EP0420725A1 - Kühlverfahren, der angewandte Kühlkreislauf und seine Anwendung in der Lufttrennung - Google Patents
Kühlverfahren, der angewandte Kühlkreislauf und seine Anwendung in der Lufttrennung Download PDFInfo
- Publication number
- EP0420725A1 EP0420725A1 EP90402594A EP90402594A EP0420725A1 EP 0420725 A1 EP0420725 A1 EP 0420725A1 EP 90402594 A EP90402594 A EP 90402594A EP 90402594 A EP90402594 A EP 90402594A EP 0420725 A1 EP0420725 A1 EP 0420725A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- turbine
- pressure turbine
- low pressure
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000004821 distillation Methods 0.000 title claims description 16
- 238000005057 refrigeration Methods 0.000 title claims description 15
- 238000009434 installation Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000003463 adsorbent Substances 0.000 claims description 2
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 238000000746 purification Methods 0.000 claims 2
- 238000007664 blowing Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 27
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 13
- 239000007788 liquid Substances 0.000 abstract description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/004—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
- F25J1/0202—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/34—Details about subcooling of liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
- Y10S62/94—High pressure column
Definitions
- the present invention relates to refrigeration production. It applies in particular to the liquefaction of air gases and to air distillation installations, and it relates firstly to a method of refrigeration production by expansion of a fluid in a first turbine called a high pressure turbine, then expansion of part of the fluid from this turbine in a second turbine called a low pressure turbine.
- the high pressure turbine is the "hot” turbine, that is to say that its inlet temperature is higher than that of the low pressure turbine.
- Such an arrangement has certain drawbacks: - limiting the cooling of all the incoming air to the inlet temperature of the hot turbine is unfavorable to heat exchange; - the "cold” turbine processes a reduced fluid flow, while it produces less cold per unit of fluid flow and it is in the cold zone that the greatest amount of cold is required when it 'acts to liquefy a gas; moreover, it is also in this cold zone that the heat losses are greatest.
- the object of the invention is to provide a method making it possible to improve the heat exchange and to better adapt the refrigeration production to requirements.
- the invention relates to a process of the aforementioned type, characterized in that the inlet temperature of the high pressure turbine is significantly lower than that of the low pressure turbine.
- This refrigeration cycle of the type comprising a circuit for circulating a cycle fluid, a cycle compressor, a first turbine called a high pressure turbine, and a second turbine called a low pressure turbine, the circuit comprising means for passing at least a part of the cycle fluid compressed by the compressor, after cooling to a first temperature in the high pressure turbine, and means for passing at least a part of the fluid from this turbine into the low pressure turbine, is characterized in that the inlet temperature of the high pressure turbine is significantly lower than that of the low pressure turbine.
- the invention also relates to: an air distillation process, of the type in which compressed air is cooled and expanded to a medium pressure in a first turbine called a high pressure turbine, and a part of the air thus expanded is sent to a double column distillation while the rest of the air thus expanded is again expanded to around atmospheric pressure in a second turbine called low pressure turbine, characterized in that the inlet temperature of the high pressure turbine is significantly lower to that of the low pressure turbine; and - an air distillation installation, of the type comprising a double air distillation column and a refrigeration cycle, characterized in that the refrigeration cycle is as defined above, the cycle fluid being the air to be separated , installation comprising means for cooling part of the air entering to the vicinity of its dew point, relaxing it in an expansion valve and sending it to the double column, and means for sending this part of the double column the air from the high pressure turbine.
- the air distillation installation shown in FIG. 1 is intended to produce oxygen and nitrogen in liquid form. It comprises a double distillation column 1 itself comprising a medium pressure column 2 operating at around 6 bar absolute, surmounted by a low pressure column 3 operating slightly above atmospheric pressure.
- the overhead gas (nitrogen) of column 2 is in indirect heat exchange relationship with the tank liquid (oxygen) of column 3 by means of a vaporizer-condenser 4.
- the installation also includes a heat exchange line 5 with countercurrent circulation of the fluids placed in heat exchange relationship, and two turbine-booster assemblies 6 and 7.
- the assembly 6 includes a booster or booster 8 and a "hot" low pressure turbine 9 mounted on the same shaft 10
- the assembly 7 includes a booster or booster 11 and a cold high pressure turbine 12 mounted on the same shaft 13.
- the two boosters 8 and 11 are mounted in series.
- the air to be separated, compressed to 20 bars and purified of water and CO2 is boosted to 30 bars by the assembly of the first booster 8 and the second booster 11, then is cooled to a temperature T1, for example of around - 125 ° C, in passages 14 of the exchange line 5.
- a part, for example about a quarter, of this air continues to cool down to the cold end of the exchange line, in the same passages 14, from which it emerges liquefied, then, via a line 15, is expanded to 6 bars in an expansion valve 16 and is injected into the bottom of the column 2.
- all or part of this liquid can be expanded at low pressure and injected into column 3.
- the rest of the air at 30 bars is exited from the exchange line 5 by a pipe 17 and expanded to 6 bars in the turbine 12, from which it emerges near its dew point.
- This temperature T2 can for example be between ambient temperature and approximately -30 ° C.
- the air thus heated is taken out of the exchange line via a line 20 and expanded to the vicinity of atmospheric pressure in the turbine 9, from which it leaves at a temperature close to T1. It is then reintroduced into the exchange line via a line 21, warmed up to room temperature in passages 22 and discharged from the installation, after having possibly served for the regeneration of the adsorbent used for purifying the incoming air and / or for cooling the air leaving the main compressor (not shown) of the 'installation.
- all or part of the air from the turbine 9 can be cooled to the cold end of the exchange line in passages 23 and then blown into the low pressure column 3, or even be mixed with impure nitrogen , constituting the residual from the double column, being reheated in passages 24 of the exchange line.
- the rich liquid LR oxygen-enriched air collected in the tank of column 2 is sent to column 3, after sub-cooling in a sub-cooler 25 by vaporization of liquid oxygen withdrawn from the tank of column 3, filtered into 25A and returned to column 3, then expanded in an expansion valve 26, and lean liquid LP consisting essentially of nitrogen, drawn off at the top of column 2, is also sent to column 3 after sub-cooling in a sub-cooler 27 then expanded in an expansion valve 28.
- the installation produces on the one hand liquid nitrogen, taken off at the top of column 2 via a pipe 29, sub-cooled in the sub-cooler 27, expanded in the vicinity of atmospheric pressure in an expansion valve 30 and stored in a tank 31, and on the other hand liquid oxygen, taken from the tank of column 3 via a driving 32 and so us-cooled in the sub-cooler 27.
- the latter is cooled by the impure nitrogen drawn off at the head of column 3 via a line 33 and then sent to passages 24 of the exchange line.
- the nitrogen gas formed in the reservoir 31 is returned to the pipe 33 via a pipe 34.
- the lower curve C1 represents the variation in enthalpy of the air during cooling and liquefaction
- the upper curve C2 represents the variation in enthalpy of gases during heating.
- the cold turbine 12 treats a high air flow with inlet and exhaust temperatures which surround the air liquefaction zone 35, that is to say that it produces a lot of cold despite its operating at low temperature, and moreover it produces this cold in the temperature zone where, precisely, a lot of cold is necessary to liquefy the air and where, moreover, the thermal losses are maximum; and - the hot turbine 9 treats a low air flow and can cover, by ensuring a relaxation of 6 bars to 1 bar, the main part of the temperature zone located above the previous one and in which the cooling is ensured by turbines; thus, the turbine 9 produces little cold in an extended temperature zone where, precisely, little cold is necessary, the products in heat exchange relationship being gaseous, and where, moreover, the heat losses are low.
- FIG. 1 It follows from the above considerations that the installation of FIG. 1 leads to a specific reduced liquefaction energy. It is also noted that the medium-pressure air conveyed through line 18 can without drawback be in the vicinity of its dew point, which is favorable for distillation in the double column.
- the cycle nitrogen discharged by the compressor 37 is boosted to 50 bars by all of the boosters 8A and 11A and introduced into passages 14A of the exchange line. Part of this nitrogen continues to cool down to the cold end of the exchange line, is expanded to medium pressure (6 bars) in an expansion valve 16A and separated into two liquid and vapor phases in a separator pot 38.
- the vapor phase is warmed up to room temperature in passages 19A of the exchange line, and the liquid phase is sub-cooled in a sub- cooler 39.
- a part of this sub-cooled liquid is expanded to about 1 bar in an expansion valve 40, vaporized in the sub-cooler 39 against the flow of the liquid, then warmed up to room temperature in passages 24A of the exchange line.
- the rest of the sub-cooled liquid constitutes the production of liquid nitrogen, drawn off via a pipe 41.
- the non-liquefied part of the high pressure nitrogen is removed from the exchange line at a temperature T1, via a line 17A, expanded at medium pressure in the turbine 12A and injected into the separator 38.
- Lines 42 and 43 respectively connect the outlet of passages 19A and 24A to the suction of compressors 37 and 36.
- a line 44 leads to the suction of compressor 36 a flow of nitrogen gas equal to the flow of liquid nitrogen produced by driving 41.
- the order of magnitude of the difference T2 - T1 is at least equal to half of the temperature drop supplied by a turbine.
- the hot part of the exchange line 5 or 5A can optionally be cooled down to approximately -40 ° C. by an auxiliary ammonia or "Freon" refrigeration unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8912517 | 1989-09-25 | ||
FR8912517A FR2652409A1 (fr) | 1989-09-25 | 1989-09-25 | Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0420725A1 true EP0420725A1 (de) | 1991-04-03 |
EP0420725B1 EP0420725B1 (de) | 1993-11-24 |
Family
ID=9385789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90402594A Expired - Lifetime EP0420725B1 (de) | 1989-09-25 | 1990-09-20 | Kühlverfahren, der angewandte Kühlkreislauf und seine Anwendung in der Lufttrennung |
Country Status (8)
Country | Link |
---|---|
US (1) | US5157926A (de) |
EP (1) | EP0420725B1 (de) |
JP (1) | JP3086857B2 (de) |
AU (1) | AU637141B2 (de) |
CA (1) | CA2025918C (de) |
DE (1) | DE69004773T2 (de) |
ES (1) | ES2046742T3 (de) |
FR (1) | FR2652409A1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542539A1 (de) * | 1991-11-14 | 1993-05-19 | The BOC Group plc | Lufttrennung |
FR2688052A1 (fr) * | 1992-03-02 | 1993-09-03 | Grenier Maurice | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. |
EP0612967A1 (de) * | 1993-02-25 | 1994-08-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Anlage zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck |
WO1999024318A1 (en) * | 1997-11-11 | 1999-05-20 | Alliedsignal Inc. | Two spool environmental control system |
DE19913907B4 (de) * | 1998-03-31 | 2007-07-26 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Verfahren und Vorrichtung zur Zerlegung von Luft durch kryogene Destillation |
FR2928446A1 (fr) * | 2008-03-10 | 2009-09-11 | Air Liquide | Procede de modification d'un appareil de separation d'air par distillation cryogenique |
WO2008110734A3 (fr) * | 2007-03-13 | 2011-07-21 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil de production de gaz de l'air sous forme gazeuse et liquide à haute flexibilité par distillation cryogénique |
EP2458311A1 (de) * | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP2466236A1 (de) * | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2909678B2 (ja) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 圧力下のガス状酸素の製造方法及び製造装置 |
JPH05187767A (ja) * | 1992-01-14 | 1993-07-27 | Teisan Kk | 超高純度窒素製造方法及びその装置 |
US5345773A (en) * | 1992-01-14 | 1994-09-13 | Teisan Kabushiki Kaisha | Method and apparatus for the production of ultra-high purity nitrogen |
FR2692664A1 (fr) * | 1992-06-23 | 1993-12-24 | Lair Liquide | Procédé et installation de production d'oxygène gazeux sous pression. |
FR2701553B1 (fr) † | 1993-02-12 | 1995-04-28 | Maurice Grenier | Procédé et installation de production d'oxygène sous pression. |
US5365741A (en) * | 1993-05-13 | 1994-11-22 | Praxair Technology, Inc. | Cryogenic rectification system with liquid oxygen boiler |
FR2706195B1 (fr) * | 1993-06-07 | 1995-07-28 | Air Liquide | Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air. |
US5337570A (en) * | 1993-07-22 | 1994-08-16 | Praxair Technology, Inc. | Cryogenic rectification system for producing lower purity oxygen |
US5379598A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
FR2709538B1 (fr) * | 1993-09-01 | 1995-10-06 | Air Liquide | Procédé et installation de production d'au moins un gaz de l'air sous pression. |
FR2709537B1 (fr) * | 1993-09-01 | 1995-10-13 | Air Liquide | Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression. |
FR2711778B1 (fr) * | 1993-10-26 | 1995-12-08 | Air Liquide | Procédé et installation de production d'oxygène et/ou d'azote sous pression. |
US5398514A (en) * | 1993-12-08 | 1995-03-21 | Praxair Technology, Inc. | Cryogenic rectification system with intermediate temperature turboexpansion |
US5475980A (en) * | 1993-12-30 | 1995-12-19 | L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude | Process and installation for production of high pressure gaseous fluid |
FR2714721B1 (fr) * | 1993-12-31 | 1996-02-16 | Air Liquide | Procédé et installation de liquéfaction d'un gaz. |
US5467602A (en) * | 1994-05-10 | 1995-11-21 | Praxair Technology, Inc. | Air boiling cryogenic rectification system for producing elevated pressure oxygen |
US5467601A (en) * | 1994-05-10 | 1995-11-21 | Praxair Technology, Inc. | Air boiling cryogenic rectification system with lower power requirements |
FR2721383B1 (fr) * | 1994-06-20 | 1996-07-19 | Maurice Grenier | Procédé et installation de production d'oxygène gazeux sous pression. |
FR2726046B1 (fr) * | 1994-10-25 | 1996-12-20 | Air Liquide | Procede et installation de detente et de compression d'au moins un flux gazeux |
US5586440A (en) * | 1994-12-06 | 1996-12-24 | Vincent; David M. | Pneumatic refrigeration system and method |
US5551258A (en) * | 1994-12-15 | 1996-09-03 | The Boc Group Plc | Air separation |
US5634356A (en) * | 1995-11-28 | 1997-06-03 | Air Products And Chemicals, Inc. | Process for introducing a multicomponent liquid feed stream at pressure P2 into a distillation column operating at lower pressure P1 |
FR2744795B1 (fr) * | 1996-02-12 | 1998-06-05 | Grenier Maurice | Procede et installation de production d'oxygene gazeux sous haute pression |
US5802873A (en) * | 1997-05-08 | 1998-09-08 | Praxair Technology, Inc. | Cryogenic rectification system with dual feed air turboexpansion |
US5758515A (en) * | 1997-05-08 | 1998-06-02 | Praxair Technology, Inc. | Cryogenic air separation with warm turbine recycle |
US6070418A (en) * | 1997-12-23 | 2000-06-06 | Alliedsignal Inc. | Single package cascaded turbine environmental control system |
US6006545A (en) * | 1998-08-14 | 1999-12-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes | Liquefier process |
US6925818B1 (en) * | 2003-07-07 | 2005-08-09 | Cryogenic Group, Inc. | Air cycle pre-cooling system for air separation unit |
EP1726900A1 (de) * | 2005-05-20 | 2006-11-29 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
FR2913759B1 (fr) * | 2007-03-13 | 2013-08-16 | Air Liquide | Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique. |
DE102009048456A1 (de) * | 2009-09-21 | 2011-03-31 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
US10295252B2 (en) | 2015-10-27 | 2019-05-21 | Praxair Technology, Inc. | System and method for providing refrigeration to a cryogenic separation unit |
CN112855343B (zh) * | 2019-11-28 | 2022-05-06 | 中国航发商用航空发动机有限责任公司 | 航空动力系统、液氮膨胀组件、航空器及其驱动方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2026570A1 (de) * | 1968-12-19 | 1970-09-18 | Sulzer Ag | |
DE3429420A1 (de) * | 1983-09-14 | 1985-03-28 | Hitachi, Ltd., Tokio/Tokyo | Gasverfluessigungsanlage |
US4522636A (en) * | 1984-02-08 | 1985-06-11 | Kryos Energy Inc. | Pipeline gas pressure reduction with refrigeration generation |
EP0316768A2 (de) * | 1987-11-13 | 1989-05-24 | Linde Aktiengesellschaft | Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3559417A (en) * | 1967-10-12 | 1971-02-02 | Mc Donnell Douglas Corp | Separation of low boiling hydrocarbons and nitrogen by fractionation with product stream heat exchange |
US3605422A (en) * | 1968-02-28 | 1971-09-20 | Air Prod & Chem | Low temperature frocess for the separation of gaseous mixtures |
IL36741A (en) * | 1971-04-30 | 1974-11-29 | Zakon T | Method for the separation of gaseous mixtures with recuperation of mechanical energy and apparatus for carrying out this method |
DE2544340A1 (de) * | 1975-10-03 | 1977-04-14 | Linde Ag | Verfahren zur luftzerlegung |
FR2461906A1 (fr) * | 1979-07-20 | 1981-02-06 | Air Liquide | Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression |
US4357153A (en) * | 1981-03-30 | 1982-11-02 | Erickson Donald C | Internally heat pumped single pressure distillative separations |
US4715873A (en) * | 1986-04-24 | 1987-12-29 | Air Products And Chemicals, Inc. | Liquefied gases using an air recycle liquefier |
-
1989
- 1989-09-25 FR FR8912517A patent/FR2652409A1/fr active Granted
-
1990
- 1990-09-12 JP JP02240192A patent/JP3086857B2/ja not_active Expired - Fee Related
- 1990-09-17 US US07/583,433 patent/US5157926A/en not_active Expired - Lifetime
- 1990-09-20 DE DE90402594T patent/DE69004773T2/de not_active Expired - Fee Related
- 1990-09-20 EP EP90402594A patent/EP0420725B1/de not_active Expired - Lifetime
- 1990-09-20 ES ES199090402594T patent/ES2046742T3/es not_active Expired - Lifetime
- 1990-09-21 AU AU63059/90A patent/AU637141B2/en not_active Ceased
- 1990-09-21 CA CA002025918A patent/CA2025918C/fr not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2026570A1 (de) * | 1968-12-19 | 1970-09-18 | Sulzer Ag | |
DE3429420A1 (de) * | 1983-09-14 | 1985-03-28 | Hitachi, Ltd., Tokio/Tokyo | Gasverfluessigungsanlage |
US4522636A (en) * | 1984-02-08 | 1985-06-11 | Kryos Energy Inc. | Pipeline gas pressure reduction with refrigeration generation |
EP0316768A2 (de) * | 1987-11-13 | 1989-05-24 | Linde Aktiengesellschaft | Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542539A1 (de) * | 1991-11-14 | 1993-05-19 | The BOC Group plc | Lufttrennung |
US5287704A (en) * | 1991-11-14 | 1994-02-22 | The Boc Group, Plc | Air separation |
FR2688052A1 (fr) * | 1992-03-02 | 1993-09-03 | Grenier Maurice | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. |
EP0612967A1 (de) * | 1993-02-25 | 1994-08-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Anlage zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck |
FR2702040A1 (fr) * | 1993-02-25 | 1994-09-02 | Air Liquide | Procédé et installation de production d'oxygène et/ou d'azote sous pression. |
US5515688A (en) * | 1993-02-25 | 1996-05-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and installation for the production of oxygen and/or nitrogen under pressure |
WO1999024318A1 (en) * | 1997-11-11 | 1999-05-20 | Alliedsignal Inc. | Two spool environmental control system |
DE19913907B4 (de) * | 1998-03-31 | 2007-07-26 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Verfahren und Vorrichtung zur Zerlegung von Luft durch kryogene Destillation |
WO2008110734A3 (fr) * | 2007-03-13 | 2011-07-21 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil de production de gaz de l'air sous forme gazeuse et liquide à haute flexibilité par distillation cryogénique |
US8997520B2 (en) | 2007-03-13 | 2015-04-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and device for producing air gases in a gaseous and liquid form with a high flexibility and by cryogenic distillation |
FR2928446A1 (fr) * | 2008-03-10 | 2009-09-11 | Air Liquide | Procede de modification d'un appareil de separation d'air par distillation cryogenique |
WO2009112744A2 (fr) * | 2008-03-10 | 2009-09-17 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil de separation d'air par distillation cryogenique |
WO2009112744A3 (fr) * | 2008-03-10 | 2009-11-12 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil de separation d'air par distillation cryogenique |
EP2458311A1 (de) * | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP2466236A1 (de) * | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft |
Also Published As
Publication number | Publication date |
---|---|
EP0420725B1 (de) | 1993-11-24 |
AU637141B2 (en) | 1993-05-20 |
ES2046742T3 (es) | 1994-02-01 |
JP3086857B2 (ja) | 2000-09-11 |
CA2025918A1 (fr) | 1991-03-26 |
FR2652409A1 (fr) | 1991-03-29 |
FR2652409B1 (de) | 1994-12-23 |
US5157926A (en) | 1992-10-27 |
JPH03170784A (ja) | 1991-07-24 |
AU6305990A (en) | 1991-03-28 |
DE69004773T2 (de) | 1994-03-17 |
CA2025918C (fr) | 2001-05-29 |
DE69004773D1 (de) | 1994-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0420725B1 (de) | Kühlverfahren, der angewandte Kühlkreislauf und seine Anwendung in der Lufttrennung | |
EP0689019B1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Drucksauerstoff | |
EP0628778B2 (de) | Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage | |
EP0576314B1 (de) | Verfahren und Apparat zur Herstelling von gasförmigem Sauerstoff unter Druck | |
CA2146736C (fr) | Procede et installation de production de monoxyde de carbone | |
EP0789208B1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff unter hohem Druck | |
EP0605262B1 (de) | Druckgassauerstoffherstellungsverfahren und Apparat | |
FR2895068A1 (fr) | Procede de separation d'air par distillation cryogenique | |
EP0606027B1 (de) | Lufttrennungsverfahren und Anlage zur Herstellung von wenigstens einem Druckgasprodukt und von wenigstens einer Flüssigkeit | |
EP0618415B1 (de) | Verfahren und Vorrichtung zur Herstellung von gasförmigem Sauerstoff und/oder gasförmigem Stickstoff unter Druck durch Zerlegung von Luft | |
EP0611936B1 (de) | Verfahren und Anlage zur Herstellung von ultrareinem Stickstoff durch Luftdestillation | |
CA2154984A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression a debit variable | |
EP1446620B1 (de) | Verfahren und vorrichtung zur heliumerzeugung | |
EP1189003B1 (de) | Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation | |
EP0611218B2 (de) | Verfahren und Anlage zur Herstellung von Drucksauerstoff | |
EP0641982B1 (de) | Verfahren und Einrichtung zur Herstellung von wenigstens einem durch Zerlegung von Luft gewonnenem Gas unter Druck | |
EP0612967B1 (de) | Verfahren zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck | |
FR2837564A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur | |
FR2971044A1 (fr) | Procede et appareil de separation d'un gaz contenant du dioxyde de carbone pour produire un debit liquide riche en dioxyde de carbone | |
EP0869322A1 (de) | Verfahren und Anlage zur Lufttrennung durch Tieftemperaturdestillation | |
FR2705141A1 (fr) | Procédé et installation cryogénique de production d'argon. | |
FR2862004A1 (fr) | Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants | |
FR3128776A3 (fr) | Procédé et appareil de séparation d’air par distillation cryogénique | |
FR3119883A1 (fr) | Procédé et appareil de liquéfaction d’hydrogène | |
FR2685460A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression par distillation d'air. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900924 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE DK ES FR GB IT LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19920210 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK ES FR GB IT LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19931124 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931130 |
|
REF | Corresponds to: |
Ref document number: 69004773 Country of ref document: DE Date of ref document: 19940105 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2046742 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940930 |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 90402594.7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960814 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960830 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980401 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980401 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90402594.7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010913 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020921 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050815 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050817 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050818 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060930 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060920 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070920 |