EP0393257A1 - Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd - Google Patents

Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd Download PDF

Info

Publication number
EP0393257A1
EP0393257A1 EP89201062A EP89201062A EP0393257A1 EP 0393257 A1 EP0393257 A1 EP 0393257A1 EP 89201062 A EP89201062 A EP 89201062A EP 89201062 A EP89201062 A EP 89201062A EP 0393257 A1 EP0393257 A1 EP 0393257A1
Authority
EP
European Patent Office
Prior art keywords
soot filter
filter according
honeycomb bodies
diesel soot
diesel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89201062A
Other languages
English (en)
French (fr)
Inventor
Rolf Dipl.-Ing. Brück
Hans-Jürgen Dipl.-Phys. Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority to EP89201062A priority Critical patent/EP0393257A1/de
Publication of EP0393257A1 publication Critical patent/EP0393257A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/084Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling the gases flowing through the silencer two or more times longitudinally in opposite directions, e.g. using parallel or concentric tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2230/00Combination of silencers and other devices
    • F01N2230/02Exhaust filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2230/00Combination of silencers and other devices
    • F01N2230/04Catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the present invention relates to a diesel soot filter, that is to say a device in the exhaust duct of self-igniting internal combustion engines, which is suitable for retaining the soot particles which are entrained in the exhaust gas as a result of imperfect combustion of the fuel and to which harmful effects are attributed when they enter the atmosphere and thus get into the air.
  • a reduction in soot emissions by about 2/3 can be achieved with honeycomb filters, which are usually made of a ceramic material.
  • honeycomb filters which are usually made of a ceramic material.
  • the retained soot particles clog the channels in the honeycomb body within a comparatively short time to such an extent that the performance of the machine is reduced as a result of the pressure loss which then occurs, or the fuel consumption is significantly increased while the power output remains the same.
  • the soot particles accumulated in the filter must therefore be removed at regular intervals by oxidation, ie combustion.
  • the ignition temperature of the soot is above the usually reached exhaust gas temperature in the range of 540 ° C, which is why an additional heat supply is required to achieve this.
  • the electric heating is preferable for safety and procedural reasons, but because of the poor efficiency of the power generation by the generator driven by the machine itself, it is worth mentioning Increased consumption of fuel.
  • the heating power required can be reduced according to the suggestions made there if the ignition temperature of the soot can be reduced by the addition of catalytically active substances in the fuel.
  • From DE-A 37 11 101 the proposal is known to obtain the heat supply required to reach the ignition temperature from the oxidation of further substances which are inevitably entrained in the exhaust gas, such as carbon monoxide and hydrocarbons; this oxidation takes place catalytically on the surface of honeycomb bodies of the type described, for example provided with a platinum coating, as are also used to reduce the proportion of pollutants in the exhaust gases of gasoline engines.
  • the cited document also teaches to preheat the additional air blown in to provide the oxygen required for the oxidation by being conducted in heat exchange with the exhaust gases.
  • the object of the present invention is a diesel soot filter of the type described, in which the retained soot particles are optionally intermittently oxidized even when the diesel engine is only operated at partial load, the exhaust gas temperature regularly being below the ignition temperature of the soot; this is also the case if it (according to the proposal known from EP-A-0 077 524) has been reduced catalytically (e.g. also by contacting a correspondingly effective surface of the filter) to values around 350 ° C.
  • the energy requirement for any additional heating that may become necessary should be minimized and an embodiment of the filter proposed that is particularly suitable for supporting the course of the various chemical processes.
  • the diesel particulate filter consists of a plurality of first and second honeycomb bodies, which are alternately arranged one behind the other in the exhaust gas channel and provided with throughflow channels, of which the first honeycomb bodies are provided with a first surface layer, which in itself in a known manner catalytically causes the conversion of nitrogen oxides and carbon monoxide to nitrogen or carbon dioxide, while the second honeycomb bodies are provided with a second surface layer which, in a manner known per se, catalytically reduces the ignition temperature of the soot adhering to it.
  • the reactions taking place in the first honeycomb bodies are exothermic, so that the temperature of the exhaust gas when it leaves it is increased to such an extent that it is sufficient to bring the soot, which preferably accumulates in the second honeycomb bodies, to the required ignition temperature, which in turn is due to the presence the second coating is reduced.
  • the filter will continuously clean itself, while at the same time converting the nitrogen oxides, which are also considered to be harmful substances, and the carbon monoxide into harmless compounds.
  • the conical shape proposed in claim 2 at least for the second honeycomb body has been proven to improve the retention capacity of the same for soot particles.
  • At least the second honeycomb bodies are provided with an additional electrical heater in order to ensure that a temperature sufficient for the ignition of the soot is reached in the same, for example during idle operation. Because the exhaust gas as a result of in the first honeycomb bodies the exothermic reaction taking place is already heated, the additional electrical heating need only overcome a smaller temperature range and can then be fed without difficulty from the electrical system of a vehicle driven by the diesel engine.
  • the diesel particulate filter is provided with inlet channels for the supply of additional air. This ensures that sufficient oxygen is available for the oxidation of the soot particles.
  • the heat balance of the filter is improved by the embodiment proposed in claim 6, in which the inlet ducts for the supply air are in heat exchange with the latter before they enter the exhaust duct.
  • the inlet channels are provided with an additional heater.
  • this additional heating preferably consists of at least one electrically heated third honeycomb body through which the additional air flows.
  • the supply of additional air is usually caused by the soot pressure caused by the movement when using the diesel soot filter in vehicles.
  • the supply of additional air is at least temporarily supported by a blower.
  • honeycomb bodies are proposed to produce the first and / or second and / or third honeycomb bodies from a metallic material.
  • the same reasons are decisive, which have also caused the applicant to offer such honeycomb bodies as catalyst carriers for the detoxification of the exhaust gases from gasoline engines, namely a faster reaching of their operating temperature in addition to increased mechanical strength, as is particularly the case for use in road vehicles Meaning is.
  • the metal honeycomb body can be flowed through directly by the current and thus act as a heater for the proposed additional heating.
  • the first and / or second and / or third honeycomb bodies can be made from a ceramic material, in particular for motors that are operated at constant power, preferably stationary.
  • the catalytically active (and metallic) surface layer also used as a heating element of the auxiliary heater.
  • the proposed diesel soot filter can also be operated at lower exhaust gas temperatures, there is also the possibility according to claim 15 of arranging it in that part of the exhaust gas duct which is designed as a silencer. In this area, the space available for accommodating the diesel soot filter is generally better than in the vicinity of the engine, and the ones that are used anyway to dampen the exhaust sound, sometimes. ducts guided against one another can be integrated with the ducts for supplying the additional air to form a more favorable design.
  • the exhaust gas of a diesel engine is discharged through a channel 1, the direction of flow of the exhaust gases being indicated by the arrows 2.
  • the exhaust duct 1 opens into a muffler, which in a known manner consists of a prechamber 3, a main chamber 4 and a collecting chamber 5, which are separated from each other by baffles 6 and which is repeatedly deflected in its flow direction and Exhaust gas divided into partial streams flows through distributor openings 7 until it is brought together via collection openings 8 in a continuation of the exhaust gas duct 1 that finally opens into the atmosphere.
  • a plurality of honeycomb bodies are arranged in the exhaust gas stream 2, specifically alternating first honeycomb body 9 and second honeycomb body 10, here of cylindrical, partially designed as a ring.
  • the honeycomb bodies 9, 10 can be made from a ceramic material or, preferably, from sheet metal.
  • the first honeycomb bodies 9 are provided with a first coating containing platinum and / or rhodium, the catalytic effect of which on the exhaust gas leads to the carbon monoxide contained in it being oxidized to carbon dioxide while the various nitrogen oxides are being split, so that ultimately harmless products are released into the atmosphere. It is known to the person skilled in the art that this catalytic reaction only proceeds in the desired manner when a certain stoichiometric composition of the exhaust gas is present; Devices for regulating the composition of the exhaust gas, which are also not shown, are therefore required, but these are not the subject of the present invention and are assumed to be known.
  • the structure of the first honeycomb bodies 9 is relatively coarse-celled, so that the soot particles carried in the exhaust gas are not appreciably reflected in them, especially since the flow therein is largely laminar.
  • the second honeycomb bodies 10 have a smaller cell structure, so that the soot particles are highly likely to collide with the webs 11 separating the cells and stick to them. This effect is exacerbated by the fact that the webs 11 of the first honeycomb bodies 9 are bent out of the flow direction at least at their rear end seen in the flow direction and thus (see FIG. 4) form the noses 12 which promote swirling. This can be accomplished particularly easily in the case of metallic honeycomb bodies which are constructed from sheet metal layers 13, 14 which are spirally wound, alternately smooth and corrugated.
  • the second honeycomb bodies 10 are provided with a second coating containing silver vanadate, which has a catalytic effect by reducing the soot temperature of the soot accumulating here to such an extent that the (increased by the exothermic reaction in the first honeycomb bodies 9)
  • the temperature of the exhaust gas is sufficient to initiate combustion of the soot before it has blocked a significant number of cells in the second honeycomb body 10.
  • the combustion which is carried out as completely as possible, that is to say carbon dioxide, requires additional oxygen which is supplied through air channels 15.
  • These channels can be self-priming through a suitable design of their openings projecting into the exhaust gas stream 2, so that an adequate air supply is ensured even without the aid of external forces, for example the dynamic pressure on a moving vehicle equipped with the relevant diesel engine.
  • the air supply can be at least temporarily supported by a fan 16, as indicated schematically in FIG. Since the air channels 15 are guided in counterflow to the exhaust gas and are in heat exchange with it, sufficient preheating of the additional air can be expected in normal operation. Under special conditions, for example at extremely low ambient temperatures, it may be advantageous to provide a third honeycomb body 17 in the air duct 15, which is electrically conductive and acts as a heater by connection to a current source 18, which is also only indicated schematically. Expediently, like the first and second honeycomb bodies 9, 10, it is also constructed spirally from alternately smooth and corrugated sheet metal layers 13, 14 (shown in FIG.
  • the second honeycomb bodies 10 can be connected to the power source 18 and act as a heating element if, despite their increase due to the catalytic reaction in the first honeycomb bodies 9 and the effect of the second coating on the second honeycomb bodies 10, the exhaust gas temperature is not sufficient for the To burn soot.
  • honeycomb bodies 9, 10, 17 made of ceramic material are used, the catalytic layers expediently serve, since the metal itself is used as a heating conductor. Both metallic honeycomb bodies acting directly as a heating conductor, it goes without saying that the individual sheet-metal layers 13, 14 are separated from one another by insulating layers (not shown here) as soon as necessary.
  • the second honeycomb bodies 10 can have a conical shape as shown in FIG.
  • the diesel soot filter can be provided with thermal insulation 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Ein sich im Betrieb durch Abbrennen des Rußes selbstreinigender Dieselrußfilter weist abwechselnd hintereinander angeordnete erste Wabenkörper (9) mit einer verhältnismäßig grobzelligen Struktur und zweite Wabenkörper (10) mit einer verhältnismäßig feinzelligen Struktur auf, so daß sich der Ruß im wesentlichen in letzteren niederschlägt. Die ersten Wabenkörper (9) entsprechen den für die Abgasentgiftung bei Ottomotoren verwendeten Katalysatoren und vermindern den Anteil an Kohlenmonoxyd und Stickoxyden im Abgas. Die durch diese exotherme Reaktion gebildete Wärme sowie ggf. eine elektrische Zusatzbeheizung der zweiten Wabenkörper (10) läßt eine Temperatur erreichen, die in Verbindung mit einer die Zündtemperatur des Rußes herabsetzenden katalytischen Beschichtung der zweiten Wabenkörper zu einer Verbrennung des Rußes führt. Zur Deckung des Sauerstoffbedarfes wird vorgewärmte Zusatzluft über besondere Kanäle (15) angesaugt. Wegen der verbesserten Wärmebilanz braucht der Dieselrußfilter nicht in Motornähe angeordnet zu werden, sondern kann in den Schalldämpfer (3-5) des Motors integriert werden. Sowohl keramische als auch metallische Wabenkörper können verwendet werden, wobei bei ersteren die katalytisch wirksame Schicht selbst als Heizleiter ausgebildet ist.

Description

  • Die vorliegende Erfindung betrifft einen Dieselrußfilter, d.h. eine Einrichtung im Abgaskanal von selbstzündenden Verbrennungskraftmaschinen, die dazu geeignet ist, die Rußpartikel zurückzuhalten, die infolge unvollkommener Verbrennung des Brennstoffes im Abgas mitgeführt werden und denen gesundheitsschädliche Wirkungen zugeschrieben werden, wenn sie in die die Atmosphäre und damit in die Atemluft gelangen. Eine Herabsetzung des Rußausstoßes um etwa 2/3 kann mit wabenförmigen, meist aus einem keramischen Material hergestellten Filtern erreicht werden. Die zurückgehaltenen Rußpartikel verstopfen innerhalb einer verhältnismäßig kurzen Zeit die Kanäle in dem Wabenkörper soweit, daß infolge des dann auftretenden Druckverlustes die Leistung der Maschine herabgesetzt wird bzw. bei gleichbleibender Leistungabgabe der Kraftstoffverbrauch nennenswert erhöht wird. Die im Filter akkumulierten Rußpartikel müssen daher in regelmäßigen Zeitabständen durch Oxydation, d.h. Verbrennung wieder entfernt werden. Die Zündtemperatur des Rußes liegt dabei über der üblicherweise erreichten Abgastemperatur im Bereich von 540 °C, weshalb eine zusätzliche Wärmezufuhr erforderlich ist, um diese zu erreichen. Eine Übersicht über zu diesem Zweck vorgeschlagene Einrichtungen (z.B. Aufheizen durch einen mit dem Kraftstoff betriebenen Brenner oder durch einen aus dem Bordnetz gespeisten elektrischen Heizer) ergibt sich aus dem Artikel "Advanced Techniques for Thermal and Catalytic Diesel Particulate Trap Regeneration " von V. D. Rao u.a. in der SAE Technical Paper Series nach einem auf einem internationalen Kongress in Detroit/US anläßlich einer vom 25.2. - 1.3.1985 stattgehabten Ausstellung gehaltenen Vortrag. Danach ist zwar die elektrische Beheizung aus sicherheits- und verfahrens­technischen Gründen vorzuziehen, wegen des schlechten Wirkungsgrades der Stromerzeugung durch den von der Maschine selbst getriebenen Generator jedoch mit einem nennenswerten Mehrverbrauch an Kraftsoff verbunden. Die erforderliche Heiz­leistung kann nach den dort gemachten Vorschlägen herabgesetzt werden, wenn die Zündtemperatur des Rußes durch den Zusatz von katalytisch wirkenden Substanzen im Kraftstoff herabgesetzt werden kann. Aus der DE-A 37 11 101 ist der Vorschlag bekannt, die zum Erreichen der Zündtemperatur erforderliche Wärmezufuhr aus der Oxydation weiterer, zwangsläufig im Abgas mitgeführter Stoffe, wie Kohlenmonoxyd und Kohlenwasserstoffen zu gewinnen; diese Oxydation erfolgt katalytisch an der Oberfläche von z.B. mit einer Platinbeschichtung versehenen Wabenkörpern der beschriebenen Art, wie sie auch zur Reduktion des Schadstoff­anteils in den Abgasen von Ottomotoren verwendet werden. Die genannte Schrift lehrt auch, die zur Bereitstellung des für die Oxydation benötigten Sauerstoffes eingeblasene Zusatzluft vorzuwärmen, indem sie im Wärmeaustausch mit den Abgasen geführt wird.
  • Aufgabe der vorliegenden Erfindung ist ein Dieselrußfilter der beschriebenen Art, in dem die zurückgehaltenen Rußpartikel ggf. intermittierend auch dann oxydiert werden, wenn der Dieselmotor nur in Teillast betrieben wird, wobei die Abgastemperatur regelmäßig unterhalb der Zündtemperatur des Rußes liegt; dies auch dann, wenn dieselbe (nach dem aus der EP-A- 0 077 524 bekannten Vorschlag) auf katalytischem Wege (z.B. auch durch Kontaktierung mit einer entsprechend wirksamen Oberfläche des Filters) auf Werte um 350 °C herabgesetzt worden ist. Der Energiebedarf für eine etwa notwendig werdende Zusatzheizung soll minimiert werden und eine Ausgestaltung des Filters vorgeschlagen werden, die in besonderer Weise geeignet ist, den Ablauf der verschiedenen chemischen Prozesse zu unterstützen.
  • Die Lösung dieser Aufgabe erfolgt dadurch, daß der Dieselruß­filter aus mehreren im Abgaskanal abwechselnd hintereinander angeordneten ersten und zweiten mit Durchströmkanälen versehe­nen Wabenkörpern besteht, von denen die ersten Wabenkörper mit einer ersten Oberflächenschicht versehen sind, die in an sich bekannter Weise katalytisch die Umsetzung von Stickoxyden und Kohlenmonoxyd zu Stickstoff bzw. Kohlendioxyd bewirkt, während die zweiten Wabenkörper mit einer zweiten Oberflächenschicht versehen sind, die in an sich bekannter Weise katalytisch eine Herabsetzung der Zündtemperatur des ihr anhaftenden Rußes bewirkt. Die in den ersten Wabenkörpern ablaufenden Reaktionen sind bekanntlich exotherm, so daß die Temperatur des Abgases beim Verlassen derselben soweit erhöht ist, daß sie ausreicht, um den sich bevorzugt in den zweiten Wabenkörpern ansammelnden Ruß auf die erforderliche Zündtemperatur zu bringen, die ihrerseits durch das Vorhandensein der zweiten Beschichtung herabgesetzt ist. Bei den meisten Betriebszuständen des Diesel­motors wird so eine kontinuierliche Selbstreinigung des Filters stattfinden, wobei gleichzeitig die ebenfalls als Schadstoffe anzusehenden Stickoxyde und das Kohlenmonoxyd in unbedenkliche Verbindungen überführt werden. Die im 2. Anspruch zumindest für die zweiten Wabenkörper vorgeschlagene Kegelform verbessert nachgewiesenermaßen das Rückhaltevermögen derselben für Rußpartikel.
  • In die gleiche Richtung neben einer Vergleichmäßigung des Temperaturprofils wirkt die im 3. Anspruch vorgeschlagene Ausgestaltung, bei der zumindest die ersten Wabenkörper eine Form aufweisen, die eine in Stromrichtung hinter ihnen erfol­gende Verwirbelung des Abgasstromes unterstützt. Dadurch, daß die Abgasströmung in Lee der ersten Wabenkörper turbulent ist, erhöht sich die Wahrscheinlichkeit, daß die Rußpartikel in den zweiten Wabenkörpern gegen die Wände desselben prallen und dort festgehalten sowie durch die katalytische Wirkung der zweiten Beschichtung in ihrer Zündtemperatur herabgesetzt werden.
  • Gemäß dem 4. Anspruch sind zumindest die zweiten Wabenkörper mit einer elektrischen Zusatzbeheizung versehen, um sicherzu­stellen, daß auch z.B. bei Leerlaufbetrieb in denselben eine für die Zündung des Rußes ausreichende Temperatur erreicht wird. Da das Abgas infolge der in den ersten Wabenkörpern stattfindenden exothermen Reaktion bereits aufgeheizt wird, braucht die elektrische Zusatzheizung nur eine geringere Tem­peraturspanne zu überwinden und kann dann ohne Schwierigkeiten aus dem Bordnetz eines mit dem Dieselmotor angetriebenen Fahrzeuges gespeist werden.
  • Als nützliche Ausgestaltung der Erfindung wird im 5. Anspruch vorgeschlagen, daß der Dieselrußfilter mit Einlaßkanälen für die Zufuhr von Zusatzluft versehen ist. Hierdurch wird sicher­gestellt, daß für die Oxydation der Rußpartikel ausreichender Sauerstoff zur Verfügung steht.
  • Die Wärmebilanz des Filters wird durch die im 6. Anspruch vor­geschlagene Ausgestaltung verbessert, in der die Einlaßkanäle für die Zuluft vor ihrem Eintritt in den Abgaskanal im Wärme­austausch mit letzterem stehen.
  • Beim Betrieb des Dieselrußfilters bei extrem niedrigen Tempe­raturen und im niedrigen Lastbereich ist damit zu rechnen, daß auf diese Weise keine ausreichende Vorwärmung der Zusatzluft erfolgt. Dementsprechend wir im 7. Anspruch vorgeschlagenen, daß die Einlaßkanäle mit einer Zusatzheizung versehen sind.
  • Gemäß dem 8. Anspruch besteht diese Zusatzheizung vorzugsweise aus mindestens einem von der Zusatzluft durchströmten, elektrisch beheizten dritten Wabenkörper.
  • Die Zufuhr der Zusatzluft wird beim Einsatz der Dieselrußfilter in Fahrzeugen üblicherweise durch den durch die Bewegung her­vorgerufenen Staudruck bewirkt. Bei Stillstand des Fahrzeuges oder aber für stationäre Anlagen wird gemäß dem 9. Anspruch vorgeschlagen, daß die Zufuhr von Zusatzluft zumindest zeitweise durch ein Gebläse unterstützt wird.
  • Das im 10. Anspruch vorgeschlagene Merkmal, demzufolge die Zellenzahl der ersten Wabenkörper geringer ist als diejenigen der zweiten Wabenkörper stellt sicher, daß die Abscheidung der Rußpartikel in erster Linie in letzteren erfolgt und nicht etwa zu einer Verstopfung der Kanäle bereits in den ersten Waben­körpern fühlt. Zusätzlich wird durch dieses Merkmal die Verwirbelung des Abgasstromes unterstützt.
  • Im 11. Anspruch wird vorgeschlagen, die ersten und/oder zweiten und/oder dritten Wabenkörper aus einem metallischen Werkstoff herzustellen. Hierfür sind größtenteils die gleichen Gründe maßgebend, die auch die Anmelderin dazu veranlaßt haben, derartige Wabenkörper als Katalysatorträger für die Entgiftung der Abgase von Ottomotoren anzubieten, nämlich ein schnelleres Erreichen ihrer Betriebstemperatur neben einer erhöhten mechanischen Festigkeit, wie sie insbesondere für den Einsatz in Straßenfahrzeugen von Bedeutung ist. Darüberhinaus kann der metallische Wabenkörper unmittelbar vom Strom durchflossen werden und so als Heizkörper für die vorgeschlagene Zusatzheizung fungieren.
  • Im 12. Anspruch wird ein weiteres, die Verwirbelung des Abgas­stromes unterstützendes Merkmal vorgeschlagen, nämlich daß die die Zellen voneinander trennenden Stege der 1. Wabenkörper an ihrer stromabwärts gerichteten Kante aus der Strömungsrichtung gebogen sind. Die dadurch bewirkte Erhöhung des Druckverlustes in den Wabenkörpern ist nur gering, da infolge der besseren Verwirbelung die nötige Abscheidewahrscheinlichkeit für die Rußpartikel auch schon in zweiten Wabenkörpern geringerer Länge und somit verringerten Druckverlustes erreicht wird.
  • Entsprechend dem 13. Anspruch können die ersten und/oder zweiten und/oder dritten Wabenkörper aus einem keramischen Werkstoff hergestellt sein, insbesondere für bei gleichbleiben­der Leistung betriebene, vorzugsweise stationäre Motoren.
  • In diesem Falle wird entsprechend der im 14. Anspruch angege­benen Ausgestaltung der Erfindung die katalytisch aktive (und metallische) Oberflächenschicht zugleich als Heizelement der Zusatzheizung verwendet.
  • Da der vorgeschlagene Dieselrußfilter auch bei geringeren Abgastemperaturen betrieben werden kann, ergibt sich gemäß dem 15. Anspruch auch die Möglichkeit, ihn in demjenigen Teil des Abgaskanales anzuordnen, der als Schalldämpfer ausgebildet ist. In diesem Bereich sind die Platzverhältnisse für die Unter­bringung des Dieselrußfilters im allgemeinen besser als in Motornähe und die ohnehin der Dämpfung des Auspuffschalles dienenden, z.T. gegeneinander geführten Kanäle können mit den Kanälen für die Zufuhr der Zusatzluft zu einer günstigeren Konstruktion integriert werden.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung darge­stellt, und zwar zeigt
    • Figur 1 einen in einem Schalldämpfer integrierten Dieselrußfilter im Längsaxialschnitt,
    • Figur 2 einen an anderer Stelle des Abgaskanales angeordneten Dieselrußfilter, ebenfalls im Längsaxialschnitt,
    • Figur 3 einen Querschnitt entsprechend der Linie III-III der Figur 2 und
    • Figur 4 in vergrößertem Maßstab die Einzelheit IV der Figur 3.
  • Durch einen Kanal 1 wird das Abgas eines hier nicht gezeigten Dieselmotors abgeführt, wobei die Strömungsrichtung der Abgase durch die Pfeile 2 angedeutet ist. In der in der Figur 1 dar­gestellten Ausführungsform mündet der Abgaskanal 1 in einem Schalldämpfer, der in bekannter Weise aus einer Vorkammer 3, einer Hauptkammer 4 und einer Sammelkammer 5 besteht, die durch Schallwände 6 voneinander getrennt sind und den das mehrfach in seiner Strömungsrichtung umgelenkte und über Verteileröffnungen 7 in Teilströme aufgeteilte Abgas durchströmt, bis es über Sammelöffnungen 8 in einer schließlich in der Atmosphäre mündenden Fortsetzung des Abgaskanales 1 zusammengeführt wird. Im Abgasstrom 2 angeordnet sind mehrere Wabenkörper, und zwar abwechselnd erste Wabenkörper 9 und zweite Wabenkörper 10, hier von zylindrischer, zum Teil als Ring ausgestalteter Form. Die Wabenkörper 9, 10 können aus einem keramischen Material hergestellt sein oder aber vorzugsweise aus Metallblech. In jedem Falle sind die ersten Wabenkörper 9 mit einer ersten, platin- und/oder rhodiumhaltigen Beschichtung versehen, deren katalytische Wirkung auf das Abgas dazu führt, daß das in ihm enthaltene Kohlenmonoxyd zu Kohlendioxyd oxydiert wird, während die verschiedenen Stickoxyde gespalten werden, so daß schließ­lich unschädliche Produkte an die Atmosphäre abgegeben werden. Es ist dem Fachmann bekannt, daß diese katalytische Reaktion nur beim Vorliegen einer bestimmten stöchiometrischen Zusammen­setzung des Abgases in der gewünschten Weise abläuft; es sind daher hier ebenfalls nicht gezeigte Einrichtungen zur Regelung der Zusammensetzung des Abgases erforderlich, die jedoch nicht Gegenstand der vorliegenden Erfindung sind und als bekannt vorausgesetzt werden. Die Struktur der ersten Wabenkörper 9 ist verhältnismäßig grobzellig, so daß die im Abgas mitgeführten Rußpartikel sich in diesen nicht in nennenswerter Weise nieder­schlagen, zumal die darin herschende Strömung weitgehend laminar ist. Die zweiten Wabenkörper 10 weisen eine kleinzelligere Struktur auf, so daß die Rußpartikel mit hoher Wahrscheinlichkeit mit den die Zellen voneinander scheidenden Stegen 11 kollidieren und an ihnen klebenbleiben. Dieser Effekt wird noch verstärkt dadurch, daß die Stege 11 der ersten Wabenkörper 9 zumindest an ihrem in Strömungsrichtung gesehenen hinteren Ende aus der Strömungsrichtung gebogen sind und so (siehe Figur 4) die Verwirbelung fördernde Nasen 12 bilden. Dies läßt sich besonders einfach bei metallischen Wabenkörpern bewerkstelligen, die aus spiralig umeinander gewickelten, ab­wechselnd glatten und gewellten Blechlagen 13, 14 aufgebaut sind. Die zweiten Wabenkörper 10 sind mit einer zweiten, Silbervanadat enthaltenden Beschichtung versehen, die kataly­tisch dahingehend wirkt, daß der hier sich ansammelnde Ruß in seiner Zündtemperatur soweit herabgesetzt wird, daß die (durch die exotherme Reaktion in den ersten Wabenkörpern 9 erhöhte) Temperatur des Abgases ausreicht, um eine Verbrennung des Rußes einzuleiten, bevor dieser eine nennenswerte Anzahl der Zellen der zweiten Wabenkörper 10 verstopft hat. Die möglichst vollständig durchgeführte, das heißt Kohlendioxyd liefernde Verbrennung erfordert zusätzlichen Sauerstoff, der durch Luft­kanäle 15 zugeführt wird. Diese Kanäle können durch geeignete Ausgestaltung ihrer in den Abgasstrom 2 ragenden Öffnungen selbstansaugend wirken, so daß auch ohne Zuhilfenahme äußerer Kräfte, z.B. des Staudruckes auf ein sich bewegendes, mit dem betreffenden Dieselmotor ausgerüstetes Fahrzeug eine ausrei­chende Luftzufuhr gesichert ist. Sollte die so bewirkte Sauer­stoffzufuhr infolge geringer Abgasgeschwindigkeit (z.B. beim Leerlaufbetrieb des Motors) nicht ausreichen, kann, wie in der Figur 2 schematisch angedeutet, die Luftzufuhr durch ein Gebläse 16 zumindest zeitweise unterstützt werden. Da die Luftkanäle 15 im Gegenstrom zum Abgas geführt sind und mit diesem im Wärmeaustausch stehen, kann im Normalbetrieb mit einer ausreichenden Vorwärmung der Zusatzluft gerechnet werden. Unter besonderen Bedingungen, z.B. bei extrem niedrigen Umge­bungstemperaturen, kann es vorteilhaft sein, im Luftkanal 15 einen dritten Wabenkörper 17 vorzusehen, der elektrisch leitend ist und durch Anschluß an eine ebenfalls nur schematisch ange­deutete Stromquelle 18 als Heizkörper wirkt. Zweckmäßigerweise ist er ebenfalls wie die ersten und zweiten Wabenkörper 9, 10 spiralig aus abwechselnd glatten und gewellten Blechlagen 13, 14 aufgebaut (in der Figur 3 entgegen der Blickrichtung dar­gestellt). In gleicher Weise können die zweiten Wabenkörper 10 an die Stromquelle 18 angeschlossen werden und als Heizkörper wirken, wenn die Abgastemperatur trotz ihrer Steigerung durch die katalytische Reaktion in den ersten Wabenkörpern 9 und der Wirkung der zweiten Beschichtung auf den zweiten Wabenkörpern 10 nicht ausreicht, um den Ruß zu verbrennen. Werden aus keramischem Material hergestellte Wabenkörper 9, 10, 17 verwendet, so dienen zweckmäßigerweise die katalytischen Schichten, da aus Metall selbst als Heizleiter. Bei den unmittelbar als Heizleiter wirkenden metallischen Wabenkörpern versteht es sich, daß sobald erforderlich die einzelnen Blechlagen 13, 14 durch hier nicht dargestellte isolierende Schichten voneinander getrennt sind. Die zweiten Wabenkörper 10 können wie in der Figur 2 dargestellte kegelige Form haben; es hat sich gezeigt, daß diese Form die Rückhaltefähigkeit für Rußpartikel erhöht. Bei den bevorzugt vorgeschlagenen, aus aufeinandergewickelten Blechlagen 13, 14 hergestellten metal­lischen Wabenkörpern läßt sich diese Form unschwer herstellen, indem der Zentralbereich des Körpers nach dem Aufwickeln axial herausgedrückt wird. Zur weiteren Unterstützung der Wärmebilanz kann der Dieselrußfilter mit einer Wärmeisolierung 19 versehen sein.

Claims (15)

1. Dieselrußfilter, dadurch gekenzeichnet, daß er aus mehreren im Abgaskanal (1) abwechselnd hintereinander angeordneten ersten und zweiten mit Durchströmkanälen versehenen Wabenkörpern (9,10) besteht, von denen die ersten Wabenkörper (9) mit einer ersten Oberflächenschicht versehen sind, die in an sich bekannter Weise katalytisch die Umsetzung von Stickoxyden und Kohlenmonoxyd zu Stickstoff bzw. Kohlendioxyd bewirkt, während die zweiten Wabenkörper (10) mit einer zweiten Oberflächenschicht versehen sind, die in an sich bekannter Weise katalytisch eine Herabsetzung der Zündtemperatur des ihr anhaftenden Rußes bewirkt.
2. Dieselrußfilter nach Anspruch 1, dadurch gekennzeichnet, daß zumindest die zweiten Wabenkörper (10) Kegelform aufweisen.
3. Dieselrußfilter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zumindest die ersten Wabenkörper (9) eine Form (12) aufweisen, die eine in Stromrichtung hinter ihnen erfolgende Verwirbelung des Abgasstromes (2) unterstützt.
4. Dieselrußfilter nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest die zweiten Wabenkörper (10) mit einer elektrischen Zusatzbeheizung (18) versehen sind.
5. Dieselrußfilter nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er mit Einlaßkanälen (15) für die Zufuhr von Zusatzluft versehen ist.
6. Dieselrußfilter nach Anspruch 5, dadurch gekennzeichnet, daß die Einlaßkanale (15) vor ihrem Eintritt in den Abgaskanal (1) im Wärmeaustausch mit letzterem stehen.
7. Dieselrußfilter nach Anspruch 5 und/oder 6, dadurch gekennzeichnet, daß die Einlaßkanäle (15) mit einer Zusatzheizung (17) versehen sind.
8. Dieselrußfilter nach Anspruch 7, dadurch gekennzeichnet, daß die Zusatzheizung aus mindestens einem von der Zusatzluft durchströmten, elektrisch (18) beheizten dritten Wabenkörper (17) besteht.
9. Dieselrußfilter nach einem oder mehreren der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß ein Gebläse (16) vorhanden ist, durch das die Zufuhr von Zusatzluft zumindest zeitweise unterstützt wird.
10. Dieselrußfilter nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellenzahl der ersten Wabenkörper (9) geringer ist als diejenigen der zweiten Wabenkörper (10).
11. Dieselrußfilter nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ersten (9) und/oder zweiten (10) und/oder dritten (17) Wabenkörper aus einem metallischen Werkstoff hergestellt sind.
12. Dieselrußfilter nach Anspruch 3 und 11, dadurch gekennzeichnet, daß die die Zellen voneinander trennenden Stege (11) der ersten Wabenkörper (9) an ihrer stromabwärts gerichteten Kante aus der Strömungsrichtung gebogen (12) sind.
13. Dieselrußfilter nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die ersten (9) und/oder zweiten (10) und/oder dritten (10) Wabenkörper aus einem keramischen Werkstoff hergestellt sind.
14. Dieselrußfilter nach Anspruch 4 und 13, dadurch gekennzeichnet, daß die katalytisch aktive Oberflächenschicht zugleich Heizelement der Zusatzheizung ist.
15. Dieselrußfilter nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er in demjenigen Teil des Abgaskanales (1) angeordnet ist, der als Schalldämpfer (3-5) ausgebildet ist.
EP89201062A 1989-04-17 1989-04-17 Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd Withdrawn EP0393257A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP89201062A EP0393257A1 (de) 1989-04-17 1989-04-17 Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89201062A EP0393257A1 (de) 1989-04-17 1989-04-17 Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd

Publications (1)

Publication Number Publication Date
EP0393257A1 true EP0393257A1 (de) 1990-10-24

Family

ID=8202372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89201062A Withdrawn EP0393257A1 (de) 1989-04-17 1989-04-17 Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd

Country Status (1)

Country Link
EP (1) EP0393257A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110395A1 (de) * 1991-03-28 1992-10-01 Roth Technik Gmbh Katalysator
EP0556846A1 (de) * 1992-02-19 1993-08-25 LEISTRITZ AG & CO. Abgastechnik Abgasschalldämpfer für Dieselmotoren insbesondere von Nutzfahrzeugen
WO1994008698A1 (en) * 1992-10-08 1994-04-28 Air Safe Exhaust Systems Pty. Ltd. Gas filter
EP1276549A1 (de) 2000-04-25 2003-01-22 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement
DE10361791A1 (de) * 2003-12-31 2005-07-28 Volkswagen Ag Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine und Verfahren zur Regeneration einer solchen Abgasreinigungsanlage
US7340888B2 (en) 2005-04-26 2008-03-11 Donaldson Company, Inc. Diesel particulate matter reduction system
DE102008022081A1 (de) * 2008-05-05 2009-11-12 J. Eberspächer GmbH & Co. KG Abgasbehandlungseinrichtung
US7862640B2 (en) 2006-03-21 2011-01-04 Donaldson Company, Inc. Low temperature diesel particulate matter reduction system
US8763375B2 (en) 2010-08-19 2014-07-01 J. Eberspaecher Gmbh & Co. Kg Exhaust gas cleaning device, exhaust system, removal method
CN104165256A (zh) * 2013-05-17 2014-11-26 中国科学院声学研究所 一种用于通风管路系统的有源消声器
CN104165255A (zh) * 2013-05-17 2014-11-26 中国科学院声学研究所 一种通风管路用主被动复合消声器
US9222392B2 (en) 2010-04-15 2015-12-29 Eberspaecher Exhaust Technology Gmbh & Co. Kg Exhaust gas treatment device
CN105370358A (zh) * 2015-11-24 2016-03-02 徐秋苹 一种摩托车排气管
CN109356686A (zh) * 2018-11-05 2019-02-19 卢宝良 柴油发动机尾气黑烟净化器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785781A (en) * 1971-10-04 1974-01-15 Universal Oil Prod Co Apparatus for catalytically converting fluid
US4072471A (en) * 1974-05-28 1978-02-07 Mobil Oil Corporation Catalytic converter for removing noxious components from a gaseous stream
DE2905241A1 (de) * 1979-02-12 1980-08-14 Bremshey Ag Traegermatrix fuer einen katalytischen reaktor zur abgasreinigung bei brennkraftmaschinen
US4404795A (en) * 1980-06-19 1983-09-20 Toyota Jidosha Kogyo Kabushiki Kaisha Method of and apparatus for reducing emitted amount of particulates contained in exhaust gas of diesel engine
US4416674A (en) * 1980-10-27 1983-11-22 Texaco Inc. Filter for treating a particle-carrying gaseous stream
EP0154145A2 (de) * 1984-02-28 1985-09-11 Degussa Aktiengesellschaft Einrichtung zur Reinigung der Abgase von Dieselmotoren
EP0220505A2 (de) * 1985-10-26 1987-05-06 MAN Technologie Aktiengesellschaft Filter zur Reinigung von Abgasen
DE8716319U1 (de) * 1987-12-10 1988-05-05 Waschkuttis, Gerhard, 8551 Wiesenthau Rußfilter für Diesel-Fahrzeuge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785781A (en) * 1971-10-04 1974-01-15 Universal Oil Prod Co Apparatus for catalytically converting fluid
US4072471A (en) * 1974-05-28 1978-02-07 Mobil Oil Corporation Catalytic converter for removing noxious components from a gaseous stream
DE2905241A1 (de) * 1979-02-12 1980-08-14 Bremshey Ag Traegermatrix fuer einen katalytischen reaktor zur abgasreinigung bei brennkraftmaschinen
US4404795A (en) * 1980-06-19 1983-09-20 Toyota Jidosha Kogyo Kabushiki Kaisha Method of and apparatus for reducing emitted amount of particulates contained in exhaust gas of diesel engine
US4416674A (en) * 1980-10-27 1983-11-22 Texaco Inc. Filter for treating a particle-carrying gaseous stream
EP0154145A2 (de) * 1984-02-28 1985-09-11 Degussa Aktiengesellschaft Einrichtung zur Reinigung der Abgase von Dieselmotoren
EP0220505A2 (de) * 1985-10-26 1987-05-06 MAN Technologie Aktiengesellschaft Filter zur Reinigung von Abgasen
DE8716319U1 (de) * 1987-12-10 1988-05-05 Waschkuttis, Gerhard, 8551 Wiesenthau Rußfilter für Diesel-Fahrzeuge

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677141B1 (de) * 1991-03-28 1997-01-22 ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik Katalysator
DE4110395A1 (de) * 1991-03-28 1992-10-01 Roth Technik Gmbh Katalysator
EP0556846A1 (de) * 1992-02-19 1993-08-25 LEISTRITZ AG & CO. Abgastechnik Abgasschalldämpfer für Dieselmotoren insbesondere von Nutzfahrzeugen
WO1994008698A1 (en) * 1992-10-08 1994-04-28 Air Safe Exhaust Systems Pty. Ltd. Gas filter
US7727498B2 (en) 2000-04-25 2010-06-01 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for removing soot particles from an exhaust gas, associated collecting element and system
EP1276549A1 (de) 2000-04-25 2003-01-22 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement
US8066952B2 (en) 2000-04-25 2011-11-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for removing soot particles from an exhaust gas, associated collecting element and system
US8066951B2 (en) 2000-04-25 2011-11-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for removing soot particles from an exhaust gas, associated collecting element and system
DE10361791A1 (de) * 2003-12-31 2005-07-28 Volkswagen Ag Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine und Verfahren zur Regeneration einer solchen Abgasreinigungsanlage
US7340888B2 (en) 2005-04-26 2008-03-11 Donaldson Company, Inc. Diesel particulate matter reduction system
US8808418B2 (en) 2006-03-21 2014-08-19 Donaldson Company Low temperature diesel particulate matter reduction system
US7862640B2 (en) 2006-03-21 2011-01-04 Donaldson Company, Inc. Low temperature diesel particulate matter reduction system
DE102008022081A1 (de) * 2008-05-05 2009-11-12 J. Eberspächer GmbH & Co. KG Abgasbehandlungseinrichtung
US8336301B2 (en) 2008-05-05 2012-12-25 J. Eberspaecher Gmbh & Co. Kg Exhaust gas treatment unit
US9222392B2 (en) 2010-04-15 2015-12-29 Eberspaecher Exhaust Technology Gmbh & Co. Kg Exhaust gas treatment device
US8763375B2 (en) 2010-08-19 2014-07-01 J. Eberspaecher Gmbh & Co. Kg Exhaust gas cleaning device, exhaust system, removal method
CN104165256A (zh) * 2013-05-17 2014-11-26 中国科学院声学研究所 一种用于通风管路系统的有源消声器
CN104165255A (zh) * 2013-05-17 2014-11-26 中国科学院声学研究所 一种通风管路用主被动复合消声器
CN104165256B (zh) * 2013-05-17 2016-02-03 中国科学院声学研究所 一种用于通风管路系统的有源消声器
CN104165255B (zh) * 2013-05-17 2016-02-03 中国科学院声学研究所 一种通风管路用主被动复合消声器
CN105370358A (zh) * 2015-11-24 2016-03-02 徐秋苹 一种摩托车排气管
CN109356686A (zh) * 2018-11-05 2019-02-19 卢宝良 柴油发动机尾气黑烟净化器

Similar Documents

Publication Publication Date Title
EP2014883B1 (de) Vorrichtung zur Reinigung von Abgasen
EP1395351B1 (de) Abgasreinigungsanlage mit reduktionsmittelversorgung
EP2310113B1 (de) Abgasreinigungssystem für dieselmotoren von nutzkraftfahrzeugen
EP0148358B1 (de) Katalysator zur Verbrennung und Umwandlung von Gasen und höheren Kohlenwasserstoffen, sowie Vorrichtung zur Reduktion von Stickoxiden und Abgasnachverbrenner mit einem solchen Katalysator
EP0393257A1 (de) Dieselrussfilter mit zusätzlicher Einrichtung zur Reduktion von Stickoxyden und/oder Oxydation von Kohlenmonoxyd
EP2129883B2 (de) Katalysatorsystem und seine verwendung
EP1379322B1 (de) Abgassystem
DE69417861T2 (de) Honigwabenheizgerät
DE2137818A1 (de) Vorrichtung zur Reinigung von Fahrzeugabgasen
EP1801372A1 (de) Partikelfilteranordnung
WO1990012950A1 (de) Dieselrussfilter mit zusätzlicher einrichtung zur reduktion von stickoxyden und/oder oxydation von kohlenmonoxyd
EP1328711B1 (de) Beheizbarer wabenkörper mit zwei verschiedenen beschichtungen
DE4035971A1 (de) Beheizbare katalysatoranordnung fuer die abgasreinigung von verbrennungsmotoren
DE3919343A1 (de) Dieselrussfilter mit sich bei teillast verringerndem aktivem querschnitt
DE60125204T2 (de) Verfahren und vorrichtung zur behandlung eines gasstroms
EP2166203B1 (de) Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
EP0086367B1 (de) Vorrichtung zur Reinigung der Abgase von Dieselmotoren, insbesondere bei Kraftfahrzeugen
DE10130872A1 (de) Verfahren zur Reinigung von Abgasen
DE69414817T2 (de) Honigwabenheizgerät
DE69908074T2 (de) Methode zur abgasbehandlung einer brennkraftmaschine und zugehörige auspuffleitung
DE69419911T2 (de) Katalysatorsystem und ihre anwendung
DD150491A6 (de) Verfahren und vorrichtung zur katalytischen behandlung von gasen
DE19845381C1 (de) Vorrichtung zur katalytischen Abgasreinigung von Verbrennungsmotoren
DE3337902A1 (de) Katalysatorbauteil
DE4329558A1 (de) Rußfilter für Dieselbrennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES

17P Request for examination filed

Effective date: 19901126

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 89904535.5/0468955 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 22.04.92.

17Q First examination report despatched

Effective date: 19920504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921117