EP0400057A4 - Preparation of superconducting oxides by electrochemical oxidation: anodic superconductors - Google Patents
Preparation of superconducting oxides by electrochemical oxidation: anodic superconductorsInfo
- Publication number
- EP0400057A4 EP0400057A4 EP19890902671 EP89902671A EP0400057A4 EP 0400057 A4 EP0400057 A4 EP 0400057A4 EP 19890902671 EP19890902671 EP 19890902671 EP 89902671 A EP89902671 A EP 89902671A EP 0400057 A4 EP0400057 A4 EP 0400057A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- anode
- superconducting oxide
- alloy
- superconducting
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006056 electrooxidation reaction Methods 0.000 title abstract description 5
- 239000002887 superconductor Substances 0.000 title description 3
- 238000002360 preparation method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000003792 electrolyte Substances 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 238000007712 rapid solidification Methods 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims 1
- 229910052689 Holmium Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- -1 La2-xBaxCuO4-y Chemical class 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0296—Processes for depositing or forming copper oxide superconductor layers
Definitions
- This invention relates to superconducting materials.
- Superconductors are materials having zero resistance to the flow of electrons below a certain critical temperature, T c . It is known that certain metal oxides, e.g., La 2-x Ba x CuO 4-y , La 2-x Sr x CuO 4-y , Ba 2 YCu 2 O 9-Y , etc. exhibit superconductivity. It is desirable to provide such oxides in forms, e.g., wires or thin films, that permit practical utilization of their superconductive property.
- the invention features preparing a superconducting oxide by electrochemical oxidation.
- an electrochemical cell containing an anode made of an alloy of the metallic precursors of the superconducting oxide is provided.
- a surface of the anode is in contact with the electrolyte of the cell, and the anode is electrochemically oxidized to form the superconducting oxide.
- the metallic precursors are present in the alloy in the stoicherr.etric proportions of the metals in the oxide.
- the metallic precursors are La, M, and Cu and the superconducting oxide has the formula La 2-y M x CuO 4-y .
- M is an alkaline earth element such as Ba, Sr, or Ca.
- the metallic precursors are rare earth elements (N), Ba, and Cu and the superconducting oxide has the formula NBa 2 Cu 3 O 7-y .
- rare earth elements are Y, La, Eu, Gd, Tb, Dy, Hu, Er, Tm, Yb, or Lu.
- the alloy is formed using rapid solidification techniques to provide a homogeneous alloy.
- Formation of superconducting oxides by electrochemical oxidation allows considerable control over the structure, composition, and thickness of the oxide through adjustment of oxidation conditions, e.g., electrolyte composition, temperature, applied voltage or current and duration of oxidation.
- oxidation conditions e.g., electrolyte composition, temperature, applied voltage or current and duration of oxidation.
- the thickness of the superconducting oxide layer formed can be controlled by electrochemically oxidizing until the desired thickness is obtained.
- the Figure is an electrochemical cell.
- an electrochemical cell 10 includes a container 12, an anode 14, a reference electrode 16, a counter electrode 17, a power supply 18, and an electrolyte 20.
- the container 12 is made of an inert material, such as glass.
- the anode 14 is made of an alloy of the precursor metals of the superconducting oxide.
- the precursor metals are present in the stoichiometric proportions of the metals in the target oxide.
- the alloy is homogeneous, i.e., the chemical composition and microstructure of the alley is substantially uniform throughout. Homogeneity is achieved by using standard rapid solidification techniques such as melt spinning or inert gas atomization.
- the surface of the anode should be smooth to achieve a reproducible surface condition; the smoothness can be generated through conventional abrasion or polishing (e.g., electropolishing) methods.
- the alloy may also be degassed in a suitable inert solvent, e.g., cyclohexane.
- the reference electrode 16 provides a reference potential for the applied voltage (or current) used to form the oxide.
- the preferred reference electrode is a high impedence glass electrode such as a saturated calomel electrode.
- the counter electrode completes the electrochemical circuit and allows electric current to pass between itself and the anode.
- Suitable counter electrodes include standard platinum and graphite electrodes.
- the power supply 18 provides a constant voltage to the cell during the oxidation. Where the oxidation is by galvanostatic techniques, a constant current supply is used. Current and voltage metering instruments are incorporated into the power source configuration.
- the electrolyte 20, in which the electrodes are immersed may be aqueous, non-aqueous, or a molten salt, depending upon the alloy composition and desired film characteristics.
- Non-aqueous electrolytes are most preferred.
- suitable aqueous electrolytes include sulphuric acid and sodium hydroxide solutions.
- non-aqueous electrolytes which should be used where oxide formation in the absence of water is desired, includes solvents such as ethanol, ammonia, and acetonitrile.
- the ionic strength of the electrolyte can be increa-rrd by the addition of, e.g., hydrochloric acid.
- molten salt electrolytes are LiCl and Na 2 SO 4 .
- the oxidations events are carried out using standard methods well known to those skilled in the art.
- the potential is kept constant (perferably between 2.5 V and -2.5 V, with respect to the reference electrode), and the current passed by the anode is monitored to follow the rate of oxide formation.
- the current is kept constant (preferably between 10 -1 A and 10 -6 A/cm 2 ) and the anode potential is monitored to follow the rate of oxide formation.
- the cell can also contain a means for temperature control of the electrolyte and a means for regulating the gas content of the eiectrolyte.
- the oxidation can be performed with an open circuit, thereby making a counter electrode unnecessary.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14962188A | 1988-01-28 | 1988-01-28 | |
US149621 | 1988-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0400057A1 EP0400057A1 (de) | 1990-12-05 |
EP0400057A4 true EP0400057A4 (en) | 1990-12-19 |
Family
ID=22531132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890902671 Withdrawn EP0400057A4 (en) | 1988-01-28 | 1989-01-25 | Preparation of superconducting oxides by electrochemical oxidation: anodic superconductors |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0400057A4 (de) |
JP (1) | JPH03503548A (de) |
WO (1) | WO1989007161A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2655356B1 (fr) * | 1989-12-01 | 1992-04-30 | Rhone Poulenc Chimie | Procede de traitement electrochimique d'un materiau sous forme oxyde, application aux supraconducteurs et supraconducteurs ainsi obtenus. |
FR2665713A2 (fr) * | 1989-12-01 | 1992-02-14 | Rhone Poulenc Chimie | Procede de traitement par voie electrochimique d'un materiau sous forme d'oxyde. |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291318A (ja) * | 1987-05-23 | 1988-11-29 | Fujikura Ltd | 酸化物系超電導線の製造方法 |
-
1989
- 1989-01-25 WO PCT/US1989/000308 patent/WO1989007161A1/en not_active Application Discontinuation
- 1989-01-25 JP JP1502483A patent/JPH03503548A/ja active Pending
- 1989-01-25 EP EP19890902671 patent/EP0400057A4/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
DATABASE WPIL. accession no. 89-013478, Derwent Publications Ltd, London, GB; & JP-A-63 291 318 (KUJIKURA CABLE WORKS K.K.) 29-11-1988 * |
Also Published As
Publication number | Publication date |
---|---|
WO1989007161A1 (en) | 1989-08-10 |
EP0400057A1 (de) | 1990-12-05 |
JPH03503548A (ja) | 1991-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Robinson et al. | The electrochemical behavior of aluminum in the low temperature molten salt system n butyl pyridinium chloride: aluminum chloride and mixtures of this molten salt with benzene | |
US5580430A (en) | Selective metal cation-conducting ceramics | |
Mizuguchi et al. | A highly stable nonaqueous suspension for the electrophoretic deposition of powdered substances | |
US5470820A (en) | Electroplating of superconductor elements | |
Strawbridge et al. | The Role of Reactive Elements on Scale Growth in High‐Temperature Oxidation of Pure Nickel, Iron, Cobalt, and Copper: I. Oxidation Kinetics and Scale Morphology | |
US4803134A (en) | High energy density lithium-oxygen secondary battery | |
JPS588552B2 (ja) | 改良された導電性および耐食性の集電装置 | |
US4269670A (en) | Electrode for electrochemical processes | |
JPH01159399A (ja) | 任意の形状の超伝導材料の製造方法 | |
Robinel et al. | Silver sulfide based glasses:(II). Electrochemical properties of GeS2 Ag2S Agl glasses: transference number measurement and redox stability range | |
EP0400057A4 (en) | Preparation of superconducting oxides by electrochemical oxidation: anodic superconductors | |
US4659629A (en) | Formation of a protective outer layer on magnesium alloys containing aluminum | |
US6332967B1 (en) | Electro-deposition of superconductor oxide films | |
US5244875A (en) | Electroplating of superconductor elements | |
Pawar et al. | Electrodeposition of Bi Sr Ca Cu alloyed films from non-aqueous bath | |
JP2595273B2 (ja) | 超電導体層の形成方法 | |
US5550104A (en) | Electrodeposition process for forming superconducting ceramics | |
Appleby et al. | Reduction of oxygen on silver electrodes in ternary alkali carbonate eutectic melt | |
Velayutham et al. | Preparation of a polypyrrole—lead dioxide composite electrode for electroanalytical applications | |
JPH10218689A (ja) | 無機固体材料への金属ドーピング方法 | |
Adzic et al. | Underpotential deposition of copper incorporated into Nafion films cast on Au (111) surfaces | |
Wales | The Anodic Formation of Germanium Oxidic Films | |
Ostapenko | Potentiostatic Investigation of the Vitreous Carbon/RbCu~ 4Cl~ 3I~ 2 Interface | |
US4801678A (en) | Poly(2,6-naphthoquinone) film and the preparation and uses thereof | |
JP2595274B2 (ja) | 酸化物系超電導体層の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19901102 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MOFFAT, THOMAS, P. Inventor name: LATANISION, RONALD, M. Inventor name: NAGARKAR, PRADNYA, V. Inventor name: SEARSON, PETER, C. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19910628 |
|
R18W | Application withdrawn (corrected) |
Effective date: 19910628 |