EP0422763B1 - Procédé pour le soudage de pièces d'oeuvre basées sur aluminium - Google Patents

Procédé pour le soudage de pièces d'oeuvre basées sur aluminium Download PDF

Info

Publication number
EP0422763B1
EP0422763B1 EP90308850A EP90308850A EP0422763B1 EP 0422763 B1 EP0422763 B1 EP 0422763B1 EP 90308850 A EP90308850 A EP 90308850A EP 90308850 A EP90308850 A EP 90308850A EP 0422763 B1 EP0422763 B1 EP 0422763B1
Authority
EP
European Patent Office
Prior art keywords
arc
current
electrode
welding
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90308850A
Other languages
German (de)
English (en)
Other versions
EP0422763A1 (fr
Inventor
Alvin Kenneth Oros
Paul David Dejager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Original Assignee
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH, Ford France SA, Ford Motor Co Ltd, Ford Motor Co filed Critical Ford Werke GmbH
Publication of EP0422763A1 publication Critical patent/EP0422763A1/fr
Application granted granted Critical
Publication of EP0422763B1 publication Critical patent/EP0422763B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces

Definitions

  • the invention relates to a method of welding aluminium-based workpieces.
  • an electrode of indefinite length is continuously fed to a welding arc, established between the electrode and a workpiece, where it is melted by the intense heat of the arc and fuses with the workpiece.
  • the metal deposited from the consumable electrode is shielded with an inert shielding gas, and thus the reference to the process as gas metal arc welding.
  • Consumable electrode welding is not only substantially faster than nonconsumable electrode welding but is particularly adapted to the automatic welding of carbon and stainless steel where it has been predominantly used.
  • the shielding gas provides a more easily ionised path than obtained in air, aiding smooth transfer of current and functioning to surround the arc and weld pool with an atmosphere that is nonreactive with the molten metal.
  • argon and helium are the only gases in general use when welding aluminium. Of these two gases, argon is the most commonly used and promotes greater arc stability than helium.
  • a high current density is often employed to break up the molten metal of the electrode into very fine droplets by an increase in its vapour pressure, resulting in deeper weld penetration at a rate of about 200 drops per second.
  • potential damage to some thin or nonferrous workpieces may result from use of such high currents.
  • Pulsing of the current supply to the arc has been developed along with improved shielding gases to lower the average current density to promote the welding of ferrous-based articles (see U.S. patents 4,273,988; 4,507,543; 4,628,181; and 4,749,841).
  • the arc current is cyclically pulsed between a minimal value needed to maintain the arc and a maximum value which may be several hundred percent larger.
  • the pulse frequency may range from several cycles per second up to several hundred cycles depending on conditions at the particular welding operation.
  • Such welding is conducted by using a current having a waveform determined by four factors: a pulse current Ip, a base current I B , a pulse duration Tp, and a base duration T B .
  • a high current will flow for a short time between the electrode and the workpiece to be welded while the average current I M is maintained at a low value.
  • the arc is more stable and highly concentrated, and penetration is considerably deeper and the bead is relatively wider.
  • the shielding gases have included minor proportions of an oxidising gas constituent (O2 or CO2) to improve gas ionisation and thereby facilitate all-position welding of ferrous workpieces.
  • an oxidising gas constituent O2 or CO2
  • the prior art is pointedly assertive that oxidising gases must be avoided due to the interference of oxides formed with the aluminium.
  • a pulsed arc gas metal welding method for welding aluminium-based workpieces by establishing and maintaining an electrical arc between a positive consumable electrode and workpiece joined together at its joint characterised by:
  • the arc be stabilised with certain preferred parameters, comprising: a current having a square waveform, a base or threshold voltage of about 14-18 volts, a peak pulse current Ip of about 280- 310 amps, a peak pulse duration Tp of about 1.4 milliseconds, and a base current duration T B of about 2.8 seconds.
  • a base or threshold current I B that responds to the needs of machine and may be about 90-120 amps; the average current I m may be about 180-250 amps.
  • the shielding gas is preferably comprised of, by volume, 98% welding grade argon and 2% welding grade oxygen. Welding grade means moisture has been removed providing a -40° dew point at a purity of 799%.
  • the consumable electrode is preferably configured to have a diameter of 0.114 - 0.165cm (.045-.065 inches) and may be comprised of 4043 aluminium alloy.
  • the aluminium torque tubes or workpieces are preferably comprised of 6062 aluminium alloy and may have a tube component thickness of about 0.22cm (.086 inches), a yoke neck wall thickness of 0.3cm (.12 inches), and a yoke recess thickness of about 0.22cm (.086 inches).
  • the arc is positioned relative to the joint preferably with a lead angle of about 5-12°, a positioning angle of about 45-50°, and a transverse angle (taken relative to a plane perpendicular to a tangent through the weld joint) of about 10-14°.
  • the process of this invention utilises gas metal arc welding in which an electrical arc is established between a consumable metal electrode and metal workpieces to be joined.
  • gas metal arc welding in which an electrical arc is established between a consumable metal electrode and metal workpieces to be joined.
  • the essential steps of the process herein comprise: (a) defining a stepped square-butt joint to be welded by preforming the ends of aluminium-based torque tubes and assembling such tubes with an interference fit; (b) establishing an electrical direct current arc between a positive consumable aluminium-based electrode and the joint as cathode, the arc being shrouded in a shielding gas consisting by volume of 2-5% oxygen and the remainder an inert gas, the current to the arc being pulsed at a frequency of 40-60 cycles per second while maintaining an average current of at least 180 amps; and (c) while holding the pulsed arc in an out-of-position orientation to the joint, moving the arc along the joint in a single pass at a relative speed of at least 1.52 per minute (60 inches per minute).
  • two workpieces 11 and 17 are brought together along their axes to form an assembly 10 to be welded along a joint line.
  • a welding gun or torch 30 is brought into proximity with the joined portions of the two workpieces and secured by a weld bead thereat.
  • One component or workpiece 11 is an aluminium torque tube having a hollow interior, cylindrical in shape, and has a wall thickness 14 defined by an internal diameter 12 and an external diameter 13.
  • the cylindrical end portion of tube 11 is formed with a flat surface of face 15 extending in a radial direction with respect to the axis 21 of the tube.
  • the internal annular edge of the face 15 is provided with a chamfer 16.
  • the other component is an aluminium-based yoke 17 having a cylindrical end portion 17a of a substantially greater thickness 18 than tube 11.
  • Portion 17a has an annular recess 19 defining a neck 20 extending in an axial direction; the neck is provided with chamfers 25 at its radially inner and outer edges.
  • Recess 19 defines a radially extending shoulder surface 22 to matingly receive the surface 15 of torque tube 11.
  • the cylindrical end portions of the tube 11 and yoke 17 are nested together in an axial direction with surface 23 of the neck 20 fitting within the interior surface 24 of torque tube 11; such fit is preferably an interference fit.
  • neck 20 nested within torque tube 11
  • the end face 15 of the tube 11 is brought into square-butting relationship with the shoulder surface 22 of the yoke portion and the exterior surfaces 26 and 27 are coterminus to provide a flush exterior.
  • the resulting interference fit between the two workpieces provides what is here defined to be a stepped square- butt joint 28.
  • recess 19 creates a step in the end portion 17a and it is a square butt in the sense that the surfaces 15 and 22 meet in flush surface-to-surface contact and are square (perpendicular to the axis of the torque tubes). In no event should there be any root gap between the surfaces 15 and 22 if the benefits of this invention are to be achieved.
  • thickness 13 is desirably 0.22cm (.086 inches)
  • thickness 29 is 0.3cm (.12 inches)
  • thickness 18 is 0.53cm (.21 inches).
  • the process next requires the establishment of an arc 29 between a consumable metal electrode 31, held and advanced by a torch 30, and a joint or workpiece cathode 28.
  • the direct current power supply system 34 has electrode 31 arranged as positive.
  • the direct current supply is in the range of about 15 to 80 amps, with a frequency of about 5000-25,000 cycles per second.
  • Electrode 31 is preferably comprised of an aluminium-based wire composition alloy 4043 and the aluminium-based workpieces are preferably comprised of aluminium alloy 6062. These alloys were selected to match each other in preventing hot shortness cracking. Electrode 31 is fed along the axis of the welding torch 30 during the welding operation to maintain a desired spacing of the electrode tip from the weld profile as the tip is being consumed.
  • a shielding gas mixture is directed to the region of the weld.
  • Inert gases which have been used heretofore for such purposes have been primarily commercially comprised either of argon or of helium without the presence of oxygen when welding aluminium.
  • Argon is the most commonly used because of its availability.
  • Helium has a low density requiring a greater volume to produce the necessary shielding.
  • deeper weld penetration is possible than with argon but has somewhat greater arc instability.
  • helium or argon as the sole constituent for the shielding gas, is not sufficient.
  • a small volume percent of oxygen must be present in order to achieve a high strength weld.
  • the oxygen also stabilises the arc by aiding the flow of electrons to reduce the work function and thus make the wall less subject to contamination.
  • pressurised supplies of oxygen 36 and argon 37 are accurately metered, by meters 38 and 39 respectively, to a mixing valve 40 by way of flows 42 and 41.
  • the mixed shielding gas is then transferred by way of a flow 43 along space 33 surrounding the electrode within the outer torch wall 32, to shroud and envelope not only the arc 29 but joint 28 undergoing welding.
  • Welding is carried out at a relatively low average current output.
  • the power source pulses the current slightly above a spray transfer threshold level and large droplets of metal (slightly smaller than the diameter of the electrode) are forced to cross the arc.
  • the frequency of the these pulses is balanced with the burn- off rate requirements of the wire to assure a steady stream of large droplets without explosive spray.
  • Welding can be done at such relatively low current levels using a large diameter wire 0.114 - 0.165cm (.045-.065 inches) and spatter is virtually eliminated. It is desirable to use a constant voltage type power source system with variations in current to provide high energy outputs for optimum arc starting.
  • the voltage can vary between 23- 26 volts.
  • weding grade dry inert gas commercially referred to as "welding grade" should be used in this procedure. Impure or wet gas will degrade weld quality. Gas impurities break down to hydrogen and oxygen in the welding arc and react with the molten aluminium to form porosity and dross.
  • a current of a rectangular pulse waveform is used.
  • the waveform of this pulse current is determined by four factors: a pulse current I p , a base current I b , a pulse duration T p (such as 1.4 milliseconds), and a base duration T b (such as 2.8 milliseconds).
  • a high current may flow for a short time between the electrode and the workpiece to be welded while the average current I m is maintained at a low value (such as 200-245 amps).
  • the filler metal With direct current, electrode positive power, the filler metal will be transferred across the arc as a stream of fine superheated droplets (i.e., 100 drops per second) when the welding current is pulsed for periods below the spray level and alternative periods slightly above the spray level.
  • Electrode composition must be monitored because low vapour pressure elements will increase risk of spatter.
  • the vapour pressure of magnesium tends to cause disintegration of the droplets as they separate from the electrode tip; this produces small spatter balls that are often thrown clear of the arc and thus should be avoided.
  • the constant voltage, pulsed current avoids problem associated with the prior art (see figure 7).
  • a problem of incomplete fusion can be encountered at lower current densities and argon shield.
  • Transfer of molten electrode metal will be in the form of globules at such low current densities; the globules frequently are larger than the diameter of the electrode and transfer at very low rates, for example, at a rate of about five drops per second.
  • This low current process is sometimes referred to as short circuit welding.
  • the globules also tend to form as much as twice the diameter of the electrode (5-10 drops per second) and eventually break loose and transfer to the workpiece.
  • the weld sometimes exhibits poor fusion.
  • the arc voltage is in the spray transfer range accompanied by constant high currents, transfer of the droplets (i.e., >720 drops per second) will be scattered and lacking in density. If the arc voltage is decreased significantly with adequately high current, shortcircuiting will occur. This type of transfer is not recommended for aluminium because of incomplete fusion.
  • pulsed high current with an argon-O2 shield provides a metal transfer by microglobules or droplets intermediate fine spray droplets and globules (i.e., 100 drops/second).
  • a constant voltage power source is employed along with constant speed electrode drive.
  • the welding background voltage is set allowing the welding background current I B to respond thereto.
  • the arc base voltage is set to a value slightly below that for spray transfer, usually in the range of 14-18 volts.
  • the electrode drive unit will adjust the feed rate to maintain the preset arc voltage.
  • the voltage setting is critical with respect to good fusion with the groove faces. If the voltage is too high, lack of fusion may occur. If the voltage is too low, shortcircuiting will take place between the electrode and the weld pool.
  • the I b current is pulsed to an I p current at 40-60 cycles per second. I m current will be about 230-250 amps and must be at least 200 amps.
  • the relationship between welding current and penetration is plotted using the average penetration obtained when the welding current is set at its low and high levels.
  • the illustration shows that the average welding current needed to remain within the minimum and maximum allowable penetration levels would be between 230-270 amperes. Note from the illustration that the penetration will vary with the torch position and shift the welding current plot.
  • Torch position is the angle between the axis 41 or 42 of the torch electrode and a horizontal plane 40.
  • the torch lead angle is the angle formed between an extension of line of axes 41 or 42 for the torch position angle passing through the weld bead and the new axis, 43 or 44, of the torch electrode aimed to pass through the weld bead also.
  • the torch lead angle is important because it aids in controlling the formation and shape of the weld bead.
  • the torch will be inclined from a perpendicular to a tangent at the point of welding.
  • the torch will be inclined in the direction of rotation to provide a leading torch angle; that is, the arc is pointed in the direction of unwelded base metal as the weld progresses.
  • the effect of welding current on penetration decreases significantly.
  • the torch position is set at 60°, the maximum allowable penetration can no longer be achieved even at the highest current settings.
  • the projected torch position of 54° is the torch position where the current curve must closely simulate the average current/penetration relationship shown.
  • Optimisation studies have shown that with a pulse type welding system, a 4043 electrode wire having a diameter of 0.159cm (.0625 inches) and utilizing a shielding gas of 98% argon and 2% oxygen with a flow rate of 30-40 cfh and a tip-to-work distance of 1.588 - 1.91cm (5/8-3/4 inch), the average welding current can be deployed in the range of about 200 amperes with a base voltage of 16 volts, and the travel speed of the electrode relative to the weld joint can be in the range of 1.52 - 1.65cm per minute (60-65 inches per minute).
  • the effects of contamination and welds can be reduced if the torch has a transverse angle where the torch is inclined 12° to the longitudinal axis of the driveshaft and pointed toward the yoke.
  • Torch position and welding travel speed are important and influential factors in controlling penetration and fusion with (torch position having a slightly higher influence on penetration than travel speed). Increasing either of these factors tends to decrease penetration.
  • the desirable torch lead angles for purposes of the best mode were determined to be about 10° for lead angle, 51° for position angle, and about 12 o for transverse angle.
  • the torch speed relative to the workpiece is of critical significance to this invention.
  • a single pass and a lineal torch speed of at least 60 inches per minute (often as high as 80 inches per minute) the quality of the weld can be improved in keeping with improvement in the productivity of the weld.
  • the fastest weld speeds that have been used to date in the prior art for welding aluminium, regardless of thickness of the workpiece, has been a maximum of 30 inches per minute in production.
  • the weld profile of a completed driveshaft has a weld crown which is symmetrically curved ard a wide fusion width measured at the base of the weld joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Claims (13)

  1. Une méthode de soudage à l'arc pulsé avec fil-électrode sous mélange gazeux pour le soudage des pièces à base d'aluminium par l'établissement et le maintien d'un arc électrique entre une électrode consommable positive et des pièces assemblées au niveau d'un joint, caractérisée par:
    (a) la définition du joint comme étant un joint d'about en gradins;
    (b) la protection de l'arc dans une atmosphère composée de deux à 5 % en volume d'oxygène, le reste étant composé de gaz inertes; et
    (c) le déplacement dudit arc le long dudit joint en un seul passage à une vitesse relative d'au moins 1,52 m par minute (60 pouces par minute).
  2. Une méthode telle que revendiquée dans la revendication 1, dans laquelle les pièces à travailler sont des composantes de tubes de torsion, dans laquelle le joint d'about en gradins (28) est obtenu en préformant les extrémités desdits tubes de torsion et en assemblant lesdites extrémités en les insérant l'une dans l'autre, dans laquelle ladite électrode consommable positive est une électrode à base d'aluminium (31) et dans laquelle le courant de l'arc est pulsé à une fréquence de 40 à 60 périodes par seconde tandis que l'on maintient un courant d'intensité moyenne d'au moins 200 ampères.
  3. Une méthode telle que revendiquée dans la revendication 2, dans laquelle ledit arc a une position par rapport audit joint définie par un angle de positionnement d'une valeur de 45 à 60° et par un angle d'attaque de 5 à 15°.
  4. Une méthode telle que revendiquée dans les revendications 2 ou 3, dans laquelle le transfert de métal se fait sous forme de gouttelettes, chaque gouttelette ne dépassant pas en diamètre le diamètre de l'électrode, les gouttelettes étant transférées à une fréquence d'environ 100 gouttelettes par seconde.
  5. Une méthode telle que revendiquée dans l'une quelconque des revendications 2 à 4, dans laquelle ledit joint d'about est défini comme ayant une composante dotée d'une paroi cylindrique et d'une extrémité plate située dans le plan radial, la seconde composante ayant une paroi cylindrique dont l'épaisseur est plus grande que l'épaisseur de la paroi de ladite première composante, l'extrémité de ladite seconde composante constituant une encoche de façon à former une partie cylindrique s'étendant dans le sens de l'axe à partir d'un épaulement plat s'étendant radialement, l'embouchure cylindrique de la seconde composante ayant un diamètre extérieur uniforme essentiellement égal au diamètre intérieur de la paroi cylindrique de ladite première composante, méthode dans laquelle, lorsque ladite première composante est accouplée à ladite seconde composante, l'extrémité de ladite première composante est aboutée contre ledit épaulement pour constituer une jonction bout à bout et surface à surface, et l'interface de contact du joint présente une section en coupe en forme de L avec un espace intercalaire pratiquement inexistant.
  6. Une méthode telle que revendiquée dans l'une quelconque des revendications 2 à 5, dans laquelle l'intensité de base pour ledit courant pulsé est comprise dans un intervalle allant de 200 à 250 ampères.
  7. Une méthode telle que revendiquée dans l'une quelconque des revendications 2 à 6, dans laquelle le diamètre du fil de ladite électrode est compris dans un intervalle allant de 0,114 à 0,159 cm (0,045 à 0,0625 pouces), et dans laquelle la composition dudit fil d'électrode est un alliage d'aluminium appartenant aux séries 4000.
  8. Une méthode telle que revendiquée dans la revendication 7, dans laquelle ledit fil d'électrode est avancé automatiquement à l'allure de 200 à 235 pouces par minute.
  9. Une méthode telle que revendiquée dans la revendication 2, dans laquelle le courant fourni audit arc se présente sous la forme de signaux carrés, et dans laquelle la source de tension pour ledit courant est généralement constante à l'intérieur d'un intervalle allant de 23 à 26 volts, la tension de base étant comprise dans un intervalle allant de 14 à 18 volts.
  10. Une méthode telle que revendiquée dans la revendication 2, dans laquelle la protection dudit arc par ledit mélange de gaz inertes est réalisée en appliquant un flux continu constitué par un mélange gazeux suivant un débit de l'ordre de 30 à 40 cfh (pied cubique /heure).
  11. Une méthode telle que revendiquée dans la revendication 2, dans laquelle la vitesse du mouvement relatif de l'arc par rapport au joint de soudage augmente pendant les 130 derniers degrés de la rotation en passant d'une vitesse comprise dans un intervalle allant de 1,52 à 1,6 m par minute (60 à 63 pouces par minute) à une vitesse comprise dans un intervalle allant de 1,70 à 1,75 m par minute (60 à 69 pouces par minute), accompagnée par une baisse dans la consommation d'énergie.
  12. Une méthode telle que revendiquée dans la revendication 1, dans laquelle l'arc pulsé est obtenu grâce à un courant constitué par un courant de base sur lequel on surajoute un courant pulsé ayant la forme d'un signal défini par une largeur de pulsation et par un excès d'amplitude par rapport au niveau de l'intensité de base et faisant varier la fréquence de pulsation pour modifier l'intensité moyenne de façon à maintenir constante la forme de la pulsation, et dans laquelle la fréquence est augmentée à mesure que la longueur de l'arc se réduit afin de limiter la taille des globules de métal fondu à une taille inférieure à celle du diamètre de l'électrode.
  13. Une méthode telle que revendiquée dans la revendication 1, dans laquelle ladite protection de l'arc est assurée par le mélange et le mixage de deux flux d'oxygène et d'argon dont les débits sont contrôlés, ce mélange étant effectué immédiatement en aval de l'arc de soudage.
EP90308850A 1989-09-11 1990-08-10 Procédé pour le soudage de pièces d'oeuvre basées sur aluminium Expired - Lifetime EP0422763B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US405252 1989-09-11
US07/405,252 US4912299A (en) 1989-09-11 1989-09-11 Gas metal arc welding of aluminum-based workpieces

Publications (2)

Publication Number Publication Date
EP0422763A1 EP0422763A1 (fr) 1991-04-17
EP0422763B1 true EP0422763B1 (fr) 1995-10-11

Family

ID=23602918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90308850A Expired - Lifetime EP0422763B1 (fr) 1989-09-11 1990-08-10 Procédé pour le soudage de pièces d'oeuvre basées sur aluminium

Country Status (6)

Country Link
US (1) US4912299A (fr)
EP (1) EP0422763B1 (fr)
JP (1) JP2912693B2 (fr)
AU (1) AU624301B2 (fr)
CA (1) CA2019743C (fr)
DE (1) DE69022946T2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811756A (en) * 1995-01-23 1998-09-22 Nippon Light Metal Company, Inc. ARC welding method for aluminum members and welded product excellent in dimensional accuracy and external appearance
CA2180066A1 (fr) * 1995-09-18 1997-03-19 Harold W. Seeds Methode de soudage d'elements d'arbre de transmission en aluminium
US5756967A (en) * 1997-04-09 1998-05-26 The United States Of America As Represented By The Secretary Of Commerce Sensing ARC welding process characteristics for welding process control
FR2769863B1 (fr) * 1997-10-16 1999-12-17 Soudure Autogene Francaise Procede et dispositif de soudage mig avec modulation du courant
US6060682A (en) * 1997-11-13 2000-05-09 Westbroek; Wido Overlapping joint for laser welding of tailored blanks
FR2792236B1 (fr) * 1999-04-15 2001-06-15 Air Liquide Procede de soudage mig de l'aluminium et de ses alliages a regime pulse ou spray non-module
DE19921228C2 (de) * 1999-05-07 2003-10-23 Gkn Loebro Gmbh Antriebswelle
FR2810569B1 (fr) * 2000-06-22 2002-10-25 Air Liquide Procede de soudage mig de l'aluminium et de ses alliages avec gaz de protection du type ar/he/o2
US6933468B2 (en) * 2000-10-10 2005-08-23 Hobart Brothers Company Aluminum metal-core weld wire and method for forming the same
US6515259B1 (en) * 2001-05-29 2003-02-04 Lincoln Global, Inc. Electric arc welder using high frequency pulses
US7071438B2 (en) * 2003-03-07 2006-07-04 Praxair Technology, Inc. Gas composition for arc welding
US6974932B2 (en) * 2003-03-31 2005-12-13 Illinois Tool Works Inc. Method and apparatus for welding
US6828526B1 (en) * 2003-05-15 2004-12-07 Alcoa Inc. Gas metal buried arc welding of lap-penetration joints
US7371994B2 (en) * 2004-08-05 2008-05-13 Alcoa Inc. Buried arc welding of integrally backed square butt joints
US20060121994A1 (en) * 2004-12-03 2006-06-08 Douglass David M Stir welded drive shaft and method of making same
JP5091615B2 (ja) * 2007-10-15 2012-12-05 三菱重工業株式会社 静翼環セグメントの組立方法、静翼環セグメント、結合部材、溶接方法
DE102008044451B4 (de) * 2008-08-19 2012-09-06 Thyssenkrupp Steel Europe Ag Konduktives Bolzenschweißen
MX2012009187A (es) * 2010-02-10 2012-08-31 Hobart Brothers Co Alambre de soldadura de aleacion de aluminio.
FR2980382B1 (fr) * 2011-09-27 2013-10-11 Snecma Procede de soudage et de rechargement de pieces metalliques en aluminium par un procede mig avec courant et fil d'apport pulses
US20130112660A1 (en) * 2011-11-08 2013-05-09 Lincoln Global, Inc. Welding torch with gas flow control
US9073140B2 (en) * 2012-11-09 2015-07-07 Lincoln Global, Inc. System and methods providing modulation schemes to affect heat input to a weld
US10125824B2 (en) 2014-05-05 2018-11-13 Dana Automotive Systems Group, Llc Multi-piece driveshaft assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892072A (en) * 1957-07-08 1959-06-23 Union Carbide Corp Arc welding
US4273988A (en) * 1979-08-23 1981-06-16 Rockwell International Corporation Pulse welding process
JPS5719185A (en) * 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding device
US4507543A (en) * 1980-11-10 1985-03-26 Mitsubishi Denki Kabushiki Kaisha Pulse arc welding method
US4542280A (en) * 1983-10-25 1985-09-17 Dana Corporation Method of welding aluminum driveshaft components
DE3412440A1 (de) * 1984-04-03 1985-10-03 Utp Schweissmaterial Gmbh & Co, 7812 Bad Krozingen Verfahren und vorrichtung zur prozessregelung von schweissvorgaengen
EP0148315A1 (fr) * 1984-07-05 1985-07-17 Jiluan Pan Méthode de régulation de la caractéristique de sortie d'une source de puissance de soudage, appareil de soudage à l'arc et circuit électrique pour cet appareil
US4749841A (en) * 1987-02-02 1988-06-07 Viri Manufacturing, Inc. Pulsed arc welding method, apparatus and shielding gas composition

Also Published As

Publication number Publication date
CA2019743A1 (fr) 1991-03-11
CA2019743C (fr) 1995-05-30
EP0422763A1 (fr) 1991-04-17
JP2912693B2 (ja) 1999-06-28
AU6208590A (en) 1991-03-14
JPH0399780A (ja) 1991-04-24
DE69022946D1 (de) 1995-11-16
US4912299A (en) 1990-03-27
AU624301B2 (en) 1992-06-04
DE69022946T2 (de) 1996-03-21

Similar Documents

Publication Publication Date Title
EP0422763B1 (fr) Procédé pour le soudage de pièces d'oeuvre basées sur aluminium
EP3441174B1 (fr) Système et procédé de fabrication de soudage ou d'additif à deux fils
CA2858104C (fr) Procede et systeme de soudage a l'arc rotatif avec une polarite negative d'electrode a courant continu
EP3446821B1 (fr) Système et procédé de fabrication d'additif ou de soudage de fil double
CA2505731C (fr) Soudage mig-plasma
EP1129808B1 (fr) Méthode et appareil pour le soudage à l'arc avec électrode consommable
US4902873A (en) Method of electric arc welding
EP2726242B1 (fr) Procédé et système de soudage à âme métallique en utilisant une électrode rotative
US2868950A (en) Electric metal-arc process and apparatus
WO1994008747A1 (fr) Inclinaison et enlevement de la bande dure pour tige de forage
EP0691173B1 (fr) Soudage a l'arc de plasma et instrument a cet effet
US3143630A (en) Electric arc welding
EP3865239A1 (fr) Système et procédé de fabrication d'additif ou de soudage de fil double
Choudhary et al. A Study on effect of various process variables in gas metal arc welding
US4100389A (en) Method of high speed gas shielded arc welding
Choudhary et al. A Study on Metal Transfer Mechanism in Gas Metal Arc Welding
JPS6163378A (ja) 非消耗電極用溶接ト−チ
Ken-Hicken Gas-tungsten arc welding
US2876329A (en) Electric arc working
JPH0724935B2 (ja) 水平パルスア−ク溶接方法
Tsuji et al. Robot welding process for medium and heavy plate
WO1994015745A1 (fr) Procede permettant d'enlever une bande dure d'une tige de forage et de recharger celle-ci
DePauw Arc Welding of Aluminum Alloys
JP2020066059A (ja) 二重ワイヤ溶接又は積層造形システム及び方法
Uttrachi Productivity factors in submerged arc line pipe welding applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19910928

17Q First examination report despatched

Effective date: 19931015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69022946

Country of ref document: DE

Date of ref document: 19951116

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000727

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000802

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000818

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST