EP0412402B1 - Procédé de commande pour engrais de terrassement - Google Patents

Procédé de commande pour engrais de terrassement Download PDF

Info

Publication number
EP0412402B1
EP0412402B1 EP90114615A EP90114615A EP0412402B1 EP 0412402 B1 EP0412402 B1 EP 0412402B1 EP 90114615 A EP90114615 A EP 90114615A EP 90114615 A EP90114615 A EP 90114615A EP 0412402 B1 EP0412402 B1 EP 0412402B1
Authority
EP
European Patent Office
Prior art keywords
control process
process according
light beam
course
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114615A
Other languages
German (de)
English (en)
Other versions
EP0412402A1 (fr
Inventor
Edmund Heimes
Hans-Jörg Nüsslin
Franz-Josef Hartlief
Franz Arno Fassbender
Ralf Eckholdt
Dieter Dr. Hennig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinbraun AG
Siemens AG
Original Assignee
Rheinbraun AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinbraun AG, Siemens AG filed Critical Rheinbraun AG
Priority to AT90114615T priority Critical patent/ATE87989T1/de
Publication of EP0412402A1 publication Critical patent/EP0412402A1/fr
Application granted granted Critical
Publication of EP0412402B1 publication Critical patent/EP0412402B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels

Definitions

  • the invention relates to a control method for opencast mining equipment, such as bucket wheel excavators, mixed bed sensors, etc., in which the previously determined morphology of a deposit or the stratification of stored material serves as a guide variable for the movements of the conveyor, using a light beam; (see literature "Braunkohle” 41 (1989), No. 5, May; pages 148-150).
  • the bucket wheel or the container of the conveyor must be controlled according to the respective conveying task.
  • the task is to either clear the overburden or between the coal or to extract the coal that is present in seams.
  • the coal seams are generally not horizontal and do not have a straight surface. Rather, they are e.g. Sloping, curved or even folded.
  • the bucket wheel of a bucket wheel excavator must now exactly follow the course of the seam. So far, this has been attempted by operating personnel, who are guided by the visual impression of the production site and the result of drilling that has explored the course of the seam.
  • an automation of the mining process of deposits, mixed beds, etc. can be achieved.
  • the visual, subjective recording of the course of the seam should be replaced by an objective measurement.
  • the object is achieved in that the course of the material to be conveyed is continuously scanned by scanning and that the values determined by the scanning serve as a control variable for the movements of the conveyor.
  • Laser scanning results in an advantageous increase in scanning security, since a laser beam is only slightly influenced by air layers, dust etc. due to its high energy density, particularly in the pulsed state. Even under difficult conditions, a pulsed laser enables the conveyor location to be scanned perfectly.
  • Suitable lasers are known in principle, e.g. from the volume "Lasertechnik: e. Einf.”, Wegig Verlag, Heidelberg, 1982, pp. 368 ff. However, the use of lasers for regulating the work of paddle wheel devices has not yet been provided.
  • the scanning is carried out by scanning.
  • Scanning by scanning with laser light advantageously allows the course of the changes in the reflection properties of the scanned material to be tracked reliably and, on the basis of calibration results, to draw a dividing line between the material that is worth degrading and the material that is not degradable according to predetermined criteria. This is particularly important for layers in which the reflection properties, in particular the reflection spectra of the different materials differ only slightly from one another and flow smoothly into one another.
  • the prerequisites for an optimized and automated tracking of the paddle wheel of the conveying device according to the course of the seams or other layers are created here by the invention.
  • the conveyor receiving line is first moved manually.
  • This traversing can serve as an actual value in the form of a stored learning step, which is improved with the aid of the target value determined by the scanning.
  • This enables the desired optimization and automation of the work of paddle wheel conveyors.
  • the setpoints are advantageously corrected by a vertical sensor, which continuously gives the scanning device the vertical and thus also the horizontal direction.
  • an improvement in the layer recognition is possible by averaging over a larger, in particular horizontal, range. This is particularly important for deposits where there is a significant proportion of clayey constituents in the coal.
  • the differences in reflection compared to a clay top layer are only slight; by averaging the area in front of the paddle wheel, the calculated determination of the seam course can be achieved with good accuracy even in such cases.
  • the determined stratification course values are advantageously monitored by a status check of the material being conveyed. This is particularly easy if a laser device is also used for this, e.g. controls the flow of material on the belt leading away from the paddle wheel. This control is insensitive to different temperatures, to whirled up dust and the other environmental influences.
  • UV scanning light beam is particularly advantageous when there are particularly types of coal containing sulfur or with loamy outer layers.
  • the different layers can be created by different reflection recognize particularly clearly.
  • the detection can take place via intensity differences as well as via a frequency analysis of the reflected light, for which stored standard reflection spectra are advantageously used.
  • the device which emits the light beam or the laser pulses is connected to the conveyor device, i.e. the excavator is arranged.
  • a sensible structure is where a quieter, vibration-free attachment is possible compared to the bucket wheel boom, which also has the advantage of allowing scanning in a particularly wide range.
  • the device that carries out the scanning can advantageously also be mounted on a mobile, independent device carrier.
  • a storage device for the determined course of the layer on the conveying device this enables several conveying devices to be supplied with layer course data from one scanning device.
  • Such a device can also be more easily equipped with a gas laser, which places higher demands on switching off vibrations etc. than on a solid-state laser that is commonly used.
  • the schematically indicated conveying device is designated by 1, which in the exemplary embodiment is intended to represent a bucket wheel excavator.
  • the scanner 2 is arranged, which can be pivoted independently of the conveyor 1.
  • the pivoting is advantageously carried out according to a predetermined program, which is based on the intended work tasks of the conveyor.
  • the position of the scanning device 2 is advantageously chosen so that scanning of the dismantling front as undisturbed as possible by the conveyor device is possible.
  • the paddle wheel 5 works on a conveyor belt 6, which delivers the conveyed material to the further belt 8.
  • an apron 7 is arranged in the area of the excavator, which derives falling material.
  • the conveyor stands on the base 9, above which the material 10 to be removed is located.
  • the material 10 to be removed is delimited at the top by a cover layer 11.
  • Beams of light 14 emanate from the scanner 2 and are used to scan the front of the mine.
  • a scan in a given pattern can also be chosen, e.g. a zigzag pattern or a wave pattern.
  • both the cover layer designated here 19 and the layer 20 designated below the seam 22, the carbon layer 22 and also the intermediate layers 21 are often from the light beam of the scanner 2 be recorded.
  • 23 position values can be obtained for the individual layers via the reflection properties, the fluorescence or the general spectrum evaluation, for example using line filters.
  • a spread scan shown as an example, shows three scanning lines in a computer Both the position of the individual layers in the area of the scan lines and also by interpolation in the area between the scan lines 23 are calculated. By comparing the values of the individual scan lines 23 and smoothing, there is also a possibility for correcting incorrect measurements and for switching off singularities, for example holes or embedded foreign materials.
  • the values from the scanning by the light beams 14 of the scanning device 2 are first fed to an evaluation device 15, which sends them to a computer 16 with a display device 17, which calculates the course of the deposit with the layer positions and layer courses.
  • the computer 16 preferably has a display device which displays both the layer positions and courses as well as the actual position of the boom.
  • the control signals 18 are then forwarded from the computer, which is preferably designed as a microprocessor, to the conveyor device or the excavator.
  • the method of operation of the control method according to the invention is such that the layer position and the layer course of a deposit or a mixed bed etc. are determined by scanning with a light beam, preferably a pulsed laser beam. These values are used as guide values for the movement of the conveyor, which are carried out for the first time as part of a learning step when starting work. The learning step is saved and used as a default value for the further work steps. Correction values are now determined from the position and the course of the deposit layers, with the aid of which the work of the conveyor device, here the excavator, is regulated. By means of a probability calculation etc., incorrect measured values and singularities are advantageously eliminated.
  • the co-promotion of the intermediate layers between coal and overburden or a proportionate promotion of two layers in each case can be entered as a reference variable, so that an previously unattainable optimized extraction of a deposit is possible.
  • the control method according to the invention therefore not only enables the conveyor device to be guided in a controlled manner, but also leads to optimized degradation without the proportion of non-usable substances exceeding the permissible predetermined size.
  • Appropriate programming makes it possible to optimize the amount of coal being mined by only automatically admixing a small amount of low-quality materials from the intermediate layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Operation Control Of Excavators (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Revetment (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Forging (AREA)
  • Metal Rolling (AREA)

Claims (13)

  1. Procédé de régulation pour des engins de manutention à ciel ouvert, comme par exemple des excavateurs à godets, des machines d'extraction de lit mixte, etc., selon lequel la morphologie préalablement déterminée d'un gisement ou la stratification d'un matériau en couches sont utilisées comme grandeurs de référence pour les déplacements de l'excavateur à godet, moyennant l'utilisation d'un faisceau de lumière, caractérisé par le fait que le profil du matériau à transporter est exploré en permanence par balayage et que les valeurs déterminées au moyen de l'exploration par balayage sont utilisées comme grandeur de réglage pour les déplacements de l'engin.
  2. Procédé de régulation suivant la revendication 1, caractérisé par le fait que l'exploration par balayage du matériau devant être transporté est exécutée au moyen d'un laser, de préférence un laser pulsé.
  3. Procédé de régulation suivant la revendication 1 ou 2, caractérisé par le fait que les différences dans la réflexion, notamment dans le spectre de réflexion, sont déterminées et évaluées par l'intermédiaire du faisceau laser.
  4. Procédé de régulation suivant la revendication 1, 2 ou 3, caractérisé par le fait que le profil de réflexion, notamment la variation du spectre de réflexion, est déterminé au moyen du faisceau laser et que la disposition en couches ou la stratification du matériau est calculée à partir du profil déterminé.
  5. Procédé de régulation suivant la revendication 1 ou 2, caractérisé par le fait que des différences dans la fluorescence induite sont évaluées au moyen du faisceau laser.
  6. Procédé de régulation suivant la revendication 1, 2, 3, 4 ou 5, caractérisé par le fait que l'engin est guidée tout d'abord en étant commandée visuellement en fonction du profil du gisement, et que les résultats de l'exploration par balayage sont utilisés en tant que valeurs de correction, lors de déplacements répétitifs.
  7. Procédé de régulation suivant la revendication 1, 2, 3, 4, 5 ou 6, caractérisé par le fait que l'exploration par balayage s'effectue avec un étalement sur un grand nombre de lignes, notamment un étalement vertical.
  8. Procédé de régulation suivant la revendication 1, 2, 3, 4, 5, 6 ou 7, caractérisé par le fait que les résultats de l'exploration par balayage sont soumis à un lissage du profil et un contrôle de vraisemblance et qu'ensuite le profil du gisement est déterminé.
  9. Procédé de régulation suivant la revendication 1, 2, 3, 4, 5, 6, 7 ou 8, caractérisé par le fait que l'abattage est contrôlé, en fonction des valeurs déterminées du profil de stratification et du profil du gisement, au moyen d'un contrôle de l'état du matériau entraîné.
  10. Procédé de régulation suivant une ou plusieurs des revendications précédentes, caractérisé par le fait que le faisceau de lumière est un faisceau laser de lumière ultraviolette.
  11. Procédé de régulation suivant une ou plusieurs des revendications précédentes, caractérisé par le fait que le faisceau de lumière est issu de l'engin.
  12. Procédé de régulation suivant une ou plusieurs des revendications 1 à 9, caractérisé par le fait que le faisceau de lumière est issu d'un générateur mobile, qui est indépendant de l'engin.
  13. Procédé de régulation suivant une ou plusieurs des revendications précédentes, caractérisé par le fait que lors de l'abattage de gisements, de lits mixtes, etc., on utilise un faisceau laser, produit notamment par un scanner laser, pour déterminer le profil des couches du matériau et pour régler l'extraction.
EP90114615A 1989-08-08 1990-07-30 Procédé de commande pour engrais de terrassement Expired - Lifetime EP0412402B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90114615T ATE87989T1 (de) 1989-08-08 1990-07-30 Regelungsverfahren fuer tagebau-foerdergeraete.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926220 1989-08-08
DE3926220 1989-08-08

Publications (2)

Publication Number Publication Date
EP0412402A1 EP0412402A1 (fr) 1991-02-13
EP0412402B1 true EP0412402B1 (fr) 1993-04-07

Family

ID=6386747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114615A Expired - Lifetime EP0412402B1 (fr) 1989-08-08 1990-07-30 Procédé de commande pour engrais de terrassement

Country Status (5)

Country Link
EP (1) EP0412402B1 (fr)
AT (1) ATE87989T1 (fr)
AU (1) AU635761B2 (fr)
DE (1) DE59001164D1 (fr)
ES (1) ES2040009T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002788A1 (fr) * 1997-07-10 1999-01-21 Siemens Aktiengesellschaft Excavatrice rotative
DE10021675A1 (de) * 2000-05-05 2001-11-15 Isam Inma Ges Fuer Angewandte Steuer-System bzw. Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerätes
WO2012031610A1 (fr) * 2010-09-07 2012-03-15 Rag Aktiengesellschaft Commande du travail d'abattage dans l'exploitation de mines de charbon souterraines, réalisée au moyen d'un appareil de mesure à laser
DE102019204444A1 (de) * 2019-03-29 2020-10-01 Robert Bosch Gmbh Verfahren und System zur Identifikation von Schüttgut
CN111411964B (zh) * 2020-04-09 2022-04-08 华能伊敏煤电有限责任公司 用于露天矿片帮区的轮斗挖掘机采掘方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2420120A1 (fr) * 1978-03-17 1979-10-12 Coal Industry Patents Ltd Systeme de controle permettant de determiner la configuration d'un trajet d'abattage de minerai dont les extremites ne peuvent pas etre reliees par une ligne de visee
US4695163A (en) * 1985-06-17 1987-09-22 Schachar Ronald A Method and apparatus for determining surface shapes using reflected laser light
FR2637625B1 (fr) * 1988-10-11 1994-04-08 Screg Routes Travaux Publics Procede et dispositif de positionnement automatique en continu d'un outil de reglage d'un engin de travaux publics, sur un terrain presentant une surface reelle a travailler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRAUNKOHLE 41 (1989), Heft 5, Mai; Seiten 148-150 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9315967B2 (en) 2011-04-14 2016-04-19 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9567725B2 (en) 2011-04-14 2017-02-14 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel

Also Published As

Publication number Publication date
ES2040009T3 (es) 1993-10-01
AU6027790A (en) 1991-02-14
DE59001164D1 (de) 1993-05-13
EP0412402A1 (fr) 1991-02-13
AU635761B2 (en) 1993-04-01
ATE87989T1 (de) 1993-04-15

Similar Documents

Publication Publication Date Title
EP1753921B1 (fr) Procédé pour contrôler un engin pour modifier des surfaces
DE4011316C2 (fr)
EP1278918B1 (fr) Appareil mobile a roues a godets avec systeme de commande et procede de commande automatique d'un appareil mobile a roues a godets
DE102006062129A1 (de) Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe
EP0412400B1 (fr) Dispositif de sécurité pour empêcher la collision d'engins de terrassement
EP0412402B1 (fr) Procédé de commande pour engrais de terrassement
DE3731704A1 (de) Verfahren und anordnung zur eichung eines an der hand eines industrieroboters montierten sensors
EP1516696A1 (fr) Embarreur et machine contenant un tel embarreur
DE2416947A1 (de) Verfahren zum begrenzen der verstellbewegung eines an einem allseitig schwenkbaren tragarm einer vortriebsmaschine gelagerten loesewerkzeuges auf den aufzufahrenden streckenquerschnitt und einrichtung zur ausuebung dieses verfahrens
DE4414578C2 (de) Vorrichtung zur automatischen Einstellung des Schneidhorizontes einer Bergbau-Gewinnungsanlage
EP2307669A1 (fr) Procédé de commande d'une machine d'abattage coupant
EP0412398B1 (fr) Mesure du volume de matériau excavé à partir du profil de coupe d'une roue excavatrice ou similaire
DE4243631A1 (de) Verfahren zum Steuern einer Abraumförderbrücke und Abraumförderbrücke
EP0412399B1 (fr) Commande du volume excavé par une roue à godet
DE112018002806T5 (de) Adaptive Neigungslenkung in einem Langfront-Schrämsystem
DE102016009201A1 (de) Systeme und verfahren zur überwachung einer abbauhöhe und eines volumens eines gewonnenen materials für eine abbaumaschine
EP0412395A1 (fr) Conduite d'une roue excavatrice pour la réalisation de surfaces de forme prédéterminée
DE112011102843T5 (de) Mineralflözerkennung für den Tagebau
DE3427481A1 (de) Steuerung von bergbaumaschinen
DE4411263A1 (de) Verfahren und Anordnung zur Überprüfung der Führungsgenauigkeit einer Brennschneidmaschine
EP0994987A1 (fr) Excavatrice rotative
DE102017004327A1 (de) Systeme und Verfahren für eine Fluidzufuhr in einem Langfrontabbausystem
DE4103545C2 (fr)
WO2020088782A1 (fr) Système de capteurs pour un finisseur de route
DE4234720C2 (de) Verfahren und Einrichtung zur Niveausteuerung einer Hobelanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920601

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 87989

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59001164

Country of ref document: DE

Date of ref document: 19930513

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930616

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3008110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040009

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931019

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940616

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940622

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940706

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940711

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940725

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940731

Year of fee payment: 5

Ref country code: NL

Payment date: 19940731

Year of fee payment: 5

Ref country code: SE

Payment date: 19940731

Year of fee payment: 5

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 90114615.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950730

Ref country code: AT

Effective date: 19950730

Ref country code: GB

Effective date: 19950730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

Ref country code: SE

Effective date: 19950731

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19950731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19950731

Owner name: RHEINBRAUN A.G.

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950730

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3008110

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 90114615.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100730