EP0408678A1 - A process and device for temperature measurement using the internal resistance of a lambda probe - Google Patents

A process and device for temperature measurement using the internal resistance of a lambda probe

Info

Publication number
EP0408678A1
EP0408678A1 EP19890910824 EP89910824A EP0408678A1 EP 0408678 A1 EP0408678 A1 EP 0408678A1 EP 19890910824 EP19890910824 EP 19890910824 EP 89910824 A EP89910824 A EP 89910824A EP 0408678 A1 EP0408678 A1 EP 0408678A1
Authority
EP
European Patent Office
Prior art keywords
temperature
exhaust gas
internal resistance
mixture
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19890910824
Other languages
German (de)
French (fr)
Inventor
Manfred Homeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0408678A1 publication Critical patent/EP0408678A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/26Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being an electrolyte
    • G01K7/28Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being an electrolyte in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Definitions

  • the invention relates to a method for determining the temperature of a lambda probe and / or the temperature of the exhaust gas surrounding it.
  • the invention further relates to a Vor ⁇ direction 'for determining the exhaust gas temperature.
  • the temperature of the lambda probe is determined exclusively and, in the case of a heated probe, essentially by the temperature of the exhaust gas surrounding it. This temperature is determined according to the prior art with the aid of a separate sensor.
  • the invention is based on the object of specifying methods for determining the temperatures of a lambda probe and / or the exhaust gas surrounding it, which are simple and yet work precisely.
  • the invention is further based on the object of specifying a simply constructed device for determining the exhaust gas temperature.
  • the invention is given for the method for determining the exhaust gas temperature by the features of claim 1 and for the method for determining the probe temperature by the features of claim 6.
  • the device according to the invention for determining the exhaust gas temperature is given by the features of claim 8.
  • Advantageous further developments and refinements of the method according to claim 1 are the subject of subclaims 2-4.
  • Both methods are characterized in that they carry out a temperature determination with the aid of the internal resistance of a lambda probe arranged in the exhaust gas.
  • the method according to claim 1 for determining the exhaust gas temperature is based on the knowledge that not only the relationship between internal resistance and probe temperature is unambiguous, but also that. assuming stationary conditions, the relationship between probe temperature and exhaust gas temperature is unambiguous for a given arrangement. Accordingly, there is a clear connection between the internal resistance and the exhaust gas temperature for the stationary case. This makes it possible to first measure the relationship between exhaust gas temperature and internal resistance and then to use this known relationship to determine the exhaust gas temperature for the stationary case from the internal resistance measured in the usual way. It is irrelevant whether the probe is heated or unheated. This causes differences in the relationship between internal resistance and exhaust gas temperature are automatically taken into account when the relationship between internal resistance and exhaust gas temperature is measured.
  • the temperature obtained from the stationary connection is corrected with the aid of the slope of the temperature profile over time at the current point in time.
  • the subordinate method according to claim 6 is characterized in that it uses the relationships just described in connection with the determination of the exhaust gas temperature for determining the probe temperature.
  • the same probe temperature value is no longer determined for each lean and rich mixture as before, but a higher value is determined for lean mixture than for rich mixture.
  • the device according to the invention for determining the exhaust gas temperature has a means for measuring the internal resistance of a lambda probe and a means for determining the exhaust gas temperature from the internal resistance. Show ic
  • FIG. 1 shows a block diagram of a device for determining the exhaust gas temperature with the aid of the internal resistance of a lambda probe arranged in the exhaust gas;
  • 2a and b are diagrams for explaining the dependence of the probe internal resistance (2b) on the La bda value (2a);
  • Fig. 1 shows a flow chart for explaining how probe temperature and exhaust gas temperature are determined with the aid of the internal resistance of a probe and corrected taking into account the type of mixture present;
  • a lambda probe 10 located in the exhaust gas of an internal combustion engine is connected to a means 11 for determining the probe internal resistance R.
  • This means determines the internal resistance z. B. according to the method already mentioned in DE 31 17 790 A1 or according to a method as described in EP 0 258 543 A2.
  • a characteristic curve memory 12 is addressed with the internal resistance value determined for the current point in time and the exhaust gas temperature TA belonging to the determined internal resistance value is thereby read out.
  • the characteristic curve was previously determined by setting stationary exhaust gas temperatures, measuring them with the aid of a separate temperature sensor. and the associated internal resistance value of the probe was determined for each exhaust gas temperature.
  • the associated exhaust gas temperature was stored in the characteristic curve memory 12 for each internal resistance value.
  • the characteristic curve was recorded with a lean mixture, the correct exhaust gas or probe temperature value results for the internal resistance value R shown on the left in FIG. 2b, as indicated by the right scale in FIG. 2b.
  • the characteristic curve recorded for a lean mixture results in an excessively high temperature value T-fat.
  • the lambda dependency in connection with the internal resistance and the exhaust gas temperature or the probe temperature There are several options for taking into account the lambda dependency in connection with the internal resistance and the exhaust gas temperature or the probe temperature. All assume that the lambda value is measured. The first possibility is that different internal resistance value-temperature characteristics are used for rich mixtures and for lean mixtures. Depending on / on the lambda value, the associated characteristic curve is then selected and from this the exhaust gas temperature or Read probe temperature. The next possibility is that only a single characteristic is used, e.g. B. one that was recorded for lean mixtures, and is corrected for the other mixture type, in the example case for rich mixtures.
  • the temperature value read from the characteristic curve is used directly, while if a rich mixture is present, a difference value is subtracted, which is a temperature difference value in the example case.
  • the differential value is approximately 1/2% of the absolute exhaust gas temperature, that is to say approximately 5 ° C. at an exhaust gas temperature of approximately 750 ° C.
  • the difference value required for the correction does not change exactly in proportion to the absolute temperature of the exhaust gas or the probe. Therefore, a constant difference value can be used with quite good accuracy, e.g. B. 5.5 ° C in the probes used in experiments. It was found that there are also small dependencies on the size of the lambda value.
  • each determined internal resistance value is taken over unchanged, in contrast, a difference value is added to each determined internal resistance value for a rich mixture. With the internal resistance value corrected in this way, the associated temperature is then read out from an internal resistance value-temperature characteristic determined for lean mixtures.
  • a preferred process sequence which takes into account the aspects described above, will now be described with reference to FIG.
  • the current inner resistance value R. is determined according to a known method.
  • the exhaust gas temperature TA becomes a first one.
  • Characteristic curve and the probe temperature TS are determined from a second characteristic curve depending on the determined internal resistance value.
  • the current lambda value is measured in a step s3. If it is found in step s4 that a lean mixture is present, step s5 is immediately followed by a subroutine in which the values for exhaust gas temperature and probe temperature are used. Then the method returns to step s1. On the other hand, if step s4 shows that there is no lean, ie rich, mixture, the exhaust gas temperature value TA is corrected in step s6 by subtracting a fixed difference value ⁇ T from the value determined in step s2. The same difference is subtracted from the probe temperature TS, as was also determined in step s2. The temperatures corrected in this way are then used in the subroutine according to step s5.
  • both the exhaust gas temperature TA and the probe temperature TS do not have to be determined together.
  • the correction method described for taking the type of mixture into account can also be used individually for each temperature. However, performing the method for both temperatures is particularly advantageous. It can then be determined with great accuracy with ei 'its single measurement, namely the internal resistance, two temperatures, je ⁇ d felicit for inpatient cases. There are numerous possibilities for the type of correction, as explained above.
  • the mark A is followed by a step k1, which serves only a formal purpose; only the exhaust gas temperature value TA is given the name TA_STAT.
  • TA_STAT This indicates that it is the exhaust gas temperature that was determined for the present time from a relationship between the internal resistance value and the exhaust gas temperature, which applies to steady-state conditions.
  • an average value T ⁇ ⁇ _NEU is determined using the most recent value of TA_STAT. For example, the last four values are averaged over time. Or will it be the last average used weighted by three quarters, and for this purpose the new 'value is counted weighted by a quarter, is averaging ge about how much data and how the averaging is carried out depends on the particular application.
  • step k4 which then follows, is discussed.
  • the new mean T ⁇ _NEU calculated in step k2 is named as the old mean T ⁇ _ALT.
  • the new mean value T ⁇ _NEU calculated in step k2 is thus available, as is the mean value calculated in the previous run in step k2, which now bears the name T ⁇ ⁇ _ALT.
  • the exhaust gas temperature is calculated as follows using these values and the value TA_STAT according to step k1:
  • K is a constant which is determined in tests so that the value of the exhaust gas temperature results from the equation mentioned, even in non-stationary cases, which corresponds as closely as possible to the respective value as it is detected by a special temperature measuring means. Is the constant K determined by measurements for a given arrangement, it provides satisfactory results for almost all transient cases.

Abstract

Dans un procédé de détermination de la température de gaz d'échappement, la résistance interne d'une sonde lambda est mesurée et l'on détermine si l'on se trouve en présence d'un mélange pauvre ou d'un mélange riche. Abstraction faite du type de mélange existant, on relève la température de gaz d'échappement correspondant à la valeur de la résistance interne mesurée, à partir de l'une des deux caractéristiques résistance interne-température de la sonde à partir de la résistance interne. La température des gaz d'échappement détectée comme précédemment n'est fournie avec précision que pour des cas stationnaires. Pour obtenir des valeurs satisfaisantes également dans des cas non stationnaires, la température est évaluée en moyenne mobile. La température actuelle des gaz d'échappement est calculée à partir de la valeur moyenne actuelle et de la pente actuelle de la courbe température des gaz d'échappement-temps. Les procédés précités permettent de parvenir à déterminer la température des gaz d'échappement sans utiliser un élément de mesure de température particulier. En effectuant une seule mesure, à savoir celle de la résistance interne, la température de la sonde et la température des gaz d'échappement peuvent être mesurées avec une grande précision.In a method for determining the temperature of the exhaust gas, the internal resistance of a lambda probe is measured and it is determined whether there is a lean mixture or a rich mixture present. Leaving aside the type of existing mixture, the exhaust gas temperature corresponding to the value of the internal resistance measured, is recorded from one of the two internal resistance-temperature characteristics of the probe from the internal resistance. The exhaust gas temperature detected as above is only accurately provided for stationary cases. To obtain satisfactory values also in non-stationary cases, the temperature is evaluated as a moving average. The current exhaust gas temperature is calculated from the current average value and the current slope of the exhaust gas temperature-time curve. The aforementioned methods make it possible to determine the temperature of the exhaust gases without using a particular temperature measuring element. By making only one measurement, namely that of the internal resistance, the temperature of the probe and the temperature of the exhaust gas can be measured with high accuracy.

Description

Verfahren und Vorrichtung zur Temperaturbestimmung mit Hilfe des Innenwiderstandes einer LambdasondeMethod and device for temperature determination using the internal resistance of a lambda probe
Die Erfindung betrifft ein Verfahren zum Bestimmen der Tempe¬ ratur einer Lambdasonde und/oder der Temperatur des sie um¬ gebenden Abgases. Die Erfindung betrifft weiterhin eine Vor¬ richtung ' zum Bestimmen der Abgastemperatur.The invention relates to a method for determining the temperature of a lambda probe and / or the temperature of the exhaust gas surrounding it. The invention further relates to a Vor¬ direction 'for determining the exhaust gas temperature.
Stand der TechnikState of the art
Es ist bekannt, daß der Innenwiderstand einer Lambdasonde mit zunehmender Temperatur stark fällt. Zwischen der Sondentempe¬ ratur und dem Innenwiderstand besteht ein eineindeutiger Zu¬ sammenhang. Dieser Zusammenhang wird dazu genutzt, aus einer Messung des Innenwiderstandes die Sondentemperatur zu bestim¬ men, wie z. B. in DE 31 17 790 A1 (entsprechend US 4.419.190) beschrieben.It is known that the internal resistance of a lambda probe drops sharply with increasing temperature. There is a one-to-one correlation between the probe temperature and the internal resistance. This relationship is used to determine the probe temperature from a measurement of the internal resistance. B. in DE 31 17 790 A1 (corresponding to US 4,419,190).
Die Temperatur der Lambdasonde wird im Fall einer unbeheizten Sonde ausschließlich und im Falle einer beheizten Sonde ma߬ geblich durch die Temperatur des sie umgebenden Abgases be¬ stimmt. Diese Temperatur wird gemäß dem Stand der Technik mit Hilfe eines gesonderten Meßfühlers bestimmt. Der Erfindung liegt die Aufgabe zugrunde, Verfahren zum Be¬ stimmen der Temperaturen einer Lambdasonde und/oder des sie umgebenden Abgases anzugeben, die einfach sind und dennoch genau arbeiten. Der Erfindung liegt weiterhin die Aufgabe zu¬ grunde, eine einfach aufgebaute Vorrichtung zum Bestimmen der Abgastemperatur anzugeben.In the case of an unheated probe, the temperature of the lambda probe is determined exclusively and, in the case of a heated probe, essentially by the temperature of the exhaust gas surrounding it. This temperature is determined according to the prior art with the aid of a separate sensor. The invention is based on the object of specifying methods for determining the temperatures of a lambda probe and / or the exhaust gas surrounding it, which are simple and yet work precisely. The invention is further based on the object of specifying a simply constructed device for determining the exhaust gas temperature.
Vorteile der ErfindungAdvantages of the invention
Die Erfindung ist für das Verfahren zum Bestimmen der Abgas¬ temperatur durch die Merkmale von Anspruch 1 und für das Ver¬ fahren zum Bestimmen der Sondentemperatur durch die Merkmale von Anspruch 6 gegeben. Die erfindungsgemäße Vorrichtung zum Bestimmen der Abgastemperatur ist durch die Merkmale von An¬ spruch 8 gegeben. Vorteilhafte Weiterbildungen und Ausgestal¬ tungen des Verfahrens gemäß Anspruch 1 sind Gegenstand der Un¬ teransprüche 2 - 4.The invention is given for the method for determining the exhaust gas temperature by the features of claim 1 and for the method for determining the probe temperature by the features of claim 6. The device according to the invention for determining the exhaust gas temperature is given by the features of claim 8. Advantageous further developments and refinements of the method according to claim 1 are the subject of subclaims 2-4.
Beide Verfahren zeichnen sich dadurch aus, daß sie eine Tem¬ peraturbestimmung mit Hilfe des Innenwiderstandes einer Im Abgas angeordneten Lambdasonde vornehmen. Dem Verfahren gemäß Anspruch 1 zum Bestimmen der Abgastemperatur liegt dabei die Erkenntnis zugrunde, daß nicht nur der Zusammenhang zwischen Inπenwiderstand und Sondentemperatur eineindeutig ist, son¬ dern daß auc ,. stationäre Verhältnisse vorausgesetzt, der Zu¬ sammenhang zwischen Sondentemperatur und Abgastemperatur für eine jeweils vorliegende Anordnung eineindeutig ist. Demgemäß besteht für den stationären Fall ein eineindeutiger Zusammen¬ hang zwischen Innenwiderstand und Abgastemperatur. Dies er¬ möglicht es, zunächst den Zusammenhang zwischen Abgastempera¬ tur und Innenwiderstand auszumessen und dann mit Hilfe dieses bekannten Zusammenhangs aus dem in üblicher Weise gemessenen Innenwiderstand die Abgastemperatur für den stationären Fall zu bestimmen. Dabei ist es unerheblich, ob die Sonde beheizt oder unbeheizt ist. Dadurch hervorgerufene Unterschiede im Zusammenhang zwischen Innenwiderstand und Abgastemperatur finden automatisch Berücksichtigung, wenn der Zusammenhang zwischen Innenwiderstand und Abgastemperatur ausgemessen wird.Both methods are characterized in that they carry out a temperature determination with the aid of the internal resistance of a lambda probe arranged in the exhaust gas. The method according to claim 1 for determining the exhaust gas temperature is based on the knowledge that not only the relationship between internal resistance and probe temperature is unambiguous, but also that. assuming stationary conditions, the relationship between probe temperature and exhaust gas temperature is unambiguous for a given arrangement. Accordingly, there is a clear connection between the internal resistance and the exhaust gas temperature for the stationary case. This makes it possible to first measure the relationship between exhaust gas temperature and internal resistance and then to use this known relationship to determine the exhaust gas temperature for the stationary case from the internal resistance measured in the usual way. It is irrelevant whether the probe is heated or unheated. This causes differences in the relationship between internal resistance and exhaust gas temperature are automatically taken into account when the relationship between internal resistance and exhaust gas temperature is measured.
Um auch im instationären Fall die Abgastemperatur aus dem In¬ nenwiderstand bestimmen zu können, wird die aus dem stationä¬ ren Zusammenhang gewonnene Temperatur mit Hilfe der Steigung des zeitlichen Temperaturverlaufs im aktuellen Zeitpunkt kor¬ rigiert.In order to be able to determine the exhaust gas temperature from the internal resistance even in the unsteady case, the temperature obtained from the stationary connection is corrected with the aid of the slope of the temperature profile over time at the current point in time.
Vorteilhaft ist es auch, eine Korrektur vorzunehmen, die be¬ rücksichtigt, daß für magere und fette Gemische unterschied¬ liche Zusammenhänge zwischen Innenwiderstand und Abgastempe¬ ratur bestehen, und zwar dahingehend, daß bei jeweils glei¬ cher Abgastemperatur in fetten Gemischen ein höherer Innenwi¬ derstand gemessen wird als in mageren Gemischen.It is also advantageous to make a correction that takes into account that there are different relationships between internal resistance and exhaust gas temperature for lean and rich mixtures, specifically to the effect that a higher internal temperature in rich mixtures with the same exhaust gas temperature in each case the level is measured as in lean mixtures.
Das nebeπgeordnete Verfahren gemäß Anspruch 6 zeichnet sich dadurch aus, daß es die soeben in Zusammenhang mit dem Be¬ stimmen der Abgastemperatur beschriebenen Zusammenhänge für das Bestimmen der Sondentemperatur nutzt. Es wird nicht mehr, wie bisher, zu jedem Innenwiderstandswert für mageres und fettes Gemisch jeweils derselbe Sondentemperaturwert bestimmt, sondern für mageres Gemisch wird ein höherer Wert bestimmt als für fettes Gemisch. In besonders vorteilhafter Weise er¬ folgt dies dadurch, daß der Zusammenhang zwischen Innenwider¬ stand und Sondentemperatur für ein Gemischart, z. B. für ma¬ geres Gemisch, bestimmt wird und dieser Zusammenhang bei Vor¬ liegen der Gemischart, für die die Bestimmung erfolgte, unmit¬ telbar verwendet wird, während dann, wenn die andere Gemisch¬ art vorliegt, noch eine Korrektur vorgenommen wird.The subordinate method according to claim 6 is characterized in that it uses the relationships just described in connection with the determination of the exhaust gas temperature for determining the probe temperature. The same probe temperature value is no longer determined for each lean and rich mixture as before, but a higher value is determined for lean mixture than for rich mixture. This takes place in a particularly advantageous manner in that the relationship between internal resistance and probe temperature for a type of mixture, e.g. B. for lean mixture, is determined and this relationship is directly used in the presence of the type of mixture for which the determination was made, while when the other type of mixture is present a correction is still made.
Die erfindungsgemäße Vorrichtung zum Bestimmen der Abgastem¬ peratur weist ein Mittel zum Messen des Innenwiderstandes einer Lambdasonde und ein Mittel zum Bestimmen der Abgastem¬ peratur aus dem Innenwiderstand auf. Ze i c hn u ngThe device according to the invention for determining the exhaust gas temperature has a means for measuring the internal resistance of a lambda probe and a means for determining the exhaust gas temperature from the internal resistance. Show ic
Die Erfindung wird im folgenden anhand von durch Figuren ver¬ anschaulichten Ausführungsbeispielen näher erläutert. Es zei¬ gen:The invention is explained in more detail below on the basis of exemplary embodiments illustrated by figures. It shows:
Fig. 1 ein Blockschaltbild einer Vorrichtung zum Bestim¬ men der Abgastemperatur mit Hilfe des Innenwider¬ standes einer im Abgas angeordneten Lambdasonde;1 shows a block diagram of a device for determining the exhaust gas temperature with the aid of the internal resistance of a lambda probe arranged in the exhaust gas;
Fig. 2a und b Diagramme zum Erläutern der Abhängigkeit des Sondeninnenwiderstandes (2b) vom La bdawert (2a);2a and b are diagrams for explaining the dependence of the probe internal resistance (2b) on the La bda value (2a);
Fi IQ. ein Flußdiagramm zum Erläutern, wie Sondentempera¬ tur und Abgastemperatur mit Hilfe des Innenwider¬ standes einer Sonde bestimmt werden und unter Berücksichtigung der vorliegenden Gemischart kor¬ rigiert werden; undFig. 1 shows a flow chart for explaining how probe temperature and exhaust gas temperature are determined with the aid of the internal resistance of a probe and corrected taking into account the type of mixture present; and
Fiq ein Flußdiagramm eines Teilverfahrens zum Bestim¬ men der. Abgastemperatur im Instationärfal 1.A flowchart of a partial method for determining the. Exhaust gas temperature in transient 1.
Beschreibung von AusführungsbeispielenDescription of exemplary embodiments
Bei der Anordnung gemäß Fig. 1 ist eine im Abgas einer Brεnn- kraftmaschiπe befindliche Lambdasonde 10 mit einem Mittel 11 zum Bestimmen des Sondeninnenwiderstandes R. verbunden. Diese Mittel bestimmt den Innenwiderstand z. B. gemäß der in der be reits genannten DE 31 17 790 A1 genannten Methode oder nach einer Methode, wie sie in EP 0 258 543 A2 beschrieben ist. Mi dem für den aktuellen Zeitpunkt bestimmten Innenwiderstands¬ wert wird ein Kennlinienspeicher 12 adressiert und dadurch die zum ermittelten Innenwiderstandswert gehörige Abgastempe¬ ratur TA ausgelesen. Die Kennlinie wurde zuvor dadurch be¬ stimmt, daß stationäre Abgastemperaturen eingestellt wurden, diese mit Hilfe eines gesonderten Temperaturmeßfühlers gemes- sen wurden und für jede Abgastemperatur der zugehörige Innen¬ widerstandswert der Sonde ermittelt wurde. Für jeden Innen¬ widerstandswert wurde die zugehörige Abgastemperatur im Kenn¬ linienspeicher 12 abgelegt.In the arrangement according to FIG. 1, a lambda probe 10 located in the exhaust gas of an internal combustion engine is connected to a means 11 for determining the probe internal resistance R. This means determines the internal resistance z. B. according to the method already mentioned in DE 31 17 790 A1 or according to a method as described in EP 0 258 543 A2. A characteristic curve memory 12 is addressed with the internal resistance value determined for the current point in time and the exhaust gas temperature TA belonging to the determined internal resistance value is thereby read out. The characteristic curve was previously determined by setting stationary exhaust gas temperatures, measuring them with the aid of a separate temperature sensor. and the associated internal resistance value of the probe was determined for each exhaust gas temperature. The associated exhaust gas temperature was stored in the characteristic curve memory 12 for each internal resistance value.
Anhand von Fig. 2 wird nun eine Feinheit erläutert, die beim Bestimmen des Zusammenhangs zwischen Innenwiderstandswert und Temperatur zu beachten ist. Es sei angenommen, daß die Abgas¬ temperatur und damit auch die Sondentemperatur über die Zeit t konstant gehalten wird. Die Sonde befinde sich aber bis zu einem Zeitpunkt tς im Abgas, das von der Verbrennung eines fetten Ge ischs herrührt, und danach im Abgas, das von Ver¬ brennung eines mageren Gemisches herrührt. Der Lambdawert er¬ höhe sich also zum Zeitpunkt t<- sprunghaft von fett nach ma¬ ger. Aus Fig. 2b ist erkennbar, daß sich mit der sprunghaften Erhöhung des Lambdawertes der Innenwiderstand sprunghaft er¬ niedrigt. Es ist also darauf zu achten, daß der Zusammenhang zwischen Innenwiderstand und Abgastemperatur TA oder Sonden¬ temperatur TS zum Bestimmen einer Kennlinie immer für dieselbe Gemischart bestimmt wird. Wurde die Kennlinie bei magerem Ge¬ misch aufgenommen, ergibt sich für den in Fig. 2b links dar¬ gestellten Innenwiderstandswert R. -mager der richtige Abgas¬ bzw. Sondentemperaturwert, wie er in Fig. 2b durch die rechte Skala angezeigt ist. Für fettes Gemisch ergibt sich jedoch aus der für mageres Gemisch aufgenommenen Kennlinie ein zu hoher Temperaturwert T-fett.A fineness is now explained with reference to FIG. 2, which must be taken into account when determining the relationship between the internal resistance value and the temperature. It is assumed that the exhaust gas temperature and thus also the probe temperature is kept constant over time t. Up to a point in time t ς , however, the probe is in the exhaust gas resulting from the combustion of a rich mixture, and thereafter in the exhaust gas resulting from the combustion of a lean mixture. The lambda value thus increases abruptly from bold to lean at time t < . It can be seen from FIG. 2b that the internal resistance decreases suddenly with the sudden increase in the lambda value. Care must therefore be taken that the relationship between internal resistance and exhaust gas temperature TA or probe temperature TS for determining a characteristic curve is always determined for the same mixture type. If the characteristic curve was recorded with a lean mixture, the correct exhaust gas or probe temperature value results for the internal resistance value R shown on the left in FIG. 2b, as indicated by the right scale in FIG. 2b. For a rich mixture, however, the characteristic curve recorded for a lean mixture results in an excessively high temperature value T-fat.
Um die Lambdaabhängigkeit in Zusammenhang zwischen Innenwider¬ stand und Abgastemperatur oder Sondentemperatur zu berücksich¬ tigen, bestehen mehrere Möglichkeiten. Alle setzen voraus, daß der Lambdawert gemessen wird. Die erste Möglichkeit ist die, daß für fette Gemische und für magere Gemische jeweils unter¬ schiedliche Innenwiderstandswert-Temperatur-Kennl inien ver¬ wendet werden. Abhängig/vom Lambdawert wird dann die zugehö¬ rige Kennlinie ausgewählt und aus dieser wird mit Hilfe des vorliegenden Innenwiderstandswertes die Abgastemperatur bzw. Sondentemperatur ausgelesen. Die nächste Möglichkeit besteht darin, daß nur eine einzige Kennlinie verwendet wird, z. B. eine, die für magere Gemische aufgenommen wurde, und für die andere Gemischart korrigiert wird, im Beispielsfall für fette Gemische. Liegt im Beispielsfall ein mageres Gemisch vor, wird der aus der Kennlinie ausgelesene Temperaturwert unmittelbar verwendet, während beim Vorliegen eines fetten Gemisches ein Differenzwert abgezogen wird, der im Beispielsfall ein Tempe¬ raturdifferenzwert ist. Es hat sich gezeigt, daß der Diffe- reπzwert etwa 1/2 % der absoluten Abgastemperatur ist, also etwa 5 °C bei einer Abgastemperatur von etwa 750 °C. Der zur Korrektur erforderliche Differenzwert ändert sich jedoch nicht genau proportional zur Absoluttemperatur des Abgases oder der Sonde. Daher kann mit recht guter Genauigkeit auch ein kon¬ stanter Differenzwert verwendet werden, z. B. 5,5 °C bei den in Versuchen verwendeten Sonden. Es wurde festgestellt, daß kleine Abhängigkeiten auch noch von der Größe des Lambdawertes bestehen. Alle genannten Abhängigkeiten sind jedoch so gering, daß bei den im Versuch verwendeten Sonden unter allen Bedin¬ gungen ein fester Korrekturwert ausreichend war, um zufrie¬ denstellende Ergebnisse zu erhalten. Werden hochgenaue Ergeb¬ nisse gefordert, muß mit Kennfeldern gearbeitet werden, in denen eine Mehrzahl von Innenwiderstandswert-Temperatur-Kenn- linien für jeweils unterschiedliche Lambdawerte abgelegt ist.There are several options for taking into account the lambda dependency in connection with the internal resistance and the exhaust gas temperature or the probe temperature. All assume that the lambda value is measured. The first possibility is that different internal resistance value-temperature characteristics are used for rich mixtures and for lean mixtures. Depending on / on the lambda value, the associated characteristic curve is then selected and from this the exhaust gas temperature or Read probe temperature. The next possibility is that only a single characteristic is used, e.g. B. one that was recorded for lean mixtures, and is corrected for the other mixture type, in the example case for rich mixtures. If a lean mixture is present in the example, the temperature value read from the characteristic curve is used directly, while if a rich mixture is present, a difference value is subtracted, which is a temperature difference value in the example case. It has been shown that the differential value is approximately 1/2% of the absolute exhaust gas temperature, that is to say approximately 5 ° C. at an exhaust gas temperature of approximately 750 ° C. However, the difference value required for the correction does not change exactly in proportion to the absolute temperature of the exhaust gas or the probe. Therefore, a constant difference value can be used with quite good accuracy, e.g. B. 5.5 ° C in the probes used in experiments. It was found that there are also small dependencies on the size of the lambda value. However, all of the dependencies mentioned are so slight that a fixed correction value was sufficient under all conditions for the probes used in the test in order to obtain satisfactory results. If highly precise results are required, maps must be used in which a plurality of internal resistance value-temperature curves are stored for different lambda values.
Anstatt zunächst von einem Innenwiderstandswert in eine Tem¬ peratur umzurechnen und dann zu korrigieren, ist es auch mög¬ lich, zunächst den Innenwiderstand zu korrigieren und dann auf eine Temperatur umzurechnen. Es wird also z. B. beim Vor¬ liegen eines mageren Gemisches jeder ermittelte Innenwider¬ standswert unverändert übernommen, dagegen wird zu jedem bei fettem Gemisch ermittelten Innenwiderstandswert ein Differenz wert hinzugezählt. Mit dem so korrigierten Innenwiderstands¬ wert wird dann die zugehörige Temperatur aus einer für magere Gemische ermittelten Innenwiderstandswert-Temperatur-Kennl ini ausgelesen. Ein bevorzugter Verfahrensablauf, der die vorstehend beschrie¬ benen Gesichts-punkte berücksichtigt, wird nun anhand von Fig. beschrieben. In einem Schritt s1 wird der aktuelle Innenwi¬ derstandswert R. nach einer bekannten Methode bestimmt. In einem Schritt s2 wird die Abgastemperatur TA aus einer ersten. Kennlinie und die Sondentemperatur TS aus einer zweiten Kenn¬ linie jeweils abhängig vom ermittelten Innenwiderstandswert bestimmt. In einem Schritt s3 wird der aktuelle Lambdawert ge¬ messen. Stellt sich in einem Schritt s4 heraus, daß ein mage¬ res Gemisch vorliegt, schließt sich als Schritt s5 unmittel¬ bar ein Unterprogramm an, in dem die Werte für Abgastempera¬ tur und Sondeπtemperatur verwendet werden. Dann kehrt das Ver¬ fahren zum Schritt s1 zurück. Ergibt sich in Schritt s4 da¬ gegen, daß kein mageres, also fettes Gemisch vorliegt, wird in einem Schritt s6 der Abgastemperaturwert TA dadurch korri¬ giert, daß von dem in Schritt s2 ermittelten Wert ein fester Differenzwert Δ T abgezogen wird. Dieselbe Differenz wird von der Sondentemperatur TS abgezogen, wie sie ebenfalls im Schritt s2 ermittelt wurde. Die auf diese Weise korrigierten Temperaturen werden dann im Unterprogramm gemäß Schritt s5 verwendet.Instead of first converting from an internal resistance value into a temperature and then correcting it, it is also possible to first correct the internal resistance and then convert it to a temperature. So it is z. B. in the presence of a lean mixture, each determined internal resistance value is taken over unchanged, in contrast, a difference value is added to each determined internal resistance value for a rich mixture. With the internal resistance value corrected in this way, the associated temperature is then read out from an internal resistance value-temperature characteristic determined for lean mixtures. A preferred process sequence, which takes into account the aspects described above, will now be described with reference to FIG. In a step s1, the current inner resistance value R. is determined according to a known method. In a step s2, the exhaust gas temperature TA becomes a first one. Characteristic curve and the probe temperature TS are determined from a second characteristic curve depending on the determined internal resistance value. The current lambda value is measured in a step s3. If it is found in step s4 that a lean mixture is present, step s5 is immediately followed by a subroutine in which the values for exhaust gas temperature and probe temperature are used. Then the method returns to step s1. On the other hand, if step s4 shows that there is no lean, ie rich, mixture, the exhaust gas temperature value TA is corrected in step s6 by subtracting a fixed difference value ΔT from the value determined in step s2. The same difference is subtracted from the probe temperature TS, as was also determined in step s2. The temperatures corrected in this way are then used in the subroutine according to step s5.
Es wird darauf hingewiesen, daß nicht sowohl die Abgastempe¬ ratur TA wie auch die Sondentemperatur TS gemeinsam bestimmt werden müssen. Das beschriebene Korrekturverfahren zum Berück¬ sichtigen der Gemischart ist auch für jede Temperatur einzeln anwendbar. Von besonderem Vorteil ist jedoch das Durchführen des Verfahrens für beide Temperaturen. Es können dann mit ei'ner einzigen Messung, nämlich der des Innenwiderstandes, zwei Temperaturen mit großer Genauigkeit bestimmt werden, je¬ denfalls für stationäre Fälle. Für die Art der Korrektur be¬ stehen zahlreiche Möglichkeiten, wie weiter oben erläutert.It is pointed out that both the exhaust gas temperature TA and the probe temperature TS do not have to be determined together. The correction method described for taking the type of mixture into account can also be used individually for each temperature. However, performing the method for both temperatures is particularly advantageous. It can then be determined with great accuracy with ei 'its single measurement, namely the internal resistance, two temperatures, je¬ denfalls for inpatient cases. There are numerous possibilities for the type of correction, as explained above.
Im Verfahrensablauf gemäß Fig. 3 sind im Anschluß an den Schritt s5 vor der Rückkehr zum Schritt s1 zwei Marken A und B eingezeichnet. Zwischen diesen Marken kann ein Teilverfah- ren ablaufen, das ein recht genaues Bestimmen der Abgastem¬ peratur auch in Instationärfäl len ermöglicht. Dieses Verfah¬ ren wird nun anhand von Fig. 4 erläutert.3, two marks A and B are drawn in after step s5 before returning to step s1. A partial process between these brands run, which enables a very precise determination of the exhaust gas temperature even in transient cases. This process will now be explained with reference to FIG. 4.
Gemäß Fig. 4 folgt auf die Marke A ein Schritt k1, der nur einem formellen Zweck dient; es wird nämlich lediglich der Abgastemperaturwert TA mit dem Namen TA_STAT versehen. Dies zeigt an, daß es sich um die Abgastemperatur handelt, die für den vorliegenden Zeitpunkt aus einem Zusammenhang zwischen Innenwiderstandswert und Abgastemperatur bestimmt wurde, der für stationäre Zustände gilt. In einem Schritt k2 wird ein Mittelwert TÄ~_NEU mit Hilfe des jüngsten Wertes von TA_STAT bestimmt. Z. B. wird gleitend über die jeweils letzten vier Werte gemittelt. Oder es wird der letzte Mittelwert mit drei Vierteln gewichtet verwendet, und hierzu wird der neue' Wert mit einem Viertel gewichtet gezählt, über wieviele Daten ge¬ mittelt wird und wie die Mittelung durchgeführt wird, hängt vom jeweiligen Anwendungsfall ab.According to FIG. 4, the mark A is followed by a step k1, which serves only a formal purpose; only the exhaust gas temperature value TA is given the name TA_STAT. This indicates that it is the exhaust gas temperature that was determined for the present time from a relationship between the internal resistance value and the exhaust gas temperature, which applies to steady-state conditions. In a step k2 an average value TÄ ~ _NEU is determined using the most recent value of TA_STAT. For example, the last four values are averaged over time. Or will it be the last average used weighted by three quarters, and for this purpose the new 'value is counted weighted by a quarter, is averaging ge about how much data and how the averaging is carried out depends on the particular application.
Bevor der nun folgende Schritt k3 näher erläutert wird, sei auf den dann folgenden Schritt k4 eingegangen. Gemäß diesem wird der in Schritt k2 berechnete neue Mittelwert TÄ_NEU als alter Mittelwert TÄ_ALT benannt. In Schritt k3 steht also der in Schritt k2 berechnete neue Mittelwert TÄ_NEU zur Verfügung, wie auch der beim vorigen Durchgang in Schritt k2 berechnete Mittelwert, der nun den Namen TÄ~_ALT trägt. In Schritt k3 wird mit Hilfe dieser Werte und des Wertes TA_STAT gemäß Schritt k1 die Abgastemperatur wie folgt berechnet:Before step k3, which now follows, is explained in more detail, step k4, which then follows, is discussed. According to this, the new mean TÄ_NEU calculated in step k2 is named as the old mean TÄ_ALT. In step k3, the new mean value TÄ_NEU calculated in step k2 is thus available, as is the mean value calculated in the previous run in step k2, which now bears the name TÄ ~ _ALT. In step k3, the exhaust gas temperature is calculated as follows using these values and the value TA_STAT according to step k1:
TA = TÄ_NEU + K x(TÄ_NEU - TÄ_ALT)TA = TÄ_NEU + K x (TÄ_NEU - TÄ_ALT)
K ist eine Konstante, die in Versuchen so bestimmt wird, daß sich aus der genannten Gleichung auch in Instationärf llen ein Wert für die Abgastemperatur ergibt, der möglichst genau mit dem jeweiligen Wert übereinstimmt, wie er durch ein geson¬ dertes Temperaturmeßmittel erfaßt wird. Ist die Konstante K durch Messungen für eine vorgegebene Anordnung festgelegt, liefert sie für fast alle Instationärfä 1 le zufriedenstellende Erαebnisse. K is a constant which is determined in tests so that the value of the exhaust gas temperature results from the equation mentioned, even in non-stationary cases, which corresponds as closely as possible to the respective value as it is detected by a special temperature measuring means. Is the constant K determined by measurements for a given arrangement, it provides satisfactory results for almost all transient cases.

Claims

Ansprüche Expectations
1. Verfahren zum Bestimmen der Temperatur des Abgases einer Brennkraftmaschine, d a d u r c h g e k e n n z e i c h n e t , daß1. Method for determining the temperature of the exhaust gas of an internal combustion engine, that is, that
- der Innenwiderstand einer im Abgas angeordneten Lambdasonde gemessen wird, und- The internal resistance of a lambda sensor arranged in the exhaust gas is measured, and
- mit Hilfe eines bekannten Zusammenhanges zwischen Innen¬ widerstand und Abgastemperatur für den stationären Fall die Abgastemperatur bestimmt wird.- With the help of a known relationship between the internal resistance and the exhaust gas temperature, the exhaust gas temperature is determined for the stationary case.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h ¬ n et , daß2. The method of claim 1, d a d u r c h g e k e n n z e i c h ¬ n et that
- die Steigung der Abgastemperatur-Zeit-Kurve zum jeweils aktuellen Zeitpunkt bestimmt wird und- The slope of the exhaust gas temperature-time curve is determined at the current time and
- der mit einer Konstanten multiplizierte Steigungswert zur aktuellen Temperatur addiert wird,- the slope value multiplied by a constant is added to the current temperature,
- wobei die Konstante in Versuchen so vorbestimmt wurde, daß sich mit den vorgenannten Verfahrensschritten ein möglichst genaues Anpassen an die tatsächliche Abgastemperatur er¬ gibt.- The constant has been predetermined in tests so that the above-mentioned method steps result in the most exact possible adaptation to the actual exhaust gas temperature.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h ¬ n e t , daß als jeweils aktuelle Temperatur eine gemittelte Temperatur verwendet wird. 3. The method according to claim 1, characterized in that an average temperature is used as the current temperature.
4. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h ¬ n e t , daß.4. The method of claim 1, d a d u r c h g e k e n n z e i c h ¬ n e t that.
- der Lambdawert erfaßt wird und- The lambda value is recorded and
- im Falle eines fetten Gemisches ein Zusammenhang zwischen Innenwiderstand und Abgastemperatur verwendet wird, der für fettes Gemisch bestimmt wurde, und- in the case of a rich mixture, a relationship between the internal resistance and the exhaust gas temperature is used, which was determined for the rich mixture, and
- im Falle eines mageren Gemisches ein Zusammenhang zwischen Innenwiderstand und Abgastemperatur verwendet wird, der für mageres Gemisch bestimmt wurde.- In the case of a lean mixture, a relationship between internal resistance and exhaust gas temperature is used, which was determined for a lean mixture.
5. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h ¬ n e t , daß mit Hilfe eines bekannten Zusammenhangs zwischen Innenwiderstand und Sondentemperatur zusätzlich die Sonden¬ temperatur bestimmt wird.5. The method of claim 1, d a d u r c h g e k e n n z e i c h ¬ n e t that with the help of a known relationship between internal resistance and probe temperature, the probe temperature is additionally determined.
6. Verfahren zum Bestimmen der Temperatur einer Lambdasonde, insbesondere Verfahren nach Anspruch 5, d a d u r c h g e ¬ k e n n z e i c h n e t , daß6. A method for determining the temperature of a lambda probe, in particular the method according to claim 5, that a
- der Lambdawert erfaßt wird und- The lambda value is recorded and
- im Falle eines fetten Gemisches ein Zusammenhang zwischen Innenwiderstand und Sondentemperatur verwendet wird, der für fettes Gemisch bestimmt wurde, und- in the case of a rich mixture, a relationship between internal resistance and probe temperature is used, which was determined for the rich mixture, and
- im Falle eines mageren Gemisches ein Zusammenhang zwischen Innenwiderstand und Sondentemperatur verwendet wird, der für mageres Gemisch bestimmt wurde.- In the case of a lean mixture, a relationship between internal resistance and probe temperature is used, which was determined for a lean mixture.
7. Verfahren nach einem der Ansprüche 4 oder 6, d a d u r c h g e k e n n z e i c h n e t , daß7. The method according to any one of claims 4 or 6, d a d u r c h g e k e n n z e i c h n e t that
- ein Zusammenhang zwischen Innenwiderstand und Abgastempera¬ tur verwendet wird, der für eine erste Gemischart bestimmt wurde, und- a relationship between internal resistance and exhaust gas temperature is used, which was determined for a first type of mixture, and
- dann, wenn der Lambdawert die erste Gemischart anzeigt, die Umrechnung von Innenwiderstandswert in Abgastemperatur in einem Umrechnungsschritt gemäß dem bestimmten Zusammenhang erfolgt, - aber dann, weπn-der Lambdawert die andere Gemischart an¬ zeigt, zusätzlich zum genannten Umrechnungsschritt ein wei¬ terer Umrechnungsschritt erfolgt, gemäß dem ein Temperatur¬ differenzwert abgezogen wird, wenn die erste Gemischart mageres Gemisch ist, dagegen zugezählt wird, wenn die er¬ ste Gemischart fettes Gemisch ist.when the lambda value indicates the first mixture type, the conversion of the internal resistance value into the exhaust gas temperature is carried out in a conversion step according to the determined relationship, - but then, when the lambda value indicates the other mixture type, in addition to the conversion step mentioned, a further conversion step is carried out, according to which a temperature difference value is subtracted when the first mixture type is lean, but is counted when the mixture is lean ¬ most mixture type is rich mixture.
8. Vorrichtung zum Bestimmen der Temperatur des Abgases einer8. Device for determining the temperature of the exhaust gas
Brennkraftmaschine, g e k e n n z e i c h n et d u rchInternal combustion engine, g e k e n z e i c h n et d u rch
- ein Mittel (11) zum Bestimmen des Innenwiderstandes einer im Abgas angeordneten Lambdasonde (10) und- A means (11) for determining the internal resistance of a lambda probe (10) arranged in the exhaust gas and
- ein Mittel (12) zum Bestimmen der Abgastemperatur aus dem Innenwiderstand mit Hilfe eines bekannten Zusammenhanges zwischen Innenwiderstand und Abgastemperatur. - A means (12) for determining the exhaust gas temperature from the internal resistance using a known relationship between internal resistance and exhaust gas temperature.
EP19890910824 1988-10-21 1989-10-06 A process and device for temperature measurement using the internal resistance of a lambda probe Withdrawn EP0408678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3835852A DE3835852A1 (en) 1988-10-21 1988-10-21 METHOD AND DEVICE FOR DETERMINING THE TEMPERATURE WITH THE AID OF THE INTERNAL RESISTANCE OF A LAMB SENSOR
DE3835852 1988-10-21

Publications (1)

Publication Number Publication Date
EP0408678A1 true EP0408678A1 (en) 1991-01-23

Family

ID=6365603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890910824 Withdrawn EP0408678A1 (en) 1988-10-21 1989-10-06 A process and device for temperature measurement using the internal resistance of a lambda probe

Country Status (8)

Country Link
US (1) US5129258A (en)
EP (1) EP0408678A1 (en)
JP (1) JP2793869B2 (en)
KR (1) KR900702345A (en)
AU (1) AU623183B2 (en)
BR (1) BR8907129A (en)
DE (1) DE3835852A1 (en)
WO (1) WO1990004764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202479A1 (en) 2013-06-19 2014-12-24 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Abrasive grains on basis of eutectic alumina zirconia

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219228A (en) * 1992-05-11 1993-06-15 General Motors Corporation Exhaust gas temperature measuring system utilizing existing oxygen sensor
GB2277594B (en) * 1993-05-01 1996-09-25 Ford Motor Co Estimating the temperature of a catalytic converter
DE4339692C2 (en) * 1993-11-22 2003-04-17 Bosch Gmbh Robert Method and device for determining the exhaust gas temperature with a lambda probe
DE19541903A1 (en) * 1995-11-10 1997-05-15 Bayerische Motoren Werke Ag Monitoring system for the exhaust gas purification of an internal combustion engine
EP0908721A1 (en) * 1997-10-10 1999-04-14 Heraeus Electro-Nite International N.V. Method of determining exhaust gas temperature and the air/fuel ratio lambda and sensor arrangement for carrying out the method
DE19806110C2 (en) * 1997-10-10 2001-01-04 Heraeus Electro Nite Int Method for determining the exhaust gas temperature and the air / fuel ratio lambda and sensor arrangement for carrying out the method
DE10027900B4 (en) * 2000-06-06 2018-11-15 Delphi Technologies, Inc. Arrangement for determining the operating temperature of an exhaust gas probe
JP3719912B2 (en) * 2000-06-07 2005-11-24 三菱電機株式会社 Temperature sensor for exhaust gas sensor
DE10029795C2 (en) 2000-06-16 2002-05-08 Siemens Ag Device for measuring the internal resistance of a linear lambda probe
US6679238B2 (en) * 2002-03-19 2004-01-20 General Motors Corporation Exhaust gas temperature determination and oxygen sensor heater control
JP4503222B2 (en) * 2002-08-08 2010-07-14 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE102005054735B4 (en) * 2005-11-17 2019-07-04 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102007042227A1 (en) * 2007-09-05 2009-03-12 Robert Bosch Gmbh Method for determining an exhaust gas temperature of an internal combustion engine
DE102008005110B4 (en) * 2008-01-15 2018-10-25 Volkswagen Ag Method and control for operating and adjusting a lambda probe
US7870778B2 (en) * 2008-06-11 2011-01-18 The Boeing Company Method and apparatus for estimating engine power
US8335608B2 (en) * 2008-06-11 2012-12-18 The Boeing Company Monitoring vehicle and equipment operations at an airport
US8504278B2 (en) * 2009-10-29 2013-08-06 GM Global Technology Operations LLC Method and system for detecting a fault during catalyst light-off
DE102009053411A1 (en) * 2009-11-14 2011-05-19 Volkswagen Ag Method for processing a measured, ohmic resistance R (t) of a measuring element with temperature-dependent, ohmic resistance
DE102012212596A1 (en) * 2012-07-18 2014-01-23 Robert Bosch Gmbh Method for operating exhaust gas probe in exhaust passage of internal combustion engine of passenger car, involves generating temperature independent output signal of exhaust gas probe, and calculating Nernst voltage of measuring cell
DE102016202349A1 (en) * 2016-02-16 2017-08-17 Volkswagen Aktiengesellschaft Method and device for exhaust aftertreatment of an internal combustion engine
KR101816426B1 (en) 2016-08-01 2018-01-08 현대자동차주식회사 Method for catalyst heating control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022427A1 (en) * 1980-06-14 1982-01-07 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR FUEL-AIR MIXTURE TREATMENT IN INTERNAL COMBUSTION ENGINES
US4376026A (en) * 1980-08-01 1983-03-08 The North American Manufacturing Company Oxygen concentration measurement and control
DE3117790A1 (en) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR MEASURING TEMPERATURE WITH OXYGEN PROBES
JPS58158345A (en) * 1982-03-15 1983-09-20 Nippon Denso Co Ltd Control method for engine
US4580535A (en) * 1985-06-03 1986-04-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine idling speed controlling system
FR2567962B1 (en) * 1984-07-23 1989-05-26 Renault ADAPTIVE METHOD FOR REGULATING THE INJECTION OF AN INJECTION ENGINE
DE3533197A1 (en) * 1985-09-18 1987-03-19 Atlas Fahrzeugtechnik Gmbh Mixture control for an internal combustion engine
DE3637304A1 (en) * 1986-08-23 1988-05-05 Vdo Schindling METHOD AND CIRCUIT FOR DETECTING THE READY FOR OPERATION OF AN OXYGEN MEASUREMENT PROBE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9004764A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202479A1 (en) 2013-06-19 2014-12-24 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Abrasive grains on basis of eutectic alumina zirconia

Also Published As

Publication number Publication date
JPH03501776A (en) 1991-04-18
AU623183B2 (en) 1992-05-07
BR8907129A (en) 1991-02-13
KR900702345A (en) 1990-12-06
WO1990004764A1 (en) 1990-05-03
AU4321389A (en) 1990-05-14
DE3835852A1 (en) 1990-04-26
JP2793869B2 (en) 1998-09-03
US5129258A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
EP0408678A1 (en) A process and device for temperature measurement using the internal resistance of a lambda probe
DE2333743C2 (en) Method and device for exhaust gas decontamination from internal combustion engines
DE2938322A1 (en) HEAT WIRE THROUGHPUT MEASURING DEVICE
DE4007883A1 (en) METHOD AND BATTERY TEST DEVICE FOR DETERMINING THE CONDITION OF A LEAD BATTERY
DE4113316A1 (en) CONNECTION CIRCUIT FOR A LAMB PROBE AND TEST METHOD FOR SUCH A CIRCUIT
EP0377600B1 (en) Process and device for lambda-value determination and use of same
DE19506605C2 (en) Hot film type air flow rate sensing arrangement usable in an internal combustion vehicle engine
EP1290412B1 (en) Gas meter and method for determining a consumed quantity of a gas mixture
EP0439474A1 (en) A process for heating regulation of lambda probes.
DE3151415C2 (en) Method for measuring the electrode spacing of the spark plugs of a motor vehicle and device for carrying out the method
DE10138806C1 (en) Temperature determination method for automobile exhaust gas sensor uses measurement of internal resistance of electrochemical cell
DE102009047354A1 (en) Method and control device for detecting a gas concentration of a gas from a gas mixture
DE3819101A1 (en) METHOD AND DEVICE FOR PROCESSING MEASURED VALUES
DE2750478C2 (en) Device for correcting the output voltage characteristic of an oxygen measuring probe with an ion-conducting solid electrolyte
WO2023057625A1 (en) Method for detecting the convective heat transfer coefficient and the thickness of an interface
DE10164018B4 (en) Procedure for determining the heat capacity and, if applicable, the thermal conductivity
DE3905665C2 (en) Arrangement for measuring the mass flow
DE102009053411A1 (en) Method for processing a measured, ohmic resistance R (t) of a measuring element with temperature-dependent, ohmic resistance
DE10003676B4 (en) Method and device for determining the concentrations of a H2 / He gas mixture
WO1990009517A1 (en) Process for checking the performance of a lambda sensor
DE3123336A1 (en) HEAT METER
DE2736444C3 (en) Calibration device for an engine tester
DE102015118008A1 (en) Method for analyzing and evaluating measured values of a test system
DE2612253B2 (en) Vulcanometer for determining the course of vulcanization of rubber and its mixtures
DE102007042227A1 (en) Method for determining an exhaust gas temperature of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930513