ist, mit diesem in Verbindung steht.
  • Mit Hilfe des Maximumreglers 29 wird der VCO auf die Frequenz maximaler Verlustleistung, also auf die Resonanzfrequenz des Wandlerelementes 1 eingestellt. Im Synchrondemodulator 25 wird dazu mit Hilfe der Phasenreferenz aus der Einheit 26 der Imaginärteil von uD gewonnen und als Istwert dem Maximumregler 29 zugeführt. Damit stehen drei Ausgangssignale gleichzeitig zur Verfügung:
    • 1. Das Ausgangssignal uQ des "Ladungsverstärkers",
    • 2.das Ausgangssignal uF zur Resonanzfrequenz des Wandlerelementes und
    • 3. das Ausgangssignal mit dem Imaginärteil von uD, welcher charakteristisch für die Dissipation im Wandler ist.
  • Ergänzend ist zu Fig. 7 noch darauf hinzuweisen, daß hier der Regler 22 auf eine separate Abstimmeinheit 31 zur Amplitudenabstimmung der beiden Signale u₁ und u₂ einwirkt, welcher der Frequenzsignalausgang 27 des VCO zugeführt ist.
  • Gemäß Fig. 8 ist der Signalgenerator 7 wiederum als VCO ausgebildet, dessen Frequenzsignalausgang 27 auch mit dem nichtinvertierenden Eingang (+) des im Referenzladungsverstärker 11 angeordneten Operationsverstärkers 12 verbunden ist. Der invertierende Eingang (-) dieses Operationsverstärkers 12 liegt über eine einstellbare Kapazität C₂ auf dem Potential der Rückführung und ist über die Kapazität C₁ mit dem Ausgang 13 rückgekoppelt. Der Ausgang 13 des Referenzladungsverstärkers 11 ist ebenso wie der Ausgang 6 des eigentlichen Ladungsverstärkers 5 wiederum mit einem Differenzverstärker 15 verbunden. Der Ausgang des Differenzverstärkers 15 liegt über ein Hochpaßfilter 14 wie in Fig. 7 an einem Synchrondemodulator 19; über das Tiefpaßfilter 10 erhält man wiederum das Ausgangssignal uQ.
  • Dem Synchrondemodulator 19 ist weiters das Ausgangssignal einer ebenfalls mit dem Frequenzsignalausgang 27 des VCO verbundenen Phasenreferenzeinheit 20 zugeführt. Der Ausgang des Synchrondemodulators 19 ist mit dem Istwert-Eingang 21 eines Reglers 22 verbunden, welcher zusätzlich noch einen Sollwert-Eingang 23 aufweist und über einen Stellgrößen-Ausgang 24 mit einem Frequenzregler-Eingang des VCO verbunden ist.
  • Die Schaltung gemäß Fig. 8 behandelt damit eine Variante des Meßverstärkers zum Betrieb als Ladungsverstärker einerseits und als Oszillator für eine Frequenz andererseits. Verzichtet man auf den Regler 22 gemäß Fig. 6 zur automatischen Abstimmung der Meßschaltung und sieht statt dessen vor, die erforderliche Abstimmung bei der Inbetriebnahme der Schaltung vorzunehmen und während des Betriebes nicht nachzustimmen, so kann das Abstimmkriterium (nämlich daß der Realteil von uD Null ist) zur Erzeugung jener Frequenz verwendet werden, für die diese Bedingung erfüllt ist. Die Vorabstimmung kann per Hand oder rechnergesteuert aufgrund einer vorausgehenden Analyse der mit Hilfe des Resonanzdetektors gewonnenen Resonanzcharakteristik des piezoelektrischen Wandlerelementes 1 erfolgen, sodaß die Frequenz eine Resonanzfrequenz dieses Elements ist. Als abzustimmende Bauelemente kommen prinzipiell ein oder mehrere der eingezeichneten Kapazitäten sowie auch eine hier nicht eingetragene (abstimmbare) Kapazität parallel zum piezoelektrischen Wandlerelement 1 in Frage.
  • Fig. 9 zeigt eine erfindungsgemäße Meßanordnung mit einem Meßverstärker als Ladungsverstärker und als Oszillator mit direkter Rückkoppelung, ohne zwischengeschalteten VCO. Der eigentliche Signalgenerator ist hier mittels einer aktiven Rückkoppelung des am Ausgang des als Bandpaß ausgeführten Hochpaßfilters 14 zur Verfügung stehenden Signals uHF an den nichtinvertierenden Eingang (+) des Ladungsverstärkers 5 sowie den nichtinvertierenden Eingang (+) des Referenzladungsverstärkers 11 realisiert ist. Der Ausgang 13 des Referenzladungsverstärkers 11 ist ebenso wie der Ausgang 6 des Ladungsverstärkers 5 wiederum mit einem Differenzverstärker 15 verbunden, dessen Ausgang dem Bandpaß (14) und dem Tiefpaßfilter 10 zugeführt ist. In der aktiven Rückkoppelung ist ein 90°-phasendrehendes Glied 32 und eine automatische Verstärkungskontrolleinheit (AGC) 33 eingeschaltet.
  • Der z.B. per Hand mit Hilfe der Kapazität C₂ abgestimmte Resonanzdetektor liefert im Resonanzfall des piezoelektrischen Wandlerelementes 1 ein maximales Ausgangssignal, dessen Phase um 90° gegenüber dem anregenden Signal uF gedreht ist. Um der Rückkoppelbedingung für ungedämpfte Schwingungen zu genügen, wird das Ausgangssignal zusätzlich im Glied 32 um 90° phasengedreht. Über die Verstärkungskontrolleinheit 33 wird die Schleifenverstärkung auf den erforderlichen Wert 1 geregelt. Der Bandpaß (14) dient zur Selektion einer Resonanz innerhalb eines bestimmten Frequenzbandes. Über das Tiefpaßfilter 10 kann wiederum das niederfrequente Signal uQ des Ladungsverstärkers abgegriffen werden.
  • Fig. 10 zeigt eine weitere Variante der Meßanordnung nach Fig. 4. Der Frequenzsignalausgang 27 des Signalgenerators 7 ist über einen Emitterfolger 34 mit der Signalleitung 2 des Sensors bzw. Wandlerelementes 1 verbunden. In der Emitter- und in der Kollektorleitung des Emitterfolger-Transistors 35 ist jeweils eine Konstantstromquelle 36 eingeschaltet. Der Kollektor 37 des Emitterfolger-Transistors 35 ist mit dem invertierenden Eingang (-) des Ladungsverstärkers 5 verbunden, dessen nichtinvertierender Eingang (+) auf Potential der Rückführung hegt. Die beiden Konstantstromquellen 36 dienen dabei zur Definition des DC-Arbeitspunktes des Transistors 35.
  • Das Ausgangssignal uA am Ausgang 6 des Ladungsverstärkers 5 läßt sich dabei (bis auf ein DC-Offset) so darstellen: u A = -Q/C o + u₁ . (C + jD)/C o
    Figure imgb0005
  • Wie bei der Meßanordnung nach Fig. 4 dienen auch hier das Hochpaßfilter 14 und das Tiefpaßfilter 10 zur Auftrennung in die zwei Signale uNF und uHF.
  • Fig. 11 zeigt als Erläuterung zu Fig. 10 eine an sich bekannte Ausführungsform für die Konstantstromquellen 36 als Präzisions-Konstantstromquelle. Ein Operationsverstärker 38 steuert einen Feldeffekttransistor (FET) 39 derart, daß die Spannung am Source-Widerstand RS des FET 39 gleich der Eingangsspannung uo ist. Das ist dann der Fall, wenn am Drain-Anschluß des FET 39 ein Strom io = uo/RS gezogen wird. Der Innenwiderstand einer solchen Stromquelle kann extrem groß (wesentlich größer als ein GΩ) gemacht werden.
  • In Fig. 12 ist in Analogie zu Fig. 5 nun die Erweiterung der Schaltung bzw. Meßanordnung nach Fig. 10 zu einem Resonanzdetektor gezeigt, dessen Empfindlichkeit für die Resonanzcharakteristik durch subtraktive Kompensation der Parallelkapazität des Wandlerelementes 1 wesentlich gesteigert wird. Der Frequenzsignalausgang (Signal u₁) des Signalgenerators 7 liegt am nichtinvertierenden Eingang (+) eines Operationsverstärkers 40, dessen Ausgang 41 mit dem Gate eines FET 42 verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Operationsverstärkers 40 rückgekoppelt und mit einer Konstantstromquelle 36 sowie mit der Signalleitung 2 des Sensors bzw. Wandlerelementes 1 verbunden ist. Der invertierende Eingang (-) des Ladungsverstärkers 5 ist mit Drain des FET 42 und mit einer weiteren Konstantstromquelle 36 verbunden - der nichtinvertierende Eingang (+) des Ladungsverstärkers 5 liegt auf einem Ruhepotential uo, sodaß auch das Drain-Potential des FET 42 auf diesen für den Betrieb des FET 42 geeigneten Wert eingestellt wird.
  • Der Signalgenerator 7 weist einen weiteren Frequenzsignalausgang (Signal u₂) auf, der am nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers 43 liegt, dessen Ausgang 44 mit dem Gate eines weiteren FET 45 verbunden ist. Dieser FET 45 ist über Source auf den invertierenden Eingang (-) des Referenz-Operationsverstärkers 43 rückgekoppelt und mit einer Konstantstromquelle 36 sowie mit einem andererseits auf Potential der Rückführung liegenden Kondensator C₂ verbunden. Der invertierende Eingang (-) eines Referenz-Ladungsverstärkers 11 ist mit Drain des weiteren FET 45 und mit einer weiteren Konstantstromquelle 36 verbunden. Der nichtinvertierende Eingang (+) des Referenz-Ladungsverstärkers 11 liegt auf demselben Ruhepotential uo wie beim Ladungsverstärker 5, sodaß auch das Drain-Potential auf diesen für den Betrieb des FET 45 geeigneten Wert eingestellt wird.
  • Die Ausgänge von Ladungsverstärker 5 einerseits und Referenz-Ladungsverstärker 11 andererseits (Signale u₃ und u₄) sind einem Differenzspannungsverstärker 15 zugeführt, dessen Ausgang wiederum am Eingang eines Hochpaß- sowie eines Tiefpaßfilters (14, 10) liegt.
  • Bis auf konstante Verstärkungsfaktoren beliebigen Vorzeichens erhält man dabei folgende Ausgangssignale: u Q = V Q . Q/C o
    Figure imgb0006
    u D = V D · (u₁ · (C + jD)/C o - u₂ · C₂/C₁)
    Figure imgb0007
  • Nimmt man die Abstimmung so vor, daß der Realteil von uD durch die Subtraktion verschwindet, so erhält man die gewünschte Größe, die proportional zum dissipativen Teil D der komplexwertigen Wandlerkapazität (C + jD) ist: Re (u D ) = 0    für ̲    u₁ . C/C o = u₂ . C₂/C₁
    Figure imgb0008
    Im (u D ) = u₁ V D . D/C o
    Figure imgb0009
  • Bei der Meßanordnung nach Fig. 13 liegt der Frequenzsignalausgang (u₁) des Signalgenerators 7 am nichtinvertierenden Eingang (+) eines Operationsverstärkers 49, dessen Ausgang mit dem Gate eines FET 46 verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Operationsverstärkers 49 rückgekoppelt und mit einer Konstantstromquelle 36 sowie mit der Signalleitung 2 des Wandlerelementes 1 im Sensor verbunden ist. Der Signalgenerator 7 weist einen weiteren Frequenzsignal-Ausgang (u₂) auf, der am nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers 50 liegt, dessen Ausgang mit dem Gate eines weiteren FET 47 verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Referenz-Operationsverstärkers 50 zurückgekoppelt und mit einer weiteren Konstantstromquelle 36 sowie mit einem andererseits auf Potential der elektrischen Rückführung liegenden Kondensator C₂ verbunden ist. Die Drain-Anschlüsse der beiden FETs 46, 47 sind einem Differenzstromverstärker 48 zugeführt, dessen Stromausgang 49 am invertierenden Eingang (-) des mit seinem nichtinvertierenden Eingang (+) auf Potential der elektrischen Rückführung hegenden Ladungsverstärkers 5 angeschlossen ist.
  • Damit ist gezeigt, daß die zur Verbesserung der Resonanz-Messung vorgenommene Differenzbildung nicht nur wie in den Ausführungsformen nach den bisher besprochenen Figuren mit einem Differenzspannungsverstärker, sondern auch mit einem Differenzstromverstärker, z.B. mit einer Stromspiegelschaltung, durchgeführt werden kann. Damit ist es möglich, anstelle der zwei Ladungsverstärker für die Ströme i₁ und i₂ einen gemeinsamen für den Differenzstrom einzusetzen.
  • Bei der Meßanordnung nach Fig. 14 ist der eigentliche Signalgenerator mittels einer aktiven Rückkopplung des am Ausgang des wiederum als Bandpaß ausgeführten Hochpaßfilters 14 zur Verfügung stehenden Signals uF an den nichtinvertierenden Eingang (+) eines Operationsverstärkers 49 sowie an den nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers 50 realisiert. Der Ausgang dieser beiden Operationsverstärker 49, 50 liegt jeweils wiederum am Gate eines FET 46, 47, dessen Source jeweils an einer separaten Konstantstromquelle 36 liegt und auf den invertierenden Eingang (-) des jeweiligen Operationsverstärkers 49, 50 rückgekoppelt ist. Im Falle des Operationsverstärkers 49 ist zusätzlich die Signalleitung 2 des Wandlerelementes 1 im Sensor mit Source des FET 46 verbunden; im Falle des Referenz-Operationsverstärkers 50 besteht zusätzlich eine Verbindung von Source über eine einstellbare Kapazität C₂ an das Potential der elektrischen Rückführung.
  • Die Drain-Anschlüsse der beiden FETs 46, 47 sind wiederum einem Differenzstromverstärker 48' zugeführt, der hier zusätzlich einen i/u-Konverter umfaßt. Der Ausgang des Verstärkers 48' ist einerseits mit dem Bandpaßfilter 14 und andererseits über einen Widerstand Ro mit dem invertierenden Eingang (-) des Ladungsverstärkers 5 verbunden. In der Rückkopplung zwischen Bandpaß 14 und nichtinvertierenden Eingängen (+) der beiden Operationsverstärker 49, 50 ist eine automatische Verstärkungskontrolleinheit (AGC) 33 eingeschaltet.
  • Somit enthält die Meßanordnung nach Fig. 14 ebenfalls wie diejenige nach Fig. 13 einen Differenzstromverstärker, nur daß nun aus dem Differenzstrom ein proportionales Spannungssignal erzeugt wird. Dieses wird einerseits über einen Integrator verstärkt, sodaß über den Tiefpaß 10 wiederum das Signal uQ zur Verfügung steht, das proportional zur Ladung und damit zum mechanischen Eingangssignal ist. Andererseits wird das Spannungssignal am Ausgang des Differenzstromverstärkers 48' dazu verwendet, um die Schaltung als freischwingenden Oszillator mit geschlossener Rückkopplung zu betreiben. Die AGC-Einheit 33 sorgt dabei für die Einhaltung der Amplitudenbedingung (Schleifenverstärkung = 1), wobei im Resonanzfall des piezoelektrischen Wandler-Resonators auch die Phasenbedingung (Phasenunterschied Null in der Schleife) erfüllt ist. Das Bandpaßfilter 14 dient wiederum zur Selektion der gewünschten Resonanzfrequenz des Wandlerelementes 1. Das Frequenzsignal uF - die Resonanzfrequenz des Wandlerelementes 1 - kann wie dargestellt z.B. nach dem Bandpaßfilter 14 abgegriffen werden.
  • Die Ausführung nach Fig. 15 unterscheidet sich von der nach Fig. 14 im wesentlichen lediglich dadurch, daß nun zwischen die automatische Verstärkungskontrolleinheit (AGC) 33 und die nichtinvertierenden Eingänge (+) der beiden Operationsverstärker 49, 50 eine für die beiden Operationsverstärker gegenphasige Frequenzsignale erzeugende Treiberstufe 51 eingeschaltet ist, und daß anstelle des Differenzstromverstärkers 48' nun eine Stromadditionsschaltung 52 vorgesehen ist.
  • Die für die Referenzmessung erforderliche Subtraktion wird also gemäß Fig. 15 nicht wie nach Fig. 14 durch Bildung des Differenzstromes der aus den beiden gleichphasigen Signalen u₁ und u₂ erzeugten Ströme i₁ und i₂ durchgeführt, sondern durch das Erzeugen gegenphasiger Signale u₁ und u₂ und Addition der resultierenden Ströme i₁ und i₂. Der Strom-Spannungs-Konverter in der Schaltung 52 ist mit Hilfe eines über einen Widerstand RK rückgekoppelten Operationsverstärkers 53 realisiert. Die Erzeugung der gegenphasigen Signale u₁ und u₂ kann beispielsweise mit Hilfe eines Differenzverstärkers mit symmetrischen Ausgängen erfolgen.
  • Fig. 16 zeigt eine Erweiterung der Meßanordnung nach Fig. 15. Auf gleiche Art könnte übrigens auch beispielsweise die Anordnung nach Fig. 14 erweitert werden. Die Treiberstufe 51' weist hier eine nicht weiter dargestellte zusätzliche Einheit zur Amplitudenabstimmung der beiden gegenphasigen Frequenzsignale u₁ und u₂ auf. Der hochpaßgefilterte Ausgang (Hochpaßfilter 14') steht mit einem Synchrondemodulator 19 in Verbindung, der weiters wieder mit einer Einheit 20 zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit dem nichtinvertierenden Eingang (+) des Operationsverstärkers 49 in Verbindung steht. Der Ausgang des Synchrondemodulators 19 ist mit dem Istwert-Eingang 21 eines Reglers 22 verbunden, der weiters einen Sollwert-Eingang 23 und einen Stellgrößen-Ausgang 24 aufweist, welch letzterer mit der Einheit zur Amplitudenabstimmung in der Treiberstufe 51' in Verbindung steht. Es handelt sich bei der in Fig. 16 dargestellten Schaltung um einen Präzisionsoszillator und Ladungsverstärker für das piezoelektrische Wandlerelement 1 im entsprechenden Sensor, mit den Ausgängen uF für die Resonanzfrequenz und uQ für das Ladungssignal. Die Abstimmung der Anordnung erfolgt selbsttätig wie obenstehend zu Fig. 6 und 7 beschrieben mit Hilfe einer Amplitudenabstimmung von u₁ und u₂. Diese Abstimmung wird gesteuert vom Regler 22, der den Sollwert Null mit dem vom Synchrondemodulator gelieferten Istwert vergleicht. Auf diese Art wird eine grobe Einstellung der Phasenbedingung der Oszillatorschaltung erreicht. Die Feineinstellung der Phasenbedingung und, im Zusammenhang mit der AGC-Einheit 33, die Einstellung der Amplitudenbedingung erfolgt wegen der Mitkoppelung der Schaltung nur bei der Resonanzfrequenz des piezoelektrischen Wandlerelementes 1, die über das Bandpaßfilter 14 selektiert wird.
  • Fig. 17 zeigt symbolisch einen piezoelektrischen Sensor, der in einem mit einem Anschlußstecker 54 ausgestatteten Gehäuse 55 ein piezoelektrisches Wandlerelement 1 aufweist, das über Anschlüsse 56, 57 kontaktiert ist. Die Anordnung und spezielle Ausgestaltung des Wandlerelementes 1 ist hier nicht dargestellt - insbesonders kann dieses Element 1 aus an sich beliebig vielen Piezoelementen (z.B. Quarzscheiben) bestehen. Gemäß den obigen Ausführungen zur vorliegenden Erfindung dient dieses eine Wandlerelement 1 gemäß Fig. 17 für den Betrieb des Sensors in beiden möglichen Betriebsarten.
  • Gemäß Fig. 18 sind als einzig wesentliche Abweichung zu Fig. 17 zwei elektrisch parallel geschaltete piezoelektrische Wandlerelemente 1 vorgesehen, die unabhängig voneinander für den jeweiligen Betrieb optimiert sein können. So kann beispielsweise eines der Wandlerelemente 1 durch spezielle Ausbildung seiner Piezoelemente bzw. Halterungen derselben für den Betrieb als Resonator optimiert sein, während das andere Wandlerelement 1 auf den Betrieb unter Ausnützung des direkten Piezoeffektes optimiert ist. Es ist in diesem Zusammenhang auch darauf hinzuweisen, daß es im Rahmen der vorliegenden Erfindung an sich belanglos ist, ob derartige mehrere piezoelektrische Wandlerelemente hinsichtlich der Einwirkung der zu messenden bzw. zu überwachenden Größe parallel oder hintereinander geschaltet sind.
  • Gemäß Fig. 19 sind wiederum zwei nun aber elektrisch in Serie geschaltete piezoelektrische Wandlerelemente 1 vorgesehen, die mit einer Kapazität C elektrisch parallel im Gehäuse 55 des Sensors angeordnet sind.

Claims (24)

  1. Meßverfahren zur Bestimmung bzw. Überwachung von mechanischen und/oder physikalischen Größen, wobei ein zumindest ein piezoelektrisches Wandlerelement enthaltender Sensor (1) der zu bestimmenden bzw. überwachenden Größe ausgesetzt und ein von dieser Größe beeinflußtes elektrisches Sensorsignal auf einer einzigen Signalleitung (2) als Meßsignal ausgewertet wird, dadurch gekennzeichnet, daß der Sensor über die gemeinsame, einzige Signalleitung (2) samt elektrischer Rückführung in beiden möglichen Betriebsarten - einerseits bei niedrigen Frequenzen als Meßelement für eine mechanische Größe unter Ausnutzung des direkten Piezoeffektes und andererseits bei höheren Frequenzen als piezoelektrischer Resonator unter Ausnutzung des inversen Piezoeffektes zur elektrischen Anregung mechanischer Schwingungen und des direkten Piezoeffektes zur Erzeugung der piezoelektrischen Rückwirkung - betrieben wird und daß aus dem Meßsignal auf der Signalleitung ein höherfrequentes, die Resonanzcharakteristik beschreibendes Signal und ein niederfrequenteres, die mechanische Einwirkung beschreibendes, vorzugsweise ladungsproportionales Signal erzeugt wird.
  2. Meßverfahren nach Anspruch 1, dadurch gekennzeichnet, daß über die Signalleitung ein höherfrequentes Anregungssignal zur Anregung des Sensors (1) zu mechanischen Schwingungen geliefert wird, dem ein in der Folge durch die piezoelektrische Rückwirkung des Sensors erzeugtes Signal gleicher Frequenz und ein vom Sensor aufgrund mechanischer, niederfrequenterer Einwirkungen generiertes niederfrequentes Signal überlagert werden, wobei der niederfrequente Anteil des Meßsignal auf der Signalleitung virtuell kurzgeschlossen und der dabei auftretende Kurzschlußstrom zur weiteren Signalverarbeitung verstärkt und vorzugsweise zu einem ladungsproportionalen Ausgangssignal integriert wird.
  3. Meßverfahren nach Anspruch 2, dadurch gekennzeichnet, daß der höherfrequente Anteil des Meßsignals auf der Signalleitung (2) kapazitiv vom niederfrequenten Anteil entkoppelt wird.
  4. Meßverfahren nach Anspruch 2, dadurch gekennzeichnet, daß das höherfrequente Anregungssignal auf der Signalleitung (2) spannungsmäßig eingeprägt wird und daß der gesamte Strom durch den Sensor, höherfrequente und niederfrequente Anteile, zur weiteren Signalverarbeitung herangezogen wird.
  5. Meßverfahren nach einem der Anprüche 2 bis 4, dadurch gekennzeichnet, daß zur Bildung des höherfrequenten Signals die Differenz zwischen einem in Frequenz und Phase dem Anregungssignal entsprechenden, vom Sensor (1) unbeeinflußten Referenzsignal und dem Meßsignal gebildet wird, wobei das Anregungssignal und das Referenzsignal in ihren Amplituden relativ zueinander abstimmbar sind.
  6. Meßverfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Amplitudenabstimmung so vorgenommen wird, daß der Realteil des höherfrequenten Signals verschwindet.
  7. Meßverfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß zur Bereitstellung des zur Schwingungsanregung dienenden Frequenzsignals das bandpaßgefilterte höherfrequente Signal phasenrichtig aktiv rückgekoppelt wird, vorzugsweise unter automatischer Abstimmung der Schleifensverstärkung auf den Faktor 1.
  8. Meßanordnung, mit einem zumindest ein piezoelektrisches Wandlerelement enthaltenden Sensor (1) und einem damit über eine einzige Signalleitung (2) samt elektrischer Rückführung in Verbindung stehenden Meßverstärker, dadurch gekennzeichnet, daß der Sensor (1) für den Betrieb in den beiden möglichen Betriebsarten - einerseits bei niedrigen Frequenzen als Meßelement für eine mechanische Größe unter Ausnutzung des direkten Piezoeffektes und andererseits bei höheren Frequenzen als piezoelektrischer Resonator unter Ausnutzung des inversen Piezoeffektes zur elektrischen Anregung mechanischer Schwingungen und des direkten Piezoeffektes zur Erzeugung der piezoelektrischen Rückwirkung - über die gemeinsame, einzige Signalleitung (2) mit dem invertierenden Eingang (-) eines im Meßverstärker angeordneten Ladungsverstärkers (5) in Verbindung steht, daß der Ladungsverstärker (5) weiters mit dem Ausgang eines Signalgenerators (7) in Verbindung steht und von diesem mit einem Frequenzsignal (u₁) angesteuert ist, dessen Mittelwert gleich dem Potential der elektrischen Rückführung ist, und daß der über einen Kondensator (Co) auf den invertierenden Eingang (-) rückgekoppelte Ausgang (6) eines im Ladungsverstärker (5) angeordneten Operationsverstärkers einerseits mit dem Eingang eines Hochpaßfilters (9,14,14'), an dessen Ausgang ein von der Resonanzcharakteristik abhängiges Signal (uHF, uF) abgreifbar ist, und andererseits mit dem Eingang eines Tiefpaßfilters (10), an dessen Ausgang ein niederfrequenteres Ladungsverstärkersignal (uNF, uQ) abgreifbar ist, in Verbindung steht.
  9. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der Frequenzsignal-Ausgang (27) des Signalgenerators (7) mit dem nichtinvertierenden Eingang (+) des Ladungsverstärkers verbunden ist.
  10. Meßanordnung nach Anspruch 9, dadurch gekennzeichnet, daß der Signalgenerator (7) einen weiteren Frequenzsignal-Ausgang aufweist, der - bezogen auf das am nichtinvertierenden Eingang (+) des Ladungsverstärkers (5) liegende Signal (u₁) - ein in der Frequenz und Phase gleiches und in der Amplitude abstimmbares Referenzsignal (u₂) führt und mit dem nichtinvertierenden Eingang (+) eines Referenzladungsverstärkers (11) verbunden ist, daß der invertierende Eingang (-) eines im Referenzladungsverstärker (11) angeordneten Operationsverstärkers (12) über eine Kapazität (C₂) mit dem Potential der Rückführung verbunden und über eine weitere Kapazität (Cf) mit seinem Ausgang (13) rückgekoppelt ist, daß der über ein weiteres Hochpaßfilter (14) geführte Ausgang des Referenzladungsverstärkers (11) ebenso wie der Ausgang des das Signal (uHF) führenden Hochpaßfilters (9) mit einem Differenzverstärker (15) verbunden ist, an dessen Ausgang ein die Resonanzcharakteristik beschreibendes Signal (uD) abgreifbar ist.
  11. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der das Signal (uNF) führende Ausgang des Tiefpaßfilters (10) mit dem Eingang eines Nachverstärkers (16) verbunden ist, an dessen Ausgang ein aufbereitetes Signal (uQ) zur Verfügung steht.
  12. Meßanordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der hochpaßgefilterte Ausgang des Differenzverstärkers (15) mit einem Synchrondemodulator (19) in Verbindung steht, der weiters mit einer Einheit (20) zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit dem Signalgenerator (7) verbunden ist, vorzugsweise mit einem der Frequenzsignalausgänge davon, und daß der Ausgang des Synchrondemodulators (19) mit dem Istwert-Eingang (21) eines Reglers (22) verbunden ist, der weiters einen Sollwerteingang (23) und einen Stellgrößenausgang (24) aufweist, welch letzterer mit einer Abstimmeinheit zur Abstimmung der relativen Amplituden der beiden Ausgangssignale (u₁, u₂) des Signalgenerators (7) aufeinander verbunden ist.
  13. Meßanordnung nach Anspruch 12, dadurch gekennzeichnet, daß der hochpaßgefilterte Ausgang des Differenzverstärkers (15) mit einem weiteren Synchrondemodulator (25) verbunden ist, daß der weitere Synchrondemodulator (25) mit einer Phasenreferenzeinheit (26) verbunden ist, welche ihrerseits mit dem Frequenzsignalausgang (27) des als VCO ausgebildeten Signalgenerators (7) in Verbindung steht, daß der Ausgang des Synchrondemodulators (25) mit dem Eingang eines Maximumreglers (29) verbunden ist, welcher zur Abstimmung des VCO, der vorzugsweise unabhängig davon auch grobabstimmbar ist, mit diesem in Verbindung steht.
  14. Meßanordnung nach Anspruch 9, dadurch gekennzeichnet, daß der Signalgenerator (7) als VCO ausgebildet ist, dessen Frequenzsignalausgang (27) auch mit dem nichtinvertierenden Eingang (+) eines in einem Referenzladungsverstärker (11) angeordneten Operationsverstärkers (12) verbunden ist, dessen invertierender Eingang (-) über eine einstellbare Kapazität (C₂) auf dem Potential der Rückführung liegt und über eine weitere Kapazität (Cf) mit seinem Ausgang (13) rückgekoppelt ist, daß der Ausgang (13) des Referenzladungsverstärkers (11) ebenso wie der Ausgang (6) des Ladungsverstärkers (5) selbst mit einem Differenzverstärker (15) verbunden ist, daß der hochpaßgefilterte Ausgang des Differenzverstärkers (15) mit einem Synchrondemodulator (19) verbunden ist, dem das Ausgangssignal einer ebenfalls mit dem Frequenzsignalausgang (27) des VCO (7) verbundenen Phasenreferenzeinheit (20) zugeführt ist und der mit seinem Ausgang mit dem Istwert-Eingang (21) eines Reglers (22) verbunden ist, und daß der weiters auch einen Sollwerteingang (23) aufweisende Regler einen Stellgrößenausgang (24) aufweist, der mit einem Frequenzregeleingang des VCO (7) verbunden ist.
  15. Meßanordnung nach Anspruch 9, dadurch gekennzeichnet, daß der Signalgenerator mittels einer aktiven Rückkopplung des am Ausgang des als Bandpaß ausgeführten Hochpaßfilters (14) zur Verfügung stehenden Signals (uHF) an den nichtinvertierenden Eingang (+) des Ladungsverstärkers (5) sowie den nichtinvertierenden Eingang (+) eines Referenzladungsverstärkers (11) realisiert ist, daß der Ausgang (13) des Referenzladungsverstärkers (11) ebenso wie der Ausgang (6) des Ladungsverstärkers (5) mit einem Differenzverstärker (15) verbunden ist, dessen Ausgang dem Bandpaß (14) und dem Tiefpaßfilter (10) zugeführt ist, und daß in der aktiven Rückkopplung ein 90°-phasendrehendes Glied (32) und vorzugsweise eine automatische Verstärkungskontrolleinheit (AGC) (33) eingeschaltet sind.
  16. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der Frequenzsignal-Ausgang (27) des Signalgenerators (7) über einen Emitterfolger (34) mit der Signalleitung (2) des Sensors (1) verbunden ist, daß in der Emitter- und in der Kollektorleitung des Emitterfolger-Transistors (35) jeweils eine Konstantstromquelle (36) eingeschaltet ist und daß der Kollektor (37) des Emitterfolger-Transistors (35) mit dem invertierenden Eingang (-) des Ladungsverstärkers (5) verbunden ist.
  17. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der Frequenzsignalausgang (u₁) des Signalgenerators (7) am nichtinvertierenden Eingang (+) eines Operationsverstärkers (40) liegt, dessen Ausgang (41) mit dem Gate eines FET (42) verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Operationsverstärkers (40) rückgekoppelt und mit einer Konstantstromquelle (36) sowie mit der Signalleitung (2) des Sensors (1) verbunden ist, und daß der invertierende Eingang (-) des Ladungsverstärkers (5) mit Drain des FET (42) und mit einer weiteren Konstantstromquelle (36) verbunden ist.
  18. Meßanordnung nach Anspruch 17, dadurch gekennzeichnet, daß der Signalgenerator (7) einen weiteren Frequenzsignalausgang (u₂) aufweist, der am nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers (43) liegt, dessen Ausgang (44) mit dem Gate eines weiteren FET (45) verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Referenz-Operationsverstärkers (43) rückgekoppelt und mit einer Konstantstromquelle (36) sowie mit einem andererseits auf Potential der Rückführung liegenden Kondensator (C₂) verbunden ist, daß der invertierende Eingang (-) eines Referenz-Ladungsverstärkers (11) mit Drain des weiteren FET (45) und mit einer weiteren Konstantstromquelle (36) verbunden ist, und daß weiters die Ausgänge (6,13) von Ladungsverstärker (5) einerseits und Referenz-Ladungsverstärker (11) andererseits einem Differenzspannungsverstärker (15) zugeführt sind, dessen Ausgang am Eingang des Hochpaß- sowie des Tiefpaßfilters (14,10) liegt.
  19. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der Frequenzsignalausgang (u₁) des Signalgenerators (7) am nichtinvertierenden Eingang (+) eines Operationsverstärkers (49) liegt, dessen Ausgang mit dem Gate eines FET (46) verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Operationsverstärkers (49) rückgekoppelt und mit einer Konstantstromquelle (36) sowie mit der Signalleitung (2) des Sensors (1) verbunden ist, daß der Signalgenerator (7) einen weiteren Frequenzsignal-Ausgang (u₂) aufweist, der am nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers (50) liegt, dessen Ausgang mit dem Gate eines weiteren FET (47) verbunden ist, der seinerseits über Source auf den invertierenden Eingang (-) des Referenz-Operationsverstärkers (50) zurückgekoppelt und mit einer weiteren Konstantstromquelle (36) sowie mit einem andererseits auf Potential der elektrischen Rückführung liegenden Kondensator (C₂) verbunden ist, und daß die Drain-Anschlüsse der beiden FETs (46,47) einem Differenzstromverstärker (48) zugeführt sind, dessen Stromausgang (49) am invertierenden Eingang (-) des mit seinem nichtinvertierenden Eingang (+) auf Potential der elektrischen Rückführung liegenden Ladungsverstärkers (5) angeschlossen ist.
  20. Meßanordnung nach Anspruch 8, dadurch gekennzeichnet, daß der Signalgenerator mittels einer aktiven Rückkopplung des am Ausgang des als Bandpaß (14) ausgeführten Hochpaßfilters zur Verfügung stehenden Signals (uF) an den nichtinvertierenden Eingang (+) eines Operationsverstärkers (49) sowie den nichtinvertierenden Eingang (+) eines Referenz-Operationsverstärkers (50) realisiert ist, daß der Ausgang dieser beiden Operationsverstärker (49,50) jeweils am Gate eines FET (46,47) liegt, dessen Source jeweils an einer separaten Konstantstromquelle (36) liegt und auf den invertierenden Eingang (-) des jeweiligen Operationsverstärkers (49,50) rückgekoppelt ist, wobei im Falle des Operationsverstärkers (49) zusätzlich die Signalleitung (2) des Sensors (1) mit Source verbunden ist und im Falle des Referenz-Operationsverstärkers (50) zusätzlich eine Verbindung von Source über eine einstellbare Kapazität (C₂) an das Potential der elektrischen Rückführung besteht, daß die Drain-Anschlüsse der beiden FETs (46,47) einem Differenzstromverstärker und i/u-Konverter (48') zugeführt sind, dessen Ausgang einerseits mit einem Bandpaßfilter (14) und andererseits über einen Widerstand (Ro) mit dem invertierenden Eingang (-) des Ladungsverstärkers (5) verbunden ist, wobei vorzugsweise in der Rückkopplung zwischen Bandpaß (14) und nichtinvertierenden Eingängen (+) der beiden Operationsverstärker (49,50) eine automatische Verstärkungskontrolleinheit (AGC) (33) eingeschaltet ist.
  21. Meßanordnung nach Anspruch 20, dadurch gekennzeichnet, daß zwischen die automatische Verstärkungskontrolleinheit (AGC) (33) und die nichtinvertierenden Eingänge (+) der beiden Operationsverstärker (49,50) eine für die beiden Operationsverstärker (49,50) gegenphasige Frequenzsignale (u₁, u₂) erzeugende Treiberstufe (51) eingeschaltet ist und daß anstelle des Differenzstromverstärkers eine Stromadditionsschaltung (52) vorgesehen ist.
  22. Meßanordnung nach Anspruch 21, dadurch gekennzeichnet, daß die Treiberstufe (51') eine zusätzliche Einheit zur Amplitudenabstimmung der beiden gegenphasigen Frequenzsignale (u₁,u₂) aufweist, daß der hochpaßgefilterte Ausgang des Ladungsverstärkers (5) mit einem Synchrondemodulator (19) in Verbindung steht, der weiters mit einer Einheit (20) zur Erzeugung einer Phasenreferenz verbunden ist, welche ihrerseits mit einem der nichtinvertierenden Eingänge (+) der beiden Operationsverstärker (49,50) in Verbindung steht, und daß der Ausgang des Synchrondemodulators (19) mit dem Istwert-Eingang (21) eines Reglers (22) verbunden ist, der weiters einen Sollwert-Eingang (23) und einen Stellgrößen-Ausgang (24) aufweist, welch letzterer mit der Einheit zur Amplitudenabstimmung verbunden ist.
  23. Verwendung einer Meßanordnung nach einem der Ansprüche 8 bis 22 zur Bestimmung bzw. Überwachung von mechanischen und/oder physikalischen Größen über die niederfrequenteren Teile des Meßsignals auf der Signalleitung (2) unter gleichzeitiger Überwachung der Funktion des Sensors (1) über das durch die höherfrequenten Teile des Meßsignals charakterisierte Resonanzverhalten, wobei der Sensor (1) ein einzelnes Wandlerelement aufweist, welches zumindest ein Piezoelement enthält.
  24. Verwendung einer Meßanordnung nach einem der Ansprüche 8 bis 22 zur gleichzeitigen Bestimmung bzw. Überwachung von zumindest zwei unterschiedlichen mechanischen und/oder physikalischen Größen, wobei der Sensor (1) zumindest zwei separate, auf die jeweilige Aufgabe optimierte Wandlerelemente aufweist.
EP90906044A 1989-04-27 1990-04-18 Verfahren und anordnung zur piezoelektrischen messung Expired - Lifetime EP0423273B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1015/89A AT393416B (de) 1989-04-27 1989-04-27 Messverfahren zur bestimmung bzw. ueberwachung von mechanischen und/oder physikalischen groessen
AT1015/89 1989-04-27

Publications (2)

Publication Number Publication Date
EP0423273A1 EP0423273A1 (de) 1991-04-24
EP0423273B1 true EP0423273B1 (de) 1993-06-23

Family

ID=3504954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90906044A Expired - Lifetime EP0423273B1 (de) 1989-04-27 1990-04-18 Verfahren und anordnung zur piezoelektrischen messung

Country Status (7)

Country Link
US (1) US5220836A (de)
EP (1) EP0423273B1 (de)
JP (1) JPH0765941B2 (de)
AT (1) AT393416B (de)
DE (1) DE59001856D1 (de)
DK (1) DK0423273T3 (de)
WO (1) WO1990013010A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048155A2 (de) 2009-10-22 2011-04-28 Avl List Gmbh Verfahren zum betreiben eines elektromechanischen wandlersystems, sowie elektromechanisches wandlersystem
DE102007059702B4 (de) * 2006-12-10 2012-10-11 Ifm Electronic Gmbh Kapazitiver Sensor
DE102007059709B4 (de) * 2006-12-10 2014-07-10 Ifm Electronic Gmbh Kapazitiver Sensor

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496352A (en) * 1994-04-04 1996-03-05 Pacesetter, Inc. Activity sensors for implantable medical devices
DE69841480D1 (de) * 1997-12-02 2010-03-18 Allan L Smith Sensor zur messung von mass und wärmefluss
JP3343509B2 (ja) * 1998-05-06 2002-11-11 株式会社日立製作所 空気流量計測装置
DE69825429T2 (de) * 1998-06-16 2005-01-13 Vibro-Meter S.A. Schnittstellenschaltungsanordnung für piezoelektrischen Sensor
US6252512B1 (en) 1999-03-05 2001-06-26 Hill-Rom, Inc. Monitoring system and method
DE19939998A1 (de) * 1999-08-24 2001-03-01 Bosch Gmbh Robert Vorrichtung zur Vorspannungserzeugung für einen schwingenden Drehratensensor
US7036378B2 (en) 2000-08-09 2006-05-02 Endevco Corporation High and low frequency band dual output transducer
AT5042U3 (de) * 2001-10-08 2002-10-25 Avl List Gmbh Messanordnung
US7095297B2 (en) * 2001-11-13 2006-08-22 National University Of Singapore Insulation of anti-resonance in resonators
US6714070B1 (en) * 2002-02-07 2004-03-30 Bei Technologies, Inc. Differential charge amplifier with built-in testing for rotation rate sensor
ITMI20030514A1 (it) * 2003-03-18 2004-09-19 Uni Degli Studi Brescia Metodo e dispositivo per determinare la frequenza di
DE102005006666A1 (de) * 2005-02-14 2006-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Piezoelektrischer Sensor und dessen Verwendung
AT7777U3 (de) * 2005-04-21 2006-07-15 Piezocryst Advanced Sensorics Messsystem zur zylinderdruckmessung an brennkraftmaschinen
JP4786494B2 (ja) * 2006-10-10 2011-10-05 本田技研工業株式会社 変形検出センサ
US7997144B1 (en) * 2007-05-11 2011-08-16 Purdue Research Foundation System and method of measuring quasi-static force with a piezoelectric sensor
AT10236U3 (de) 2008-07-10 2009-09-15 Avl List Gmbh Messanordnung und verfahren zur erfassung von messdaten
GB201018224D0 (en) * 2010-10-28 2010-12-15 Dna Electronics Chemical sensing device
ES2749877T3 (es) 2010-11-29 2020-03-24 Air Prod & Chem Método y aparato de medición del peso molecular de un gas
EP2458348B1 (de) 2010-11-29 2013-08-14 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zum Messen der Massendurchflussrate eines Gases
PT2458357E (pt) * 2010-11-29 2014-06-11 Air Prod & Chem Método e aparelho para medir a pressão de um gás
AT511330B1 (de) 2011-06-03 2012-11-15 Piezocryst Advanced Sensorics Sensor für die messung von druck und/oder kraft
EP2667176B1 (de) 2012-05-24 2015-02-25 Air Products And Chemicals, Inc. Vorrichtung zum Messen des tatsächlichen Inhalts eines unter Druck stehenden Gaszylinders
EP2667162B1 (de) 2012-05-24 2015-09-30 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zum Messen der physikalischen Eigenschaften zweiphasiger Fluide
EP2667160B1 (de) 2012-05-24 2020-11-18 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zur Regelung der Massendurchflussrate eines Gases
ES2663244T3 (es) 2012-05-24 2018-04-11 Air Products And Chemicals, Inc. Método y aparato para proporcionar una mezcla de gases
ES2905838T3 (es) 2012-05-24 2022-04-12 Air Prod & Chem Método y aparato para medir el caudal másico de un gas
PL2667276T3 (pl) 2012-05-24 2018-04-30 Air Products And Chemicals, Inc. Sposób i urządzenie do dostarczania mieszaniny gazu
CH709395A1 (de) * 2014-03-21 2015-09-30 Kistler Holding Ag Piezoelektrisches Messelement zur Messung des dynamischen Druckes sowie des statischen Druckes und/oder der Temperatur.
US10620063B2 (en) 2015-07-31 2020-04-14 Sikorsky Aircraft Corporation Multifunctional piezoelectric load sensor assembly
EP3344968B1 (de) * 2015-08-31 2018-12-26 Koninklijke Philips N.V. Elektroaktive sensoren und abtastverfahren
US9627602B1 (en) * 2016-06-21 2017-04-18 Guzik Technical Enterprises Driving circuit for a piezoelectric actuator
CN106644044B (zh) * 2017-03-10 2023-10-20 辽宁骏升科技有限公司 一种高频率小振幅超声机械振动波功率测量方法及装置
EP3627574B1 (de) * 2018-09-21 2021-02-17 TE Connectivity Norge AS Verfahren und vorrichtung zur detektion einer stromkreisunterbrechung im anschluss eines piezoelektrischen elements
JP6961638B2 (ja) * 2019-03-14 2021-11-05 株式会社東芝 センサモジュール
CN110145300B (zh) * 2019-05-30 2022-03-01 中国石油天然气股份有限公司 一种适用于油井测压的双通道声音变送器及其电路
US11309855B2 (en) 2020-02-10 2022-04-19 Meggitt (Orange County), Inc. Charge amplifier circuit for high-temperature piezoelectric transducers
CN112379124A (zh) * 2020-11-26 2021-02-19 湖南科技大学 Icp传感器及其多参量信号提取电路模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521166A (en) * 1967-02-01 1970-07-21 Electro Catheter Corp Wide band measuring and recording methods and apparatus
JPS5838738B2 (ja) * 1979-01-11 1983-08-25 横河電機株式会社 圧力計
US4546658A (en) * 1984-02-24 1985-10-15 General Electric Company Piezoelectric force/pressure sensor
US4807482A (en) * 1987-05-18 1989-02-28 Temple University Of The Commonwealth System Of Higher Education Method and apparatus for measuring stimuli applied to a piezoelectric transducer
US5000050A (en) * 1990-03-12 1991-03-19 Ford Motor Company Mass-flow sensor using aerodynamic damping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059702B4 (de) * 2006-12-10 2012-10-11 Ifm Electronic Gmbh Kapazitiver Sensor
DE102007059709B4 (de) * 2006-12-10 2014-07-10 Ifm Electronic Gmbh Kapazitiver Sensor
WO2011048155A2 (de) 2009-10-22 2011-04-28 Avl List Gmbh Verfahren zum betreiben eines elektromechanischen wandlersystems, sowie elektromechanisches wandlersystem

Also Published As

Publication number Publication date
WO1990013010A1 (de) 1990-11-01
US5220836A (en) 1993-06-22
AT393416B (de) 1991-10-25
JPH03502609A (ja) 1991-06-13
ATA101589A (de) 1991-03-15
JPH0765941B2 (ja) 1995-07-19
DE59001856D1 (de) 1993-07-29
EP0423273A1 (de) 1991-04-24
DK0423273T3 (da) 1993-10-11

Similar Documents

Publication Publication Date Title
EP0423273B1 (de) Verfahren und anordnung zur piezoelektrischen messung
DE69430847T2 (de) Konstantstromgespeister zweidrahtwandler
DE19910415B4 (de) Verfahren und Vorrichtung zum Abstimmen eines ersten Oszillators mit einem zweiten Oszillator
DE19600689C2 (de) Schaltung zum Verringern einer kapazitiven Komponente in einer elektrostatischen Wandlereinrichtung
EP2087315B1 (de) Anordnung zur messung einer drehrate mit einem vibrationssensor
EP0272244B1 (de) Verfahren und Einrichtung zur Bestimmung von Schwingungseigenschaften sowie zum Betreiben eines piezoelektrischen Wandlers
DE69525405T2 (de) Kammförmige Antriebsvorrichtung für einen mikromechanischen Drehgeschwindigkeitssensor und dazugehöriges Messverfahren
EP0883795B1 (de) Vorrichtung zur ermittlung einer drehrate
CH657457A5 (de) Pruefeinrichtung zur bestimmung von schwingungseigenschaften mindestens eines messwertaufnehmers.
EP3222968A1 (de) Verfahren zur automatischen frequenzanpassung von filtern während des betriebs in geschlossenen regelschleifen
DE60102976T2 (de) Signalverarbeitung für einen piezoelektrischen Sensor mit Differenzierer und Integrierer
EP0813306A1 (de) Temperaturstabilisierter Oszillator und Verwendung desselben in einem Näherungsschalter
CH699753A1 (de) Vorrichtung und verfahren zum ausmessen einer kapazität.
DE69615468T2 (de) Vorrichtung zum Messen einer Winkelgeschwindigkeit
EP0274071A2 (de) Einrichtung zum Ermitteln der jeweiligen Dicke von sich verändernden Material-Schichten
DE10203855B4 (de) Schwinggyroskop und Temperaturdrift-Einstellverfahren für dasselbe
DE69113882T2 (de) Wirbelstromgerät zum Feststellen von Fehlern.
DE102005032468B4 (de) Integrierte Quarzoszillatorschaltung
DE102004029078A1 (de) Halbleiter-Beschleunigungssensor und Verfahren zum Testen des Gleichen
DE69317346T2 (de) Verfahren und Vorrichtung zur Kompensation von Materialinstabilitäten in piezoelektrischem Material
DE10345234B3 (de) Oszillatoranordnung mit erhöhter EMI-Robustheit
DE2452257A1 (de) Steuer- und messverfahren und geraet unter verwendung von mitlaufoszillatoren
AT394286B (de) Ladungsverstaerkerschaltung
EP0118396B1 (de) Messverfahren für ein elektrisches Signal, serie-parallel-gegengekoppelter Messkreis sowie Verwendung des Verfahrens oder des Messkreises zur Messung von Spannungsquellen mit höchstohmigen Innenimpedanzen
EP0343403B1 (de) Schaltungsanordnung zur Selbsterregung eines mechanischen Schwingsystems zu Eigenresonanzschwingungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FR GB IT LI SE

17Q First examination report despatched

Effective date: 19921007

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB IT LI SE

REF Corresponds to:

Ref document number: 59001856

Country of ref document: DE

Date of ref document: 19930729

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930707

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90906044.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970328

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970408

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970409

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970418

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980427

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980418

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990419

EUG Se: european patent has lapsed

Ref document number: 90906044.4

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080411

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103