EP0392036B1 - Method and compensation of the disturbed parts of the signals in a measuring system - Google Patents

Method and compensation of the disturbed parts of the signals in a measuring system Download PDF

Info

Publication number
EP0392036B1
EP0392036B1 EP89106361A EP89106361A EP0392036B1 EP 0392036 B1 EP0392036 B1 EP 0392036B1 EP 89106361 A EP89106361 A EP 89106361A EP 89106361 A EP89106361 A EP 89106361A EP 0392036 B1 EP0392036 B1 EP 0392036B1
Authority
EP
European Patent Office
Prior art keywords
measuring
compensation
value
values
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89106361A
Other languages
German (de)
French (fr)
Other versions
EP0392036A1 (en
Inventor
Peter Dr.-Ing. Kupec
Ulrich Prof. Dr. Appel
Helmut Dipl.-Ing. Hanika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE89106361T priority Critical patent/DE58905396D1/en
Priority to ES89106361T priority patent/ES2042848T3/en
Priority to EP89106361A priority patent/EP0392036B1/en
Priority to AT89106361T priority patent/ATE93638T1/en
Publication of EP0392036A1 publication Critical patent/EP0392036A1/en
Application granted granted Critical
Publication of EP0392036B1 publication Critical patent/EP0392036B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/26Electrical actuation by proximity of an intruder causing variation in capacitance or inductance of a circuit

Definitions

  • the invention relates to a method for compensating interfering signal components in the measuring signals of a measuring system with a certain number of measuring channels, each measuring signal having a channel-independent component, which is weighted with a channel-dependent compensation coefficient, and an additive, channel-dependent interfering component (cf. e.g. EP-A-0 141929 and US-A-4 684 931).
  • the object of the invention is to compensate these signals with one another with the aim of separating the common signal component in all signals from individual signal components in a single signal. In this case, better compensation of weather-related signal profiles is to be achieved, for example for a capacitive protective fence, with the aim of improved detection of intrusion attempts.
  • a preliminary compensated measurement signal sk (i) is first determined, as previously.
  • a preliminary compensation value sum is determined from the measurement signals x (i) by weighted averaging, a kind of estimated value of the common component s, which is inversely weighted and subtracted from the individual signals, as described above by the two relationships (2) and (3) is expressed.
  • the signal value sk (i) obtained in this way which is referred to as a provisionally compensated measurement signal value, basically represents an approximation of the individual signal component n (i) sought.
  • the compensation method is further developed to the effect that approximate values ⁇ (i) of the additive noise components n (i) is determined, and that the provisional compensation value sum depending on determined therefrom correction values n (i) according to the above-mentioned relationship (4 ') is corrected.
  • the final compensated measurement signal values are then determined for each measuring channel in accordance with equation 3' listed above.
  • the correction values n ⁇ (j) for the severely disturbed measuring channels (j) are derived from the approximate values ⁇ (j) .
  • the correction values can correspond directly to the approximate values.
  • Two channels with negligibly small additive interference components which are referred to below with the index m and 1, are therefore advantageously determined by searching for those components sk (m) and sk (1) whose values differ as little as possible, that is form a minimum.
  • the minimum is determined according to the following relationship:
  • the search for weakly disturbed channels can be extended to any number of channels.
  • the compensation coefficient A (i) was used as a known empirical value of constant size.
  • the compensation coefficients can also be determined in a suitable manner from the measurement signals x (i) , for example by energy nomination of the measurement signals in a predetermined time window.
  • the correction of the measured signal values is achieved by correction values before the final calculation of the compensated signal values, the correction values being determined from approximately calculated additive components.

Abstract

The system has a specific number (i = 1 to I) of measuring channels, each measuring signal (x<(i)>) having a channel-independent component(s) which is weighted with a channel-dependent compensation coefficient (A<(i)>), and an additive, channel-dependent interfering component (u<(i)>). Initially, a preliminary compensation value (sum) is formed from the measuring signals and the compensation coefficients and preliminary compensated measuring signal values (sk<(i)>) are formed with said compensation value. Measuring channels (j = 1 to J) with a high degree of interference are then sought. For these channels a respective approximation value (ñ) of the interference signal is determined and used to form a correction value (@). A final compensation value (sum'), with which the final compensated measuring signal values (sk') are calculated is formed using the correction values (@).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Kompensation störender Signalanteile in den Meßsignalen eines Meßsystems mit einer bestimmten Anzahl von Meßkanälen, wobei jedes Meßsignal eine kanalunabhängige Komponente, die mit einem kanalabhängigen Kompensationskoeffizienten gewichtet ist, und eine additive, kanalabhängige störende Komponente aufweist (vg. z.B. EP-A-0 141929 und US-A-4 684 931).The invention relates to a method for compensating interfering signal components in the measuring signals of a measuring system with a certain number of measuring channels, each measuring signal having a channel-independent component, which is weighted with a channel-dependent compensation coefficient, and an additive, channel-dependent interfering component (cf. e.g. EP-A-0 141929 and US-A-4 684 931).

Gegeben ist ein Meßsystem mit beispielsweise I Meßkanälen, die im allgemeinen zeitabhängige Meßsignale x(i), mit i = 1 bis I

Figure imgb0001
, liefern. Jedes Meßsignal wird durch eine kanalunabhängige Komponente (gemeinsamen Signalanteil) s, die mit einem kanalabhängigen, im allgemeinen auch zeitabhängigen Kompensationskoeffizienten A(i) gewichtet ist, sowie durch eine additive, kanalabhängige störende Komponente (individueller Signalanteil bzw. Störkomponente) n(i) gemäß folgender Beziehung modelliert:

x (i) = A (i) . s + n (i)    (1)
Figure imgb0002


Aufgabe der Erfindung ist die Kompensation dieser Signale untereinander mit dem Ziel, den gemeinsamen Signalanteil in allen Signalen von individuellen Signalanteilen in einem einzelnen Signal zu trennen. Dabei soll eine bessere Kompensation von wetterbedingten Signalverläufen erreicht werden, beispielsweise für einen kapazitiven Schutzzaun, mit dem Ziel einer verbesserten Erkennung von Eindringversuchen.Given is a measuring system with, for example, I measuring channels, which generally have time-dependent measuring signals x (i) i = 1 to I
Figure imgb0001
, deliver. Each measurement signal is characterized by a channel-independent component (common signal component) s, which is weighted with a channel-dependent, generally also time-dependent compensation coefficient A (i) , and by an additive, channel-dependent interfering component (individual signal component or interference component) n (i) according to modeled the following relationship:

x (i) = A (i) . s + n (i) (1)
Figure imgb0002


The object of the invention is to compensate these signals with one another with the aim of separating the common signal component in all signals from individual signal components in a single signal. In this case, better compensation of weather-related signal profiles is to be achieved, for example for a capacitive protective fence, with the aim of improved detection of intrusion attempts.

Diese Aufgabe wird bei einem eingangs beschriebenen Meßsystem durch folgende Verfahrensschritte gelöst:

  • a) aus den Meßsignalen x(i) und den Kompensationskoeffizienten A(i) wird in einer Summiereinrichtung ein vorläufiger Kompensationswert sum entsprechend der Beziehung:
    Figure imgb0003
    gebildet;
  • b) aus den Meßsignalen x(i) und aus den mit dem vorläufigen Kompensationswert sum gewichteten Kompensationskoeffizienten A(i) wird in einer Subtrahiereinrichtung für jeden Meßkanal (i) ein vorläufiger kompensierter Meßsignalwert:

    sk (i) = x (i) - A (i) . sum   (3)
    Figure imgb0004


    gebildet;
  • c) aus den vorläufigen kompensierten Meßsignalen sk(i) werden mittels bestimmter Suchstrategien schwach gestörte Meßkanäle (k bzw. m,1) oder stark gestörte Meßkanäle (j) ausgewählt;
  • d) für die stark gestörten Meßkanäle (j = 1 bis J)
    Figure imgb0005
    wird ein Näherungswert ñ (j) der Störkomponenten (n(i)) nach der Beziehung:
    Figure imgb0006
    ermittelt;
  • e) aus den Näherungswerten ñ (j) werden Korrekturwerte n̂ (j) für die stark gestörten Meßkanäle (j) abgeleitet;
  • f) aus dem vorläufigen Kompensationswert sum und den Korrekturwerten n̂ (j) wird ein endgültiger Kompensationswert
    Figure imgb0007
    berechnet;
  • g) mit dem endgültigen Kompensationswert sum' werden für jeden Meßkanal die endgültigen kompensierten Meßsignalwerte

    sk' (i) = x (i) - A (i) . sum'   (3')
    Figure imgb0008


    ermittelt.
In a measuring system described in the introduction, this task is solved by the following process steps:
  • a) the measurement signals x (i) and the compensation coefficients A (i) are used in a summing device to produce a provisional compensation value sum according to the relationship:
    Figure imgb0003
    educated;
  • b) from the measurement signals x (i) and from the compensation coefficients A (i) weighted with the provisional compensation value sum, a provisional compensated measurement signal value is made in a subtracting device for each measurement channel (i):

    sk (i) = x (i) - A (i) . sum (3)
    Figure imgb0004


    educated;
  • c) from the provisionally compensated measurement signals sk (i) , weakly disturbed measurement channels (k or m, 1) or severely disturbed measurement channels (j) are selected by means of certain search strategies;
  • d) for the strongly disturbed measuring channels (j = 1 to J)
    Figure imgb0005
    becomes an approximation ñ (j) of the interference components (n (i) ) according to the relationship:
    Figure imgb0006
    determined;
  • e) correction values n̂ (j) for the severely disturbed measuring channels (j) are derived from the approximate values ñ (j) ;
  • f) the provisional compensation value sum and the correction values n̂ (j) become a final compensation value
    Figure imgb0007
    calculated;
  • g) with the final compensation value sum ', the final compensated measurement signal values for each measuring channel

    sk ' (i) = x (i) - A (i) . sum '(3')
    Figure imgb0008


    determined.

Bei dem erfindungsgemäßen Verfahren wird zunächst wie bisher ein vorläufiges kompensiertes Meßsignal sk(i) ermittelt. Aus den Meßsignalen x(i) wird durch gewichtete Mittelung ein vorläufiger Kompensationswert sum bestimmt, eine Art geschätzter Wert des gemeinsamen Anteils s, der invers gewichtet von den einzelnen Signalen subtrahiert wird, wie dies oben durch die beiden Beziehungen (2) und (3) ausgedrückt ist. Der so erhaltene Signalwert sk(i), der als vorläufiger kompensierter Meßsignalwert bezeichnet wird, stellt im Grunde genommen einen Näherungswert des gesuchten individuellen Signalanteils n(i) dar. Da stark additive Störkomponenten n (i) in einem beliebigen Signal x(i) dazu führen, daß der Summenwert sum stark von dem eigentlichen Idealwert s abweicht, hat dies in nachteiliger Weise zur Folge, daß eine solche additive Störkomponente sich nicht nur in dem vorläufig kompensierten Signal sk(i) des eigentlichen betroffenen Kanals (i), sondern auch in den Signalen sk(k), mit k ≠ i aller Kanäle mit unterschiedlicher Amplitude abbildet. Daher ist in vorteilhafter Weise das Kompensationsverfahren dahingehend weitergebildet, daß Näherungswerte ñ (i) der additiven Störkomponenten n (i) bestimmt werden, und daß der vorläufige Kompensationswert sum abhängig von hieraus ermittelten Korrekturwerten n̂ (i) gemäß der oben angeführten Beziehung (4') korrigiert wird.In the method according to the invention, a preliminary compensated measurement signal sk (i) is first determined, as previously. A preliminary compensation value sum is determined from the measurement signals x (i) by weighted averaging, a kind of estimated value of the common component s, which is inversely weighted and subtracted from the individual signals, as described above by the two relationships (2) and (3) is expressed. The signal value sk (i) obtained in this way , which is referred to as a provisionally compensated measurement signal value, basically represents an approximation of the individual signal component n (i) sought. Since strongly additive interference components n (i) in any signal x (i) cause the sum value sum to deviate greatly from the actual ideal value s, this has the disadvantageous consequence that such an additive interference component is found not only in the provisionally compensated signal sk (i) of the actual channel (i) concerned, but also in maps the signals sk (k) with k ≠ i of all channels with different amplitudes. Therefore, advantageously, the compensation method is further developed to the effect that approximate values ñ (i) of the additive noise components n (i) is determined, and that the provisional compensation value sum depending on determined therefrom correction values n (i) according to the above-mentioned relationship (4 ') is corrected.

Mit dem endgültigen Kompensationswert sum' werden dann für jeden Meßkanal die endgültigen kompensierten Meßsignalwerte entsprechend der oben aufgeführten Gleichung 3' ermittelt.With the final compensation value sum ', the final compensated measurement signal values are then determined for each measuring channel in accordance with equation 3' listed above.

Die obengenannten Näherungswerte ñ (i) können durch Lösen des folgenden Gleichungssystems (5) gewonnen werden:

Figure imgb0009

Das Gleichungssystem (5) ist allerdings unterbestimmt und daher nur bei Vorliegen zusätzlicher Informationen auflösbar. Diese lassen sich dadurch gewinnen, daß man für einen oder einige der Kanäle - diese sind im folgenden mit dem Index k versehen - die bestimmten Störkomponenten n(k) als bekannt annimmt. Wenn bestimmte Störkomponenten n(k) als vernachlässigbar klein angesehen werden können, gilt n(k) = 0. So können dann entsprechende Spalten und Zeilen des Gleichungssystems (5) gestrichen werden, so daß J-Gleichungen (J<I) übrigbleiben, aus denen die Unbekannten ñ(i), die Näherungswerte, nunmehr berechenbar sind. Für dieses reduzierte Gleichungssystem existieren mehrere Lösungen. Eine besonders einfache Lösung läßt sich in vorteilhafter Weise unter Ausnutzung der regelmäßigen Struktur dieses Systems gemäß folgender Beziehung erzielen:
Figure imgb0010

Daraus werden die Korrekturwerte n̂ (j) für die stark gestörten Meßkanäle (j) aus den Näherungswerten ñ (j) abgeleitet. In einfachster Weise können die Korrekturwerte unmittelbar den Näherungswerten entsprechen. Es ist jedoch wesentlich vorteilhafter, die Korrekturwerte aus den Näherungswerten in Abhängigkeit von einem vorgebbaren Schwellenwert no (j) zu ermitteln. Bei der Ermittlung des Korrekturwertes der stark gestörten Meßkanäle j = 1 - J
Figure imgb0011
gilt dann folgende Beziehung:
Figure imgb0012

Für die Auswahl eines Meßkanals oder mehrerer Meßkanäle mit vernachlässigbar kleiner additiver Störkomponente, d.h. schwach gestörte Meßkanäle, gibt es mehrere Suchstrategien. Eine zweckmäßige Suchstrategie besteht darin, daß bei mehreren solchen Meßkanälen die Werte
Figure imgb0013

identisch sind. Zwei Kanäle mit vernachlässigbar kleiner additiver Störkomponente, die im folgenden mit dem Index m und 1 bezeichnet werden, werden daher in vorteilhafter Weise durch die Suche nach denjenigen Komponenten sk(m) und sk(1) ermittelt, deren Werte sich möglichst wenig unterscheiden, also ein Minimum bilden. Die Ermittlung des Minimums erfolgt gemäß folgender Beziehung:
Figure imgb0014

Die Suche nach schwach gestörten Kanälen kann auf eine beliebige Zahl von Kanälen ausgedehnt werden.The above approximation values ñ (i) can be obtained by solving the following system of equations (5):
Figure imgb0009

However, the system of equations (5) is undetermined and can therefore only be solved if additional information is available. These can be obtained by assuming the specific interference components n (k) as known for one or some of the channels - these are given the index k below. If certain interfering components n (k) can be regarded as negligibly small, then n (k) = 0. Corresponding columns and lines of the system of equations (5) can then be deleted so that J equations (J <I) remain to which the unknown ñ (i) , the approximate values, can now be calculated. There are several solutions for this reduced system of equations. A particularly simple solution can advantageously be achieved using the regular structure of this system according to the following relationship:
Figure imgb0010

The correction values n̂ (j) for the severely disturbed measuring channels (j) are derived from the approximate values ñ (j) . In the simplest way, the correction values can correspond directly to the approximate values. However, it is much more advantageous to determine the correction values from the approximate values as a function of a predefinable threshold value n o (j) . When determining the correction value of the strongly disturbed measuring channels j = 1 - J
Figure imgb0011
the following relationship then applies:
Figure imgb0012

There are several search strategies for selecting a measuring channel or several measuring channels with a negligibly small additive interference component, ie weakly disturbed measuring channels. An expedient search strategy consists in the fact that the values for several such measurement channels
Figure imgb0013

are identical. Two channels with negligibly small additive interference components, which are referred to below with the index m and 1, are therefore advantageously determined by searching for those components sk (m) and sk (1) whose values differ as little as possible, that is form a minimum. The minimum is determined according to the following relationship:
Figure imgb0014

The search for weakly disturbed channels can be extended to any number of channels.

Bei diesem erfindungsgemäßen Kompensationsverfahren war der Kompensationskoeffizient A(i) als ein bekannter Erfahrungswert konstanter Größe zugrunde gelegt. Die Kompensationskoeffizienten können aber auch in geeigneter Weise aus den Meßsignalen x(i) bestimmt werden, beispielsweise durch Energienominierung der Meßsignale in einem vorgegebenen Zeitfenster. Ein weiterer Vorteil des erfindungsgemäßens Verfahrens ist es, daß bei solchen aus dem Meßsignal x(i)fortlaufend berechneten Kompensationskoeffizienten A(i) die vorher ermittelten Näherungswerte ñ(i) ebenfalls von den jeweiligen Meßsignalen subtrahiert werden können und damit deutlich bessere Koeffizienten A(i) ermittelt werden können gemäß der Beziehung:

A (i) = f {(x (i) - ñ (i) )};   (10)

Figure imgb0015


Auf diese Weise wird eine weitere Fehlerquelle bei der Ermittlung kompensierter Signalwerte reduziert. Mit dem erfindungsgemäßen Kompensationsverfahren wird die Korrektur der gemessenen Signalwerte durch Korrekturwerte vor der endgültigen Berechnung der kompensierten Signalwerte erreicht, wobei die Korrekturwerte aus näherungsweise berechneten, additiven Komponenten ermittelt werden.In this compensation method according to the invention, the compensation coefficient A (i) was used as a known empirical value of constant size. However, the compensation coefficients can also be determined in a suitable manner from the measurement signals x (i) , for example by energy nomination of the measurement signals in a predetermined time window. Another advantage of erfindungsgemäßens method is that in such from the measurement signal x (i) continuously calculated compensation coefficients A (i) the previously determined approximate values ñ (i) can be subtracted also from the respective measuring signals and therefore significantly better coefficients A (i) can be determined according to the relationship:

A (i) = f {(x (i) - ñ (i) )}; (10)
Figure imgb0015


In this way, a further source of error in the determination of compensated signal values is reduced. With the compensation method according to the invention, the correction of the measured signal values is achieved by correction values before the final calculation of the compensated signal values, the correction values being determined from approximately calculated additive components.

Claims (7)

  1. Method for compensating disturbing signal components in the measuring signals of a measuring system having a specific number I of measuring channels, each measuring signal (x(i)) having a channel-independent component (s) which is weighted by a channel-dependent compensation coefficient (A(i)) and an additive, channel-dependent disturbing component (n(i)) in accordance with the relationship:

    x (i) = A (i) . s + n (i) , where (i = 1 to I),
    Figure imgb0030


    characterised by the following method steps:
    a) a provisional compensation value sum is formed from the measuring signals x(i) and the compensation coefficients A(i) in a summing device in accordance with the relationship:
    Figure imgb0031
    b) for each measuring channel (i) a provisional compensated measuring signal value:

    sk (i) = x (i) - A (i) . sum
    Figure imgb0032


    is formed from the measuring signals (x(i)) and from the compensation coefficients A(i) weighted with the provisional compensation value in a subtracting device;
    c) weakly disturbed measuring channels (k or m,1) or strongly disturbed measuring channels (j) are selected from the provisional compensated measuring signal values sk(i) by means of specific search strategies;
    d) an approximate value n̂(j) of the disturbing components (n(i)) is determined for the strongly disturbed measuring channels (j = 1 to J)
    Figure imgb0033
    in accordance with the relationship:
    Figure imgb0034
    e) correction values n̂(j) for the strongly disturbed measuring channels (j) are derived from the approximate values ñ(j);
    f) a final compensation value
    Figure imgb0035
    is calculated from the provisional compensation value sum and the correction values n̂(j);
    g) the final compensated measuring signal values

    sk (i) = x (i) - A (i) . sum'   (3')
    Figure imgb0036


    are determined for each measuring channel by means of the final compensation value sum'.
  2. Method according to Claim 1, characterised in that the provisionally compensated measuring signal values sk(i) and the compensation coefficients A(i) are used in accordance with the relationship:
    Figure imgb0037
    to search for a strongly disturbed measuring channel (j).
  3. Method according to Claim 1, characterised in that the provisionally compensated measuring signal values sk(i) and the compensation coefficients A(i) are used in accordance with the relationship:
    Figure imgb0038
    to search for two weakly disturbed measuring channels (ℓ,m).
  4. Method according to Claim 1, characterised in that the correction value n̂(j) corresponds to the approximate value ñ (j) . ( n ˆ (j) = ñ (j) )   (7a)
    Figure imgb0039
  5. Method according to Claim 1, characterised in that the correction value n̂(j) is determined from the approximate value ñ(j) as a function of a prescribable threshold value no (j):
    Figure imgb0040
  6. Method according to one of the preceding claims, characterised in that the compensation coefficients A(i) either are known empirical values of constant magnitude or are determined from the measuring signals x(i):

    A (i) = f {x (i) }.   (9)
    Figure imgb0041
  7. Method according to Claim 6, characterised in that the compensation coefficients A(i) are calculated adaptively from the measured values x(i) and approximate values ñ(i):

    A (i) = f {(x (i) - n (i) )}.   (10)
    Figure imgb0042
EP89106361A 1989-04-11 1989-04-11 Method and compensation of the disturbed parts of the signals in a measuring system Expired - Lifetime EP0392036B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE89106361T DE58905396D1 (en) 1989-04-11 1989-04-11 Process for the compensation of interfering signal components in the measuring signals of a measuring system.
ES89106361T ES2042848T3 (en) 1989-04-11 1989-04-11 PROCEDURE FOR THE COMPENSATION OF PORTIONS OF DISTURBING SIGNALS IN THE MEASUREMENT SIGNALS OF A MEASURING SYSTEM.
EP89106361A EP0392036B1 (en) 1989-04-11 1989-04-11 Method and compensation of the disturbed parts of the signals in a measuring system
AT89106361T ATE93638T1 (en) 1989-04-11 1989-04-11 METHOD FOR COMPENSATION OF INTERFERING SIGNAL COMPONENTS IN THE MEASUREMENT SIGNALS OF A MEASUREMENT SYSTEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89106361A EP0392036B1 (en) 1989-04-11 1989-04-11 Method and compensation of the disturbed parts of the signals in a measuring system

Publications (2)

Publication Number Publication Date
EP0392036A1 EP0392036A1 (en) 1990-10-17
EP0392036B1 true EP0392036B1 (en) 1993-08-25

Family

ID=8201202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106361A Expired - Lifetime EP0392036B1 (en) 1989-04-11 1989-04-11 Method and compensation of the disturbed parts of the signals in a measuring system

Country Status (4)

Country Link
EP (1) EP0392036B1 (en)
AT (1) ATE93638T1 (en)
DE (1) DE58905396D1 (en)
ES (1) ES2042848T3 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846790A (en) * 1973-06-08 1974-11-05 Honeywell Inc Intrusion detection systems
DE2843849C3 (en) * 1978-10-07 1981-12-03 Rode, Johannes, 2000 Hamburg System for monitoring outdoor areas
DE3329554A1 (en) * 1983-08-16 1985-03-07 Siemens AG, 1000 Berlin und 8000 München METHOD AND ARRANGEMENT FOR MEASURING CAPACITIVE STATE CHANGES ON A PROTECTIVE FENCE
US4684931A (en) * 1985-05-14 1987-08-04 Sydney Parks Capacitive sensing security system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.E.E.E. TRANSACTIONS ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, vol. ASSP-27, no. 6, December 1979, pages 782-789 *

Also Published As

Publication number Publication date
DE58905396D1 (en) 1993-09-30
ATE93638T1 (en) 1993-09-15
ES2042848T3 (en) 1993-12-16
EP0392036A1 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
DE10117478B4 (en) Method for chronostratigraphic interpretation of a seismic cross section or block
DE4033527C2 (en) Vehicle position detector device
DE4444593C2 (en) Distance measuring device
DE19633884A1 (en) Procedure for fault-tolerant position determination of an object
DE4127168A1 (en) Multi-mode signal processor for distance measurement, e.g. between vehicles - has transmitter, receiver, and estimation processor comparing processed data with distance prognosis windows
EP3538843A1 (en) Estimation of an individual position
DE2905023A1 (en) DIGITAL PHASE DETECTOR AND METHOD FOR DETECTING A PHASE DIFFERENCE
DE2658954B1 (en) Method for suppressing disturbance waves in seismic data
DE10129726C2 (en) Method for determining target data
DE102018207744B3 (en) Radar signal processing device
EP0791169B1 (en) Process for stabilising the direction indicated by magnetic compasses
DE19510506A1 (en) Method and measuring device for metal detection by means of a coil arrangement with several separately controllable areas
EP0392036B1 (en) Method and compensation of the disturbed parts of the signals in a measuring system
DE2514751A1 (en) TACAN SYSTEM
DE2845164A1 (en) TARGET LOCATION AND DISTANCE MEASUREMENT SYSTEM
DE19828318C2 (en) Wire highlighting
DE19531388C1 (en) Blind signal source separation system
EP2847624B1 (en) Method and apparatus for estimating the shape of an acoustic towed antenna
DE3132933C2 (en) Procedure for determining the winding currents in magnetic intrinsic protection (MES) systems
DE2741847A1 (en) DEVICE FOR DETERMINING THE PRESENCE OF RADAR ECHOES AND A PULSE RADAR SYSTEM EQUIPPED WITH IT
DE102014224911A1 (en) Method and device for determining statistical properties of raw measured values
DE4111785A1 (en) KALMAN FILTER
EP0368366A2 (en) Method for detecting a time-variable signal between a stationary initial state and a stationary final state
DE1952029A1 (en) Generator for displaying the contours of weather formations
DE4228934C2 (en) Device for determining the confidence interval of percentile measured values of continuous stochastic sound signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901205

17Q First examination report despatched

Effective date: 19930129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 93638

Country of ref document: AT

Date of ref document: 19930915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905396

Country of ref document: DE

Date of ref document: 19930930

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042848

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3009644

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89106361.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030319

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20030328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030410

Year of fee payment: 15

Ref country code: GB

Payment date: 20030410

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030411

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030414

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030422

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030428

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030429

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030616

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030711

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040411

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040411

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040412

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050411

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040412