EP0413337B1 - Véhicule ferroviaire avec moteur électrique à entraînement direct - Google Patents
Véhicule ferroviaire avec moteur électrique à entraînement direct Download PDFInfo
- Publication number
- EP0413337B1 EP0413337B1 EP90115713A EP90115713A EP0413337B1 EP 0413337 B1 EP0413337 B1 EP 0413337B1 EP 90115713 A EP90115713 A EP 90115713A EP 90115713 A EP90115713 A EP 90115713A EP 0413337 B1 EP0413337 B1 EP 0413337B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wheel
- rotor
- electric motor
- drive according
- driven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C9/00—Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
- B61C9/38—Transmission systems in or for locomotives or motor railcars with electric motor propulsion
- B61C9/48—Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F3/00—Types of bogies
- B61F3/02—Types of bogies with more than one axle
- B61F3/04—Types of bogies with more than one axle with driven axles or wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F3/00—Types of bogies
- B61F3/16—Types of bogies with a separate axle for each wheel
Definitions
- the invention relates to an electromotive direct drive for vehicle wheels.
- Such a direct drive is known from DE-A-38 17 537.
- Direct drive usually means, and in the present application, those drives in which the electric motor is spatially closely assigned to a wheel to be driven without the interposition of a transmission.
- the torque transmission connection of the rotor of the electric motor to the wheel to be driven is made either to the wheel to be driven itself or to an axle shaft on which the wheel to be driven sits in a rotationally fixed manner.
- Electromotive direct drives are sometimes also referred to as axis motors.
- Equipping vehicles in particular rail vehicles, with at least one axle motor, on the one hand, appears to be an attractive option because transmissions, right-angled deflections of the torque flow or the like can be saved, so that one can hope to achieve cost advantages and space advantages.
- axis motors assuming the same torque, are larger and heavier due to the omission of a gear.
- Asynchronous motors have been installed as axis motors for experimental purposes. These attempts have not led to results that can be used from an economic point of view because the achievable engine torque was too low or the engines were too large in terms of mass and volume.
- the invention is based on the object of making a comparatively light and space-saving direct drive available which, however, delivers a comparatively high torque, measured in terms of the installation volume required and the weight.
- An electronically commutated electric motor with external rotor and without housing is provided.
- the essentially cylindrical air gap surface is at an optimally large diameter.
- the proposed motor is optimally used due to the construction with permanent magnets and due to the electronic commutation in terms of volume, mass and processable current. All this together leads to an optimally high, deliverable torque - measured in terms of volume and mass.
- the rotor In order to increase the compactness or the torque of the electric motor, the rotor is designed from the point of view of the flux concentration, the magnetic flux density being greater at the pole faces of the rotor on the air gap than at the end faces of the permanent magnets.
- Electronically commutated electric motors are known per se, so that no further details need to be described in this regard. Electronically commutated electric motors can best be compared to DC motors in terms of their design system.
- a rotation position sensor often a Hall sensor, detects the current rotation position of the rotor and, based on signals from the rotation position sensor, electrical voltage is applied to the stator windings or stator coils with the correct time and sign.
- the direct drive according to the invention is particularly preferred for high-speed rail vehicles, because high wheel speeds occur at these, that is to say high drive powers are available for a given torque of the drive motor, and because the aspect of a large starting acceleration capacity is not in the foreground.
- High-speed rail vehicles are considered to have a top speed in the range of 200 to 300 km / h, or even higher.
- the rotor is preferably constructed with highly coercive permanent magnets or permanent magnets with a high energy product.
- Permanent magnets of this type are known, in particular from rare earth cobalt material or iron neodymium material.
- the rare earth material component can consist of one or more rare earth elements, in particular samarium.
- Highly coercive permanent magnets or permanent magnets with a high energy product deliver a high permanent magnet excitation, allow a high motor EMF with comparatively low inductance, allow a particularly compact structure of the rotor, and allow the con Structure of the engine with a comparatively large, radial air gap width, which is favorable for reasons that will be discussed below.
- the connecting device can be a type of flexible coupling.
- the connecting device is preferably resilient and / or damping. The main advantage of the named connecting device is that the shock maxima of the wheel are kept away from the rotor. This applies even if the rotor is supported by means of the bearing of the wheel or the axle shaft of the wheel.
- the rotor is supported by its own bearing, which enables primary wheel suspension without primary rotor suspension and stronger decoupling of the wheel joints from the rotor.
- the variant is possible that the entire electric motor, i.e. stator and rotor, is supported and / or damped on the vehicle, for example the wheels, their axles or axle shafts and their electric motors making up the unsprung vehicle masses.
- the wheel to be driven is connected to the vehicle with the interposition of a primary suspension arranged as early as possible in the shock transmission chain.
- the "earliest" or closest to the wheel of the primary suspension is a primary suspension between the actual wheel and its stationary wheel axle or its rotating axle shaft.
- the “two earliest” or second closest location of the primary suspension to the wheel is between the stationary wheel axle or the co-rotating wheel axle shaft and the vehicle. It is pointed out that in both cases the rotor of the electric motor can either belong to the mass unsprung by the primary suspension (wheel or wheel axle or axle shaft) or to the mass sprung by the primary suspension in the shock transmission chain behind the primary suspension.
- a brake disc can be rigidly assigned to the wheel to be driven on at least one axial side. On the axial side opposite the electric motor, there is normally enough space for such a brake disc.
- a brake disk rigidly assigned to the wheel can be provided between the electric motor and the wheel to be driven.
- rigidly assign a brake disc to the rotor of the electric motor. This often offers spatial advantages.
- the brake disc can also be assigned to the sprung mass which is arranged downstream of the primary suspension.
- the electric motor provided according to the invention - measured by its torque - is so small that it can often be arranged on the outside of the wheel to be driven, in particular still within the vehicle limit prescribed for railway vehicles.
- Fig. 1 shows a part of a rail vehicle 2, for example a rail car for passenger transportation, wherein a rail wheel 4 to be driven on a vehicle side, its axle motor 6, a part of the chassis 8 of the vehicle 2 supporting the wheel 4 and the motor 6, and a lower part of the vehicle body or the vehicle body 10 for receiving the payload or the persons to be transported.
- the chassis 8 can, for example, be one of two bogies on which the vehicle body 10 rests. But it can also be a chassis 8, which is non-rotatably connected to the vehicle body 10.
- a suspension (not shown) and possibly damping can be provided between the wheel 4 and the chassis 8 and / or between the chassis 8 and the vehicle body 10.
- the wheel 4 is rigidly attached to an axle shaft 12.
- a brake disk 14 is rigidly attached axially to the left and right of the wheel on the axle shaft 12.
- the axle shaft 12 is rotatably mounted in the chassis 8 by means of roller bearings 16.
- the axle shaft 12 is elongated and provided with a flange-like end region 18 of larger diameter.
- essentially cup-shaped outer rotor 20 of the axle motor 8 Connected to this end region 18 in FIG. 1 to the right, essentially cup-shaped outer rotor 20 of the axle motor 8, with the interposition of a resilient, damping connecting ring 22, for example made of suitable rubber or plastic.
- the connecting ring 22 sits on the axial side of the end region 18 facing the wheel, and the end wall of the rotor 20 projects radially inwards there the connecting ring 22.
- the axle motor 6 is located in FIG. 1 to the right of the wheel, that is to say on the outside of the vehicle, from the wheel 4.
- the chassis 8 in FIG. 1 has an extension 24 projecting downward to the right of the rotor 20.
- a circular mounting flange 26 is attached on the inside of this extension 24, a circular mounting flange 26 is attached.
- the fastening flange 26 carries an inwardly projecting, strong, tubular support 28.
- Stator poles 30 made of ferromagnetic material with windings 32 are attached in an annular distribution to the outer circumference of the support 28.
- the rotor 20 has permanent magnets distributed in a ring, which are not shown in FIG. 1 for the sake of clarity.
- the pole pitch of the permanent magnets is matched to the pole pitch of the stator poles 30, so that an electric motor with permanent magnetic excitation is formed by the stator constructed with the stator poles 30 and the permanent magnets attached to the rotor 20.
- the permanent magnets are arranged with alternating polarity along the rotor circumference.
- a support column 34 can be seen above the wheel 4.
- the actuators of the motor 6 are controlled by means of a rotational position sensor (not shown) of the motor 6 in such a way that they supply electrical current to the individual windings 32 of the stator poles 30 with the correct time and sign.
- a channel 38 in which power cables and cooling lines run, leads from the installation space 36 to the extension 24 and through the extension 24 into the interior of the support 28.
- Line 39 indicates the outer contour of the vehicle, which is 2950 mm wide for the German Federal Railroad, for example.
- Line 40 indicates the narrowest permissible guideway limitation, i.e. the limit up to which outer guideway parts, such as tunnel walls, masts and the like, may be arranged as close as possible to the rails of the guideway.
- vehicle limitation 11 of the railway operating regulations of the Deutsche Bundesbahn.
- the axle motor 6 is located within the vehicle contour 39 and within the boundary 40.
- the so-called Lemniscate handlebar for setting the drive is indicated at 42.
- the drawing must be supplemented to the left in a mirror-image manner, supplemented by a central vehicle part and supplemented by an upper vehicle area, so that the entire vehicle 2 can be seen in cross section.
- a cooling air outlet is indicated at 44.
- the vehicle body 10 as a low-floor vehicle, extends deeper than the upper area of the circumference of the wheel 4.
- the corresponding wheel 4 on the other side of the vehicle is also provided with an axle motor 6.
- the rotor 20 could also be connected directly to the wheel 4 or the right brake disk 14, for example by bolts.
- the wheel 4 could be rotatably mounted on the axle 12.
- the right support of the axle 12 would then have to take place, for example, on the extension 24 of the chassis 8.
- the resilient and resilient connecting ring 22 leads to impacts, in particular impact maxima, being passed on to the rotor 20 in a reduced manner.
- FIG. 3 shows a variant in which the rotor 20 is mounted in the support 28.
- a resilient and damping connecting ring 22 is in turn arranged between the rotor 20 and the end region 18 of the axle shaft 12.
- impacts of the wheel 4 come to the rotor 20 in a significantly reduced manner.
- the rotor 20 has its own bearing 17, for example according to FIG. 3, it can be connected directly to the wheel 4 or the right brake disk 14, for example in a manner not shown, by means of suitable connecting elements which allow small relative movements and, if desired, have a resilient and / or damping effect be connected.
- the rotor 20 can be rotatably mounted on the right on the extension 24.
- the end wall 48 of the rotor 20 can be enlarged radially in a manner not shown in order to form a braking area there.
- the permanent magnets 50 shown have end faces 52 on which the magnetic flux passes into the subsequent ferromagnetic material 54 and which - roughly speaking - point in the circumferential direction of the rotor 20.
- Each pole face 56 has a smaller magnetic flux exit area than the sum of the magnetic flux transition areas 52 of the two subsequent permanent magnets 50, measured in each case in a radial plane, so that there is a flux concentration effect.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Power Steering Mechanism (AREA)
- Automatic Cycles, And Cycles In General (AREA)
Claims (11)
caractérisé en ce que le rotor du moteur électrique (6) à commutation électronique comprend des aimants permanents (50) répartis sous une forme annulaire, et est constitué de façon à obtenir une concentration du flux, la densité du flux magnétique sur les surfaces polaires (56) du rotor (20) qui sont situées du côté de l'entrefer étant plus élevées que sur les surfaces d'extrémité (52) des aimants permanents (50).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3927311 | 1989-08-18 | ||
DE3927311A DE3927311A1 (de) | 1989-08-18 | 1989-08-18 | Elektromotorischer schienenfahrzeug-direktantrieb |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0413337A1 EP0413337A1 (fr) | 1991-02-20 |
EP0413337B1 true EP0413337B1 (fr) | 1994-06-08 |
EP0413337B2 EP0413337B2 (fr) | 2000-02-09 |
Family
ID=6387376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90115713A Expired - Lifetime EP0413337B2 (fr) | 1989-08-18 | 1990-08-16 | Véhicule ferroviaire avec moteur électrique à entraínement direct |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0413337B2 (fr) |
AT (1) | ATE106807T1 (fr) |
DE (2) | DE3927311A1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT219394Z2 (it) * | 1990-03-13 | 1993-02-26 | Carrello motorizzato a ruote indipendenti per veicoli a pianale ribassato | |
DE4234831C1 (de) * | 1992-10-15 | 1994-01-05 | Siemens Ag | Antrieb für ein Fahrzeugrad |
DE59301379D1 (de) * | 1992-04-22 | 1996-02-22 | Sgp Verkehrstechnik | Fahrwerk für Schienenfahrzeuge, insbesondere Niederflurwagen |
DE4223633A1 (de) * | 1992-07-17 | 1994-01-20 | Siemens Ag | Antriebsmotor |
AT401761B (de) * | 1992-08-05 | 1996-11-25 | Abb Daimler Benz Transp | Getriebeloser radnabenmotor für ein rad eines schienenfahrzeuges |
DE4302042C2 (de) * | 1993-01-26 | 2000-06-08 | Hs Tech & Design | Elektromotor |
DE4303069C1 (de) * | 1993-02-03 | 1994-03-17 | Siemens Ag | Elektromotorischer Direktantrieb |
DE19522382C1 (de) * | 1995-06-23 | 1996-12-19 | Voith Gmbh J M | Transversalflußmaschine zum Einsatz in einem Direktantrieb für Fahrzeuge, insbesondere Bahnantrieb |
DE19600420C1 (de) * | 1996-01-08 | 1997-02-27 | Siemens Ag | Einzelradantrieb für ein elektrisch angetriebenes Fahrzeug |
DE29601339U1 (de) * | 1996-01-26 | 1996-04-11 | Böttcher, Manfred, 22397 Hamburg | Laufradblock |
DE19653251A1 (de) * | 1996-12-20 | 1998-06-25 | Juergen Dr Wolf | Luftgummireifen-gefedertes Schienenrad |
DE19704392A1 (de) * | 1997-02-06 | 1998-08-13 | Voith Turbo Kg | Verwendung einer Transversalflußmaschine zum Einsatz in einem Einzelradantrieb für Fahrzeuge und Einzelradantrieb für Fahrzeuge |
AT405390B (de) | 1997-03-19 | 1999-07-26 | Abb Daimler Benz Transp | Elektromotorischer radnabenantrieb für ein fahrzeugrad |
DE19714789B4 (de) * | 1997-04-10 | 2010-08-12 | Dwa Deutsche Waggonbau Gmbh | Antriebsgestaltung in Triebfahrzeugen für Niederflurfahrzeuge, insbesondere für Straßenbahnen im innerstädtischen Nahverkehr |
DE19723781A1 (de) * | 1997-06-06 | 1998-12-10 | Abb Daimler Benz Transp | Stromrichtergespeistes Antriebssystem |
DE10047911A1 (de) * | 2000-09-27 | 2002-04-18 | Siemens Ag | Antrieb eines Radsatzes |
JP3879413B2 (ja) | 2001-02-28 | 2007-02-14 | 株式会社日立製作所 | 搬送システム及び回転電機 |
JP4311139B2 (ja) * | 2003-09-12 | 2009-08-12 | トヨタ自動車株式会社 | 車輪構造 |
EP1884433A1 (fr) * | 2006-08-03 | 2008-02-06 | ANSALDOBREDA S.p.A. | Bogie motorisé à roues indépendantes pour un tramway à plancher surbaissé |
CZ300135B6 (cs) * | 2007-05-29 | 2009-02-18 | ŠKODA TRANSPORTATION s. r. o. | Pohon kola vozidla, zejména kolejového |
DE102009051773B4 (de) * | 2009-11-04 | 2015-09-03 | Michael Reutter | Neugestaltung einer Eisenbahnachse ohne Antrieb |
HUP1100344A2 (en) | 2011-06-28 | 2012-12-28 | Gyula Istvan Gyoeker | Wheel body motor for railway |
DE102013000852B4 (de) * | 2013-01-21 | 2023-02-23 | Sew-Eurodrive Gmbh & Co Kg | Schienentransportsystem und Verfahren zum Betreiben eines Schienentransportsystems |
DE102013014781A1 (de) | 2013-09-09 | 2015-03-12 | PINTSCH TIEFENBACH GmbH | Schienengebundener Förderwagen |
CZ2015583A3 (cs) * | 2015-08-28 | 2017-06-28 | Ĺ KODA TRANSPORTATION a.s. | Pohon otočného podvozku, zejména pro nízkopodlažní kolejové vozidlo |
CN105083297A (zh) * | 2015-09-14 | 2015-11-25 | 南车资阳机车有限公司 | 采用直接驱动电机的超窄轨铁路机车车辆轮对 |
AT525479A1 (de) | 2021-09-30 | 2023-04-15 | Siemens Mobility Austria Gmbh | Fahrwerk für ein Schienenfahrzeug und Schienenfahrzeug |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE319658C (de) * | 1920-03-27 | Reinhold Preuss | In einem Fahrzeugrade eingebauter Elektromotor | |
DE213482C (fr) * | ||||
DE130694C (fr) * | ||||
DE189934C (fr) * | 1906-10-25 | |||
GB1135764A (en) * | 1965-02-25 | 1968-12-04 | Westinghouse Brake & Signal | A dynamo electric machine for drive and/or braking purposes |
GB1231782A (fr) * | 1967-05-08 | 1971-05-12 | ||
US3479967A (en) * | 1967-08-25 | 1969-11-25 | George Crompton | Electric locomotive |
FR2068109A5 (fr) * | 1969-11-28 | 1971-08-20 | Guimbal Jean | |
DE2316932A1 (de) * | 1973-04-04 | 1974-10-17 | Hurth Masch Zahnrad Carl | Einrichtung fuer ein antriebsrad von kraftfahrzeugen |
DE2357451C2 (de) * | 1973-11-17 | 1981-09-24 | Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München | Radnabenantrieb mit Bremse |
BE809690A (fr) * | 1974-01-14 | 1974-07-15 | Acec | Bogie a roues elastiques a grande vitesse. |
ZA754983B (en) * | 1974-08-12 | 1976-07-28 | British Railways Board | Improvements relating to vehicle drive arrangenents using electric motors |
DE3245033C2 (de) * | 1981-12-05 | 2003-05-28 | Papst Licensing Gmbh & Co Kg | Kollektorloser Gleichstrommotor |
DE3345260C2 (de) * | 1983-12-14 | 1996-04-11 | Magnet Motor Gmbh | Elektrisches Schienenfahrzeug |
DE3817537A1 (de) * | 1988-05-24 | 1988-12-22 | Josef Klaus | Antrieb fuer ein fahrzeug |
-
1989
- 1989-08-18 DE DE3927311A patent/DE3927311A1/de not_active Withdrawn
-
1990
- 1990-08-16 AT AT90115713T patent/ATE106807T1/de not_active IP Right Cessation
- 1990-08-16 EP EP90115713A patent/EP0413337B2/fr not_active Expired - Lifetime
- 1990-08-16 DE DE59006009T patent/DE59006009D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE59006009D1 (de) | 1994-07-14 |
EP0413337A1 (fr) | 1991-02-20 |
DE3927311A1 (de) | 1991-02-21 |
ATE106807T1 (de) | 1994-06-15 |
EP0413337B2 (fr) | 2000-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0413337B1 (fr) | Véhicule ferroviaire avec moteur électrique à entraînement direct | |
EP0706461B1 (fr) | Unite d'entrainement | |
DE60127462T2 (de) | Federbein, versehen mit Antriebsmitteln | |
EP2199137B1 (fr) | Agencement de moteur latéral à la roue | |
DE4421425C1 (de) | Elektrisches Antriebsaggregat für ein Fahrzeug | |
DE69116160T2 (de) | Ein elektrischer leistungsantrieb für fahrzeuge | |
WO2011042487A2 (fr) | Système convoyeur à frein électromagnétique | |
EP1804363A1 (fr) | Génératrice de l'essieu pour wagon de train et analogue | |
DE102004013994A1 (de) | Magnetschwebebahn mit einer Wirbelstrombremse | |
DE19920092A1 (de) | Lenkeinrichtung für ein Kraftfahrzeug | |
DE102017216687A1 (de) | Antriebsanordnung eines elektrischen Antriebs mit einem induktiv mit Energie versorgbaren Antriebsmotor, Radträgeranordnung und Kraftfahrzeug | |
EP0579084B1 (fr) | Moteur de propulsion | |
WO2018234304A1 (fr) | Ensemble moteur linéaire à deux chaînes cinématiques | |
EP0582563B1 (fr) | Propulsion directe pour une voue de véhicule de chemin de fer | |
DE10120742B4 (de) | Radantrieb | |
EP0760305B1 (fr) | Propulsion de roue indépendante pour véhicule à propulsion électrique | |
DE69916517T2 (de) | Radvorrichtung | |
DE19860618C1 (de) | Elektrische Antriebsmaschinenbaueinheit | |
EP1477380B1 (fr) | Moteur d'entraînement électique à arbre creux | |
EP0814993A1 (fr) | Vehicule electrique, notamment vehicule sur rails a entrainement electrique, par exemple tramway a plate-forme basse | |
DE102011103833B4 (de) | Schienenfahrzeug mit einem Bremssystem | |
EP0308396B1 (fr) | Frein a courants de foucault pour vehicules a moteur | |
EP4155105A1 (fr) | Essieu électrique | |
WO2016184566A1 (fr) | Entraînement d'essuie-glace d'un dispositif d'essuie-glace de véhicule automobile | |
DE102022114472A1 (de) | Axialflussmaschine, elektrischer Achsantriebsstrang und Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19910819 |
|
17Q | First examination report despatched |
Effective date: 19930429 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19940608 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940608 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19940608 Ref country code: BE Effective date: 19940608 Ref country code: DK Effective date: 19940608 Ref country code: NL Effective date: 19940608 |
|
REF | Corresponds to: |
Ref document number: 106807 Country of ref document: AT Date of ref document: 19940615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59006009 Country of ref document: DE Date of ref document: 19940714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19940816 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940831 Ref country code: CH Effective date: 19940831 Ref country code: LI Effective date: 19940831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940908 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AG Effective date: 19950303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000209 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020724 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020819 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030816 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051025 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070301 |